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Abstract 
 
This study addresses the impact of climate change on Kuala Terengganu, 
Malaysia, focusing on rainfall variability prediction. As extreme weather 
events become more frequent, accurate climate forecasts are essential 
for effective disaster preparedness. The primary objective is to evaluate 
the effectiveness of Principal Component Analysis (PCA) and Multiple 
Linear Regression (MLR) in predicting key climate indicators such as 
temperature, humidity, and precipitation. Using 2021 climate data, PCA 
was employed to identify significant variables influencing rainfall, which 
were then used in an MLR model to predict rainfall variability. The 
integrated PCA-MLR approach significantly improved prediction 
accuracy compared to MLR alone, identifying temperature, humidity, 
and wind speed as critical predictors. The study demonstrates that 
combining PCA and MLR enhances climate prediction accuracy, aiding 
better planning and response to climate challenges in Kuala Terengganu. 
This approach can improve disaster risk management and resilience. 
Future research should expand datasets and incorporate additional 
climate variables to refine predictive capabilities. 
 
Keywords: Climate Change, Principal Component Analysis, Multiple Linear 
Regression, Rainfall Prediction Model 
 
Abstrak 
 
Kajian ini membincangkan kesan perubahan iklim di Kuala Terengganu, 
Malaysia, memberi tumpuan kepada ramalan kebolehubahan hujan. 
Apabila peristiwa cuaca ekstrem menjadi lebih kerap, ramalan iklim yang 
tepat adalah penting untuk kesiapsiagaan bencana yang berkesan. 
Objektif utama adalah untuk menilai keberkesanan Analisis Komponen 
Utama (PCA) dan Regresi Linear Berganda (MLR) dalam meramalkan 
penunjuk iklim utama seperti suhu, kelembapan dan kerpasan. 
Menggunakan data iklim 2021, PCA telah digunakan untuk mengenal 
pasti pembolehubah penting yang mempengaruhi hujan, yang 
kemudiannya digunakan dalam model MLR untuk meramalkan 
kebolehubahan hujan. Pendekatan PCA-MLR bersepadu meningkatkan 
ketepatan ramalan dengan ketara berbanding MLR sahaja, mengenal 
pasti suhu, kelembapan dan kelajuan angin sebagai peramal kritikal. 
Kajian ini menunjukkan bahawa gabungan PCA dan MLR meningkatkan 
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1.0 INTRODUCTION 
 
Amidst the persistence of climate change, the 
greenhouse gas emissions caused by heavy 
industrialization have promptly promoted the global 
temperature rise and caused a serious change in 
various climate parameters [1]. Global human 
population has been persistently threatened by 
several climate change phenomena with various 
magnitudes over the time [2]. According to the 2020 
Climate Services Status Report of the World 
Meteorological Organization (WMO), more than 108 
million people in the world have been significantly 
affected by storms, floods, droughts and forest fires 
as the results of persistent climate change, with the 
aforementioned number is predicted to experience 
a probable 1.5-fold increase by 2030 with a potential 
loss of approximately USD 20 billion per annum [3]. 
National Oceanic and Atmospheric Administration 
(NOAA) National Hurricane Center have also 
reported the record-breaking occurrence of 30 
named tropical storms across Atlantic Ocean in 2020, 
with 11 of them were confirmed to hit the continental 
United States and cause severe hurricane rainfall 
within the affected areas [4]. By December 2020, 
NOAA National Centers for Environmental 
Information (NCEI) reported the economic loss 
caused by those 11 named storms to be 
approximately USD 41.3 billion [5]. On the other hand, 
Australia experienced unprecedented bushfires in 
2019-2020, which had destroyed 20% of its forests and 
killed millions of wildlife [6]. 

Nearly half of the world's population resides within 
100 km of the coast [7]. Coastal cities have 
developed economies, rapid urbanization and 
dense populations. Rising temperature, frequent 
heavy rainfall, and rising sea levels significantly 
contribute to the global warming trend, and human 
activities continue to influence the structural and 
morphological characteristics of coastal urban belts 
[8]. Increasing the resilience of coastal areas to 
abnormal climate change is thus critical to ensure 
their long-term sustainability. It is necessary to 
conduct a comprehensive assessment of the impact 
of disasters on coastal areas [9]. 

The potential impact of climate change is 
enormous and thus cannot be ignored. For instance, 

the sea temperature change of 0.5 ℃ can trigger 
strong air-sea interaction [10], which may lead to 
pronounced climate anomalies in many parts of the 
world [11]. On the other hand, by the end of 2024, 
the global mean sea level has significantly risen by at 
least 260 mm since 1880 by the rate of approximately 
1.7 mm/year [12]. Within timespan from 2006 to 2015, 
the rate of global sea level rise has accelerated to 
approximately 3.6 mm/year (2.5-fold of the rate in 
the past 20th century), and the global mean sea level 
is estimated to reach at least 800 mm (almost 1 m) by 
the end of 21st century [12], [13]. 

The climate risk in Malaysia is moderate. Global 
warming leads to an annual increase in sea level on 
the peninsula of 1.3-9.4 mm [14]. National Center for 
Education Statistics (NCES) found that 28% of the 
coastline (approximately 1,360 km) of the peninsula is 
threatened by erosion, which may greatly affect the 
regional socio-economic activities [15]. This 
foreshadows possible future adverse effects and 
threats to Malaysia [16]. This will hinder the 
development and protection of coastal cities [17]. 

Floods occur in Terengganu almost every year, 
mainly due to the northeast monsoon. In 2014, 
massive floods hit large parts of Terengganu, causing 
5,550 people to lose their homes. The monthly rainfall 
during that period exceeded 1,200 mm, which is 
equivalent to the annual rainfall. The government has 
invested MYR 132 million (approximately USD 28.8 
million, based on an exchange rate of 1 USD = 4.58 
MYR as of 11th April 2025) to repair the flood damage 
[18]. 

Meteorological factors describe the various 
factors that affect weather conditions at a particular 
time and place. Climate parameters are important 
statistical data that describe the long-term climate 
characteristics of a region, while climate itself is 
defined as a comprehensive reflection of the 
average condition and amplitude of changes in 
meteorological variables from several months to 
millions of years [19]. Various climate parameters play 
a key role in climate systems, water resources 
planning, agriculture, and biological systems [20], 
[21]. 

There are two main approaches to climate 
prediction. One is the dynamic numerical model 
prediction based on the physical law of partial 

ketepatan ramalan iklim, membantu perancangan dan tindak balas 
yang lebih baik terhadap cabaran iklim di Kuala Terengganu. 
Pendekatan ini boleh meningkatkan pengurusan dan daya tahan risiko 
bencana. Penyelidikan masa depan harus mengembangkan set data 
dan menggabungkan pembolehubah iklim tambahan untuk 
memperhalusi keupayaan ramalan. 
 
Kata kunci: Perubahan Iklim, Analisis Komponen Utama, Regresi Linear 
Berganda, Model Ramalan Hujan 
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differential equations by adding initial conditions and 
boundary conditions. Dynamic models can simulate 
nonlinear relationships between phenomena and 
predict each event and its different effects. So far, a 
large number of weather and climate prediction 
systems have been developed by major countries in 
the world [22]. However, there are two major flaws in 
pure dynamic model prediction. First, the research 
and development of numerical models often needs 
to consume a lot of resources, and the improvement 
of model performance is very difficult. Secondly, 
there is a variety of obvious systematic model biases 
and insufficient spatial resolution, which limit the 
prediction skills [23], [24]. Moreover, the capability of 
numerical model prediction also depends on the 
initial field, that is, the quality of the data assimilation 
method and the construction of the ensemble 
prediction scheme. In particular, climate prediction 
often needs to develop a better-couple data 
assimilation scheme and fully consider the 
uncertainties of the observed data and the physical 
processes of each component model, which makes 
the construction of the whole prediction system very 
complicated [25], [26]. The other is a statistical 
method based on the linear relationship between 
prediction objects and predictors. For example, 
Multiple Linear Regression (MLR) [27], Principal 
Component Analysis (PCA) [28], Singular Value 
Decomposition (SVD) [29]. Most of these statistical 
forecasting relationships do not change with time, 
the calculation is relatively simple, and the model 
established according to historical data and the 
current actual state can quickly predict the future. 
The continuity, data density, and multidimensional 
dynamics of weather pose significant challenges to 
weather forecasting. 

This study will strive to predict and interpret the 
atmospheric conditions in various regions. Its main 
uses include the protection of life and property, 
agricultural production, public utility planning, and 
daily life, such as food, clothing, housing and 
transportation. To more effectively adapt to and 
respond to the constantly changing environment 
and climate it is necessary to process climate data 
and predict the trend of climate parameters. 
Chemometric techniques have been proven to be a 
functional tool with simpler and easier-to-interpret 
results [30]. It can reduce data complexity and 
understand data better. Multiple linear regression has 
a strong predictive ability for data complexity, good 
performance, and is suitable for prediction. 
Therefore, this study analyzed climate parameters in 
Kuala Terengganu using chemometrics technology 
and predicted rainfall using multiple linear regression. 
The objective of this study is to analyze the climate 
observation data of Kuala Terengganu Weather 
Station in 2021, using the principal component 
analysis, analyze to develop the rain variability 
prediction model using MLR model. 
 
 
 

2.0 METHODOLOGY 
 
Figure 1 shows the sampling site location in Kuala 
Terengganu, Terengganu, Malaysia, which is located 
in the eastern part of the peninsula, bordering 
Kelantan and Pahang [31]. Its coastline is 320 km 
along the South China Sea. Located between 
latitude 5 ° 27 'to 5 ° 11'N and longitude 102 ° 57' to 
103 ° 13'E. The total area is 13,035 km2 [18], including 
eight districts. Most residents live in coastal towns. 
Kuala Terengganu is the capital city as well as the 
largest town in the state of Terengganu, located at 
the mouth of the Terengganu River, with an area of 
approximately 605 km3. It faces the South China Sea 
and has a predominantly northeast monsoon climate 
with semi-diurnal tides [32]. The sample data in this 
study were collected from Jabatan Meteorologi 
Malaysia Station (5° 23’N,103° 06’E) at an elevation of 
5.2 m, code name "48618". The sampling site is 
located at the boundary of the residential area, 250 
m to the southeast is the airstrip of the ADMAL Flying 
Academy, 1,500 m to the northeast is the sea, and 
2.5 km to the west is farmland. 

 

 
 

Figure 1 Map of sampling site location 
 
 

The data source is from 1st January to 31st 
December 2021. The five climate parameters 
involved are: 24-hour average mean sea level (MSL) 
or atmospheric pressure, average temperature, 
average relative humidity, average wind speed and 
rainfall from 8 a.m. of the day before to 8 a.m. of the 
next day. 
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2.1 Pre-processing Data 
 
Preliminary data manipulation involved gathering 
and transforming data within the matrix. Values 
below the detection limit were standardized to half 
the detection limit. Normality tests, specifically the 
Shapiro-Wilk test (W test), were conducted to assess 
the conformity of climate parameter distributions to a 
normal distribution [33], [34]. Variables exhibiting a 
normal distribution were subjected to transformation. 
The data pre-processing followed the methodology 
outlined in Equation (1) [35], [36]: 
 

  (1) 
 
Here, zij is the j-th value of the standard score of 

the measured variable i, xij is the j-th observation of 
the variable i, µ is the mean value of the variable, 
and σ is the standard deviation. 

The analysis results will be mainly influenced by 
the maximum amplitude variable [35]. In addition, 
these transformations help to normalize the dispersion 
of the distribution and reduce potential classification 
errors caused by different variable sizes of the group 
or class [35], [37]. 

 
2.2 Box Plot 

 
The box plot, also known as the box-and-whisker plot 
[38], is a data graph that represents descriptive 
statistics of a data set. In this study, boxplots of the 
discriminant parameters were created to assess the 
different trends of the changes in different 
parameters (Figure 2). In addition, box plots can help 
to understand the distribution characteristics and 
seasonal changes of climate data. The star or 
asterisks are outliers that signify cases with values 
more than three times the height of the boxes [39]. 
The red "+" in the box plot indicates the mean value 
of the data. 

 
2.3 Principal Component Analysis (PCA) 

 
Principal component analysis has been used as an 
efficient data downsizing technique proposed by Karl 
Pearson in 1901. This is a powerful data analysis tool 
[40] and is usually used to simplify the features of 
large datasets to a small amount of information rich 
components. PCA is transformed by converting the 
observed value of the set of correlation variables into 
a new variable [41] having a non-linear correlation 
representing the linear combination of the original 
variables [39], [42]. PC provides the most meaningful 
information about the parameters that describe the 
entire dataset [39]. 

PCA is used to overcome the redundancy of 
datasets, obtain valuable information, provide 
optimal decision-making, describe high contrast to 
achieve optimal data visualization, reduce 
complexity, and improve computational efficiency. 
The purpose is to extract important information from 

the data and display it in an index compilation [43]. 
PCA has been widely applied in several fields, 

such as neuroscience [44], finance [45], facial 
recognition [46], and environmental monitoring [47]. 
The principal components (PCs) can define as in 
Equation (2): 

 
  (2) 

 
Here, z is the component score, а is the 

component loading, x is the measured value of the 
variable, i is the component number, j is the sample 
number and m is the total number of variables. 

Variational rotation is commonly used to 
overcome complex interpretation of PCs [48]. When 
the eigenvalue is greater than 1, a variational 
rotation of the PC is required to obtain a new set of 
variables termed as variational factors (VFs). The 
number of VF generated by maximum variable 
rotation is equivalent to the number of variables, 
covering unobservable, hypothetical, and latent 
variables [49]. The VF coefficient is divided into 
"strong" (> 0.75), "moderate" (0.50–0.75), and "weak" 
(0.30–0.49) based on the correlation coefficient [50]. 
This study used XLSTAT 2019 to calculate PCs. 

 
2.4 Pearson Correlation Coefficient 

 
The Pearson correlation coefficient or r value was 
utilized to identify the statistical linear correlations 
among the five climate-related parameters in the 
study location [51]. In general, a sample r value 
between two variables x and y was mathematically 
defined as in Equation (3): 
 

  (3) 

 
Here, rxy represented Pearson correlation 

coefficient between respective variables x and y, n 
was number or size of data points, i was index of 
summation,  and  represented individual data 
points of respective variables x and y,  and  were 
means of respective variables x and y. 

The correlations between the five climate 
parameters were visualized using the Pearson 
correlation map in Blue-Red scales. The r values 
ranged from –1.00 to +1.00, with a stronger 
correlation (darker color) indicated by the r values 
closer to ±1.00. In contrast, a weaker correlation 
(lighter color in the correlation maps) was indicated 
by the r values closer to 0.00. The direction of the 
correlations was denoted by either the positive (red) 
or negative sign (blue) of the r values. Conjointly, a t-
test with a 95% confidence level (α = 0.05) was 
conducted to test the statistical significance of the 
parameter correlations, with r values that were 
displayed in bold format in the correlation map 
being high-statistically significant (P ≤ 0.05). In terms 
of the statistical correlation strength, absolute 
magnitude of r value could be categorized into 
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“negligible” (0.00−0.09), “weak” (0.10−0.39), 
“moderate” (0.40−0.69), “strong” (0.70−0.89), and 
“very strong” (0.90−1.00) [51].  
 
2.5 Multiple Linear Regression (MLR) 

 
Multiple linear regression (MLR) is a multivariate 
statistical technique [52] that is often applied in 
specific studies to predict how one variable (called 
the dependent or target variable) will change based 
on two or more other variables (called the 
independent or predictor variables). Regression 
analysis is divided into univariate and multivariate. 
Univariate regression studies the linear relationship 
between two variables and establishes equations 
[53], [54]. On the other hand, multiple regression 
analysis includes one independent variable and 
several independent variables. This method can 
simultaneously study the impact of multiple 
independent variables on the independent variables 
and their interactions to demonstrate the variability 
of the independent variables. Both analysis methods 
aim to investigate the relationships, strengths, and 
interactions between variables under specific control 
conditions [53], [54]. MLR technology is widely used in 
environmental research, especially in air pollution 
research [55]. The Equation (4) is the general 
expression of the MLR model. 

 
  (4) 

 
Here, y represented dependent variables,  and 

 were the regression coefficient and independent 
variables, respectively [55], [56]. The statistical 
analyses were performed using Excel add-ons 
(XLSTAT2019). 
 
 
3.0 RESULTS AND DISCUSSION 
 
3.1 Descriptive Statistics 
 
Descriptive statistics were used to summarize the 
characteristics of a dataset [57], [58]. Through a 
graphical representation of the box plot, the time-
series trend of the five parameters from January to 
December can be observed as in Figure 2. All the 
parameter fluctuation ranges can be divided into 
two parts from November to February and from June 
to September. Between November and February, 
rainfall, relative humidity and wind speed increase 
significantly, while temperatures decrease in reverse. 
The temperature peaks from June to September, and 
the relative decrease in humidity and MSL pressure is 
relatively obvious. According to the climate analysis 
of the study site, the study site is characterized by two 
monsoon patterns [59]. From May to September, the 
southwest monsoon caused rainstorms on the east 
coast of Peninsular Malaysia, and from November to 
March, the northeast monsoon was dry. During this 
period, there is a monsoon interval [60]. The data 

characteristics of this study are consistent with the 
climate characteristics of the study site. 
 
3.2 Identification of Rainfall Factors 
 
  PCA provides the eigenvector values to determine 
the number of rotations that the method can run on, 
thus providing the information on the reliable 
variables that contribute to the other variable sets. 
PCs with eigenvalues greater than 1 are generally 
considered as significant variation factors [61]. 
According to Table 1, it can be observed that the 
eigenvalues of F1 and F2 statistically explain 66.111% 
of the total variance; hence, are considered as 
significant variation factors. 
 

Table 1 Eigenvalue to determine rotation number 
 
 VF1 VF2 VF3 VF4 F5 

Eigenvalue 1.736 1.569 0.875 0.519 0.300 

Variability 

(%) 

34.725 31.385 17.498 10.386 6.005 

Cumulative 

(%) 

34.725 66.111 83.609 93.995 100.000 

 
 

Table 1 shows that there are only two rotations in 
VF, with two D determining the predicted change 
pattern. Table 2 provides an overview of the 
predictions and contributions of variables in rainfall 
research, revealing the importance and reasons for 
monitoring and controlling variables for future rainfall 
prediction. VF1 is mainly composed of high positive 
load relative humidity (0.876) and precipitation 
(0.779), indicating that the increase of air humidity is 
the key factor triggering precipitation under tropical 
climate conditions. When the water vapor content in 
the air is sufficient, the water vapor may easily 
undergo condensation once the saturation point has 
been reached; thus, forming precipitation. VF2 is 
composed of the positive load of air pressure (0.823), 
wind speed (0.652) and the negative load of 
temperature (–0.656). It represents the wind 
temperature structure dominated by pressure. The 
state for dry air can be defined as in Equation (5): 
 

  (5) 
  

Where P is the atmosphere pressure, R is the gas 
constant for dry air (R = 287 J kg−1 K−1), ρ is the air 
density, and T is the atmosphere temperature [62]. 
The equation shows that both a decrease in 
atmospheric pressure and an increase in air 
temperature reduce air density. The atmospheric 
thermodynamic mechanism reflected by VF2 can be 
used to explain the effects of wind speed and 
pressure changes on the local climate system. 
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Figure 2 Box plots of five parameters (a) temperature (b) rainfall (c) relative humidity (d) average wind speed (e) Mean MSL 
pressure 
 
 

As can be seen from Figure 3, the relationship 
between rainfall and relative humidity is the closest. 
When the water vapor content in the air increases, 
the relative humidity increases. When the humidity 
rises to a certain level, the water vapor in the air 
begins to condense and form clouds, which in turn 
form rain [63]. During rainfall, water on the ground 
and plants evaporate into the air, increasing the 
water vapor content in the air and thus increasing 
the relative humidity [64].  

Wind speed, air pressure, and temperature are 
closely related. The relationship between wind speed 
and air pressure is indirect and regulated by 
temperature that influences air density, which in turn 
affects air pressure and wind speed. As in the ideal 
gas law, the temperature gradient is directly 

proportional to the air pressure gradient, which 
further induces wind dynamics [65], [66]. This is 
evident as during the monsoons when the 
convection is unstable, the warm air on the surface 
rises (becomes less dense), which will leave a low-
pressure area behind it that further induce suction of 
surrounding air into the center, thus, causing 
significant wind movement. As the cold air in the 
upper atmosphere sinks into the surface (becomes 
denser), it will form a high-pressure area, which in turn 
induces air outflow from the center accompanied by 
wind movement [65], [66]. 
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Table 2 The variable factor (VFs) load of 5 climate 
parameters 
 

 VF1 VF2 
Mean MSL Pressure –0.191 0.823 
Average Temperature –0.531 –0.656 
Mean Relative Humidity 0.876 –0.222 
Mean Wind Speed –0.077 0.652 
Rainfall 0.779 0.157 

 

 
 

Figure 3 Factor loadings after Varimax rotation 
 
 
3.3 Correlation Study 
 
The findings on the correlations between the five 
focused climate parameters in the study location 
were visualized as in Table 3 and Figure 4. The colors 
in the matrix in Figure 4 are used to represent the 
strength of the correlation. The red series indicates 
the positive correlation, the blue series indicates the 
negative correlation, and the darker the color 
indicates the stronger the correlation. Overall, our 
correlation study revealed that most of the 
correlations between the focused climate 
parameters are high-statistically significant (P ≤ 0.05), 
except the correlation between rainfall and mean 
MSL pressure which could be caused by high 
variabilities between these two parameters.  

According to Table 3 and Figure 4, rainfall and 
average temperature show a light blue color, 
showing a weak negative correlation (r = –0.293) may 
suggest evaporative cooling that reflects heat 
transfer from the surrounding air into the raindrops 
when the rainfall occurs in the atmosphere with 
unsaturated air; thus, lowering the surrounding air 
temperature [67]. Rainfall and humidity are orange, 
and there is a moderate positive correlation 
between them (r = 0.460) is explained by the 
increase in water vapor content in the air during 
 

high-humid conditions that may increase the 
probability of rainfall [68], [69]. Precipitation and 
average wind speed are yellow, showing a weak 
positive correlation (r = 0.139) indicates that higher 
wind speed may encourage water evaporation into 
the atmosphere, which induces boundary layer 
destabilization and deep convection associated with 
moisture convergence; thus, promoting precipitation 
[70], [71]. Overall, these correlation findings are well-
aligned to the PCA results. 

Whereas the correlations among other four 
climate parameters are statistically evident, although 
their correlation magnitude may not be necessarily 
high due to their significant variability caused by the 
monsoonal variation at the study location. Mean 
wind speed and mean MSL pressure are shown in 
yellow with a weak positive correlation (r = 0.246). 
Pressure gradient is one of the main factors driving 
wind speed [72]. When the pressure gap between 
the two places is large, the air will flow from the high 
pressure area to the low pressure area, forming a 
wind. The greater the pressure gradient, the stronger 
the wind speed. This is consistent with the findings of 
[73]. The mean wind speed is negatively correlated 
with mean temperature (r = –0.187) and mean 
relative humidity (r = –0.193), both of which are 
shown in green. In the tropics, when the daytime 
temperature is higher, the air is heated up, which 
may cause the hot air to rise and cause the local air 
flow to be smooth, resulting in lower wind speed; And 
possibly due to the effect of humidity on air density, 
the air is more stable at high humidity, resulting in 
lower wind speed. This is similar to the findings 
produced by [74]. In addition, the current analysis 
shows that mean relative humidity and mean MSL 
pressure (r = –0.280) and mean temperature (r = –
0.321) are both shown in light blue, showing a weak 
negative correlation [74], [75]. According to the 
Equation (6), (7), and (8) [76]: 

 
Where RH is relative humidity, e is the actual water 

vapor pressure, es is the saturation (or equilibrium) 
water vapor pressure, t and td are initial air 
temperature and dew point temperature 
(temperature at which air, with certain level of water 
vapor, must be cooled to become completely 
saturated) respectively, and A, B and C are the 
adjusted coefficients of 17.625, 243.04 ℃ and 610.94 
Pa respectively. 

It can be seen from the equation that the 
saturated water vapor pressure increases 
exponentially with the temperature, while the actual 
water vapor pressure does not necessarily 
synchronize well; hence, the relative humidity tends 
to decrease as the temperature rises. When the air is 
in a low pressure system, the air rises, and the 

  (6) 
  (7) 
  (8) 
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temperature decreases with the increase of height, 
which makes the water vapor in the air more easy to 
cool and condense to form clouds and precipitation; 
thus, increasing the relative humidity. This is a key 
reason why areas of low pressure are often 
accompanied by cloudy or rainy weather [77]. 

Lastly, average temperature is identified to be 
moderate-negatively correlated to mean MSL 
pressure (r = –0.410), which is similar to the findings of 
[78]. This correlation could be attributed to the direct 
contribution of high temperatures in the tropics to the 
formation of cyclones as low atmospheric pressure 
systems [79]. 
 
Table 3 Pearson correlation coefficient matrix of five 
focused climate parameters in the study location 
 

Variables 
Mean 
MSL 

Pressure 

Average 
Temperature 

Mean 
Relative 
Humidity 

Mean 
Wind 

Speed 
Rainfall 

Mean MSL 
Pressure 1         
Average 
Temperature –0.410 1       
Mean Relative 
Humidity –0.280 –0.321 1     
Mean Wind 
Speed 0.246 –0.187 –0.193 1   
Rainfall –0.039 –0.293 0.46 0.139 1 
*The bolded correlation coefficient values are highly significant (P ≤ 
0.05). 
 

 
 
Figure 4 Pearson correlation map of the five focused 
climate parameters in the study location 
 
 

The findings on Pearson correlations between 
rainfall and other four focused climate parameters 
are well-aligned with the bar chart of standardized 
coefficients for rainfall linear regression model in 
Figure 5. The height of the histogram represents the 
strength of each variable's contribution to the 
precipitation prediction model, while the positive 
and negative directions of the column represent the 
direction of statistical influence (positive or negative 
correlation).  

The results reveal the mean relative humidity as 
the largest contributor to the rainfall occurrence in 

the study location, which is followed by mean wind 
speed and air temperature. There is no statistically 
significant influence of mean MSL pressure on the 
rainfall occurrence at 95% confidence interval level, 
which may further confirm the high variabilities and 
negligible statistical correlation between these two 
parameters at the study location. 
 

 
 
Figure 5 Bar chart of standardized coefficients for the four 
focused climate parameters (mean MSL pressure, average 
temperature, mean relative humidity, and mean wind 
speed) for rainfall linear regression model                                
 
 
3.4 Prediction of the Rainfall Data using MLR 
 
An MLR model was used to finely depict the dynamic 
performance of variables. The core mechanism of 
this model is linear least square fitting with the 
attempts of identifying the best-fitting line for the set 
of data points via minimization of the sum of squared 
differences or errors between the real data values 
and the estimated values by the model [80].  

Coefficient of determination (R2) was used to 
evaluate the performance of the MLR model. The R2 
value only provides information about how well it 
performs on external data [81]. Root mean square 
error (RMSE) measures residual error, which gives an 
estimate of the average difference between 
observed and simulated values for climate. If the R2 
value is 1 and the RMSE value is minimal, a better 
model should be executed [82]. The results showed 
that the statistical R2 of goodness of fit was 0.293 and 
the RMSE was 13.581 (Table 4), which indicate 
relatively low R2 larger RMSE value. The numerical 
results further imply that the current model has a 
certain predictive capability, although it might not 
be highly accurate as there is a noticeable deviation 
between the predicted value and the actual 
observed value caused by high data variability or 
noise. 
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Table 4 Summary of regression of the rainfall’s variable 
produced by this study 
 

Goodness of fit statistics 

Observations 334.000 

Sum of weights 334.000 

DF 329.000 

R² 0.293 

Adjusted R² 0.284 

MSE 184.431 

RMSE 13.581 

 
 

Our established rainfall variability prediction 
model (hence named as Wang’s Rainfall Model) 
produced the equation for predicting the rainfall 
intensity (mm) as in the Equation (9):  

 
Predicted rainfall (mm) = 36.947025196464 − 
0.105363766442354 × P − 1.81024357154312 × T 
+ 1.43988809750382 × H + 3.87787550643935 × 
W 

(9) 

 
 Here, P represents MSL Pressure (hPa), T is the 24-

hour average temperature (℃), H is the 24-hour 
average humidity (%), and W is the 24-hour average 
wind speed (m/s). 
 
3.5 Validation of Wang’s rainfall variability 
prediction model 

 
Figure 6 displays the significant gaps or errors 
between the current forecast accuracy of our rainfall 
MLR model and the actual rainfall. From the 
perspective of practical application, although the 
model can be used as a preliminary estimation tool 
of precipitation trend, its prediction accuracy is not 
enough to support high-sensitivity real-time 
forecasting or disaster warning. Hence, larger sample 
size along with hyperparameter tuning might be 
considered to ensure higher accuracy and precision 
in rainfall variability prediction. As the sample size 
increases, the standard error will be more minimized, 
which contributes to higher precision of rainfall 
estimation by the regression model with minimized 
influence of outliers [83]. This further results in lower 
variance for coefficient estimates and higher R2 
value, which indicates more explained variability by 
the model and better model fit. Furthermore, 
hyperparameter tuning is also essential to ensure best 
suitability and optimal performance of the model in 
predicting the rainfall variability with high accuracy 
and precision [84]. Nevertheless, our rainfall MLR 
model is shown to exhibit roughly similar rainfall trend 
shape as in the actual one, which may serve as a 
feasible baseline rainfall variability prediction model.  

It is also important to consider the importance of 
data quality over data quantity. Noisy data, 
erroneous data, or irrelevant data may negatively 

affect the model. Systematic errors or biases in the 
data may induce unfeasible statistical modeling and 
poor data generalization [85]. 
 

 
 
Figure 6 Line chart of actual rainfall compared to MLR 
model 
 
 
4.0 CONCLUSION 
 
The preliminary results of this study show that the PCA 
discerns average daily temperature, relative 
humidity, and means wind speed as the key 
meteorological parameters that play important roles 
in regulating the rainfall dynamics in Kuala 
Terengganu. Additionally, despite the low predictive 
capability of our current rainfall MLR model due to 
high data variability or noise, it is capable to capture 
the general rainfall trend shape similar to the actual 
one.  

Overall, the application of MLR-based PCA has 
feasibly facilitated rainfall prediction by our current 
study. Combination of MLR and PCA can provide 
good performance metrics and improve efficiency 
by eliminating collinearity problems and reducing the 
number of predictor variables. This model is thus 
proved to be a useful tool for meteorological 
agencies to make more effective climate predictions 
in Malaysia as it may help in reducing the cost of 
instruments or tools used in sampling activities and 
analysis. Future research studies or any rainfall 
monitoring scheme plan should consider the 
incorporation of large historical data size with high-
quality in establishing rainfall variability prediction 
model along with hyperparameter tuning. The 
utilization of both PCA and MLR can further develop 
better sampling strategies to help local and 
government authorities more effectively respond to 
climate disasters. This study strongly recommends 
using statistical data and trend analysis in data 
analysis, which not only provides more valuable 
information but also significantly reduces sampling 
costs and time. Therefore, these approaches are 
crucial for the accuracy and effectiveness of future 
rainfall prediction. 
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