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Graphical abstract Abstract
DATA COLLECTION This study addresses the impact of climate change on Kuala Terengganu,
Malaysia, focusing on rainfall variability prediction. As extreme weather
events become more frequent, accurate climate forecasts are essential
for effective disaster preparedness. The primary objective is to evaluate
the effectiveness of Principal Component Analysis (PCA) and Multiple
Linear Regression (MLR) in predicting key climate indicators such as
. temperature, humidity, and precipitation. Using 2021 climate data, PCA
U D@ & was employed to identify significant variables influencing rainfall, which
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MLR were then used in an MLR model to predict rainfall variability. The

infegrated PCA-MLR approach significantly improved prediction

'(r\ accuracy compared to MLR alone, identifying temperature, humidity,

v/ and wind speed as crifical predictors. The study demonstrates that

MULTIPLE LINEAR combining PCA and MLR enhances climate prediction accuracy, aiding

TENPERATUR“HUN'D‘TV L, S REGRESSION better planning and response to climate challenges in Kuala Terengganu.
BERIAR L ? _g This approach can improve disaster risk management and resilience.

Future research should expand datasets and incorporate additional
climate variables to refine predictive capabilities.

Keywords: Climate Change, Principal Component Analysis, Multiple Linear
Regression, Rainfall Prediction Model

Abstrak

Kajian ini membincangkan kesan perubahan iklim di Kuala Terengganu,
Malaysia, memberi tumpuan kepada ramalan kebolehubahan hujan.
Apabila peristiwa cuaca ekstrem menjadi lebih kerap, ramalan iklim yang
tepat adalah penting untuk kesiapsiagaan bencana yang berkesan.
Objektif utama adalah untuk menilai keberkesanan Analisis Komponen
Utama (PCA) dan Regresi Linear Berganda (MLR) dalam meramalkan
penunjuk iklim utama seperti suhu, kelembapan dan kerpasan.
Menggunakan data iklim 2021, PCA telah digunakan untuk mengenal
pasti  pembolehubah penfing yang mempengaruhi hujan, yang
kemudiannya digunakan dalam model MLR untuk meramalkan
kebolehubahan hujan. Pendekatan PCA-MLR bersepadu meningkatkan
ketepatan ramalan dengan ketara berbanding MLR sahaja, mengenal
pasti suhu, kelembapan dan kelojuan angin sebagai peramal kritikal.
Kajian ini menunjukkan bahawa gabungan PCA dan MLR meningkatkan
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ketepatan ramalan iklim, membantu perancangan dan findak balas

yang

lebih baik tferhadap cabaran iklim di Kuala Terengganu.

Pendekatan ini boleh meningkatkan pengurusan dan daya tahan risiko
bencana. Penyelidikan masa depan harus mengembangkan set data

dan

menggabungkan  pembolehubah  ikim  tambahan  untuk

memperhalusi keupayaan ramalan.

Kata kunci: Perubahan lklim, Analisis Komponen Utama, Regresi Linear
Berganda, Model Ramalan Hujan

© 2026 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Amidst the persistence of climate change, the
greenhouse gas emissions caused by heavy
industrialization have promptly promoted the global
temperature rise and caused a serious change in
various climate parameters [1]. Global human
population has been persistently threatened by
several climate change phenomena with various
magnitudes over the time [2]. According to the 2020
Climate Services Status Report of the World
Meteorological Organization (WMQO), more than 108
million people in the world have been significantly
affected by storms, floods, droughts and forest fires
as the results of persistent climate change, with the
aforementioned number is predicted to experience
a probable 1.5-fold increase by 2030 with a potential
loss of approximately USD 20 billion per annum [3].
National Oceanic and Atmospheric Administration
(NOAA) National Hurricane Center have also
reported the record-breaking occurrence of 30
named fropical storms across Atlantic Ocean in 2020,
with 11 of them were confirmed to hit the continental
United States and cause severe hurricane rainfall
within the affected areas [4]. By December 2020,
NOAA  Natfional Centers for  Environmental
Information (NCEl) reported the economic loss
caused by fthose 11 named storms to be
approximately USD 41.3 billion [5]. On the other hand,
Australia experienced unprecedented bushfires in
2019-2020, which had destroyed 20% of its forests and
killed millions of wildlife [6].

Nearly half of the world's population resides within
100 km of the coast [7]. Coastal cities have
developed economies, rapid urbanization and
dense populations. Rising temperature, frequent
heavy rainfall, and rising sea levels significantly
confribute fo the global warming trend, and human
activities confinue to influence the sftructural and
morphological characteristics of coastal urban belfs
[8]. Increasing the resilience of coastal areas to
abnormal climate change is thus critical fo ensure
their long-term sustainability. It is necessary fo
conduct a comprehensive assessment of the impact
of disasters on coastal areas [9].

The potential impact of climate change is
enormous and thus cannot be ignored. For instance,

the sea temperature change of 0.5 °C can trigger
strong air-sea interaction [10], which may lead to
pronounced climate anomalies in many parts of the
world [11]. On the other hand, by the end of 2024,
the global mean sea level has significantly risen by at
least 260 mm since 1880 by the rate of approximately
1.7 mm/year [12]. Within timespan from 2006 to 2015,
the rate of global sea level rise has accelerated to
approximately 3.6 mm/year (2.5-fold of the rate in
the past 20th century), and the global mean sea level
is estimated to reach af least 800 mm (almost 1 m) by
the end of 21st century [12], [13].

The climate risk in Malaysia is moderate. Global
warming leads to an annual increase in sea level on
the peninsula of 1.3-9.4 mm [14]. National Center for
Education Statistics (NCES) found that 28% of the
coastline (approximately 1,360 km) of the peninsula is
threatened by erosion, which may greatly affect the
regional socio-economic  activities  [15].  This
foreshadows possible future adverse effects and
threats to Malaysia [16]. This will hinder the
development and protection of coastal cities [17].

Floods occur in Terengganu almost every year,
mainly due to the northeast monsoon. In 2014,
massive floods hit large parts of Terengganu, causing
5,550 people to lose their homes. The monthly rainfall
during that period exceeded 1,200 mm, which s
equivalent to the annual rainfall. The government has
invested MYR 132 million (approximately USD 28.8
million, based on an exchange rate of 1 USD = 4.58
MYR as of 11t April 2025) to repair the flood damage
[18].

Meteorological factors describe the various
factors that affect weather conditions at a particular
fime and place. Climate parameters are important
statistical data that describe the long-term climate
characteristics of a region, while climate itself is
defined as a comprehensive reflection of the
average condition and amplitude of changes in
meteorological variables from several months to
millions of years [19]. Various climate parameters play
a key role in climate systems, water resources
planning, agriculiure, and biological systems [20],
[21].

There are two main approaches to climate
prediction. One is the dynamic numerical model
prediction based on the physical law of partial
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differential equations by adding initial conditions and
boundary conditions. Dynamic models can simulate
nonlinear relationships between phenomena and
predict each event and its different effects. So far, a
large number of weather and climate prediction
systems have been developed by major countries in
the world [22]. However, there are two major flaws in
pure dynamic model prediction. First, the research
and development of numerical models often needs
to consume a lot of resources, and the improvement
of model performance is very difficult. Secondly,
there is a variety of obvious systematic model biases
and insufficient spatial resolution, which limit the
prediction skills [23], [24]. Moreover, the capability of
numerical model prediction also depends on the
initial field, that is, the quality of the data assimilation
method and the construction of the ensemble
prediction scheme. In particular, climate prediction
often needs to develop a better-couple data
assimilation scheme and fully consider the
uncertainties of the observed data and the physical
processes of each component model, which makes
the construction of the whole prediction system very
complicated [25], [26]. The other is a statistical
method based on the linear relationship between
predictfion objects and predictors. For example,
Multiple Linear Regression (MLR) [27], Principal
Component Analysis (PCA) [28], Singular Value
Decomposition (SVD) [29]. Most of these statistical
forecasting relationships do not change with time,
the calculation is relatively simple, and the model
established according to historical data and the
current actual state can quickly predict the future.
The continuity, data density, and multidimensional
dynamics of weather pose significant challenges to
weather forecasting.

This study will strive to predict and interpret the
atmospheric conditions in various regions. Itfs main
uses include the protection of life and property,
agricultural production, public utility planning, and
daily life, such as food, clothing, housing and
transportation. To more effectively adapt to and
respond to the constantly changing environment
and climate it is necessary to process climate data
and predict the trend of climate parameters.
Chemometric techniques have been proven to be a
functional tool with simpler and easier-to-interpret
results [30]. It can reduce data complexity and
understand data better. Multiple linear regression has
a strong predictive ability for data complexity, good
performance, and is suitable for prediction.
Therefore, this study analyzed climate parameters in
Kuala Terengganu using chemometrics tfechnology
and predicted rainfall using multiple linear regression.
The objective of this study is to analyze the climate
observation data of Kuala Terengganu Weather
Station in 2021, using the principal component
analysis, analyze to develop the rain variability
prediction model using MLR model.

2.0 METHODOLOGY

Figure 1 shows the sampling site location in Kuala
Terengganu, Terengganu, Malaysia, which is located
in the eastern part of the peninsula, bordering
Kelantan and Pahang [31]. Its coastline is 320 km
along the South China Sea. Located between
latitude 5 ° 27 'to 5 ° 11'N and longitude 102 ° 57' to
103 ° 13'E. The total area is 13,035 km?2 [18], including
eight districts. Most residents live in coastal towns.
Kuala Terengganu is the capital city as well as the
largest town in the state of Terengganu, located at
the mouth of the Terengganu River, with an area of
approximately 605 km3. It faces the South China Sea
and has a predominantly northeast monsoon climate
with semi-diurnal tides [32]. The sample data in this
study were collected from Jabatan Meteorologi
Malaysia Statfion (5° 23'N,103° 06’E) at an elevation of
5.2 m, code name "48618". The sampling site is
located at the boundary of the residential area, 250
m to the southeast is the airstrip of the ADMAL Flying
Academy, 1,500 m to the northeast is the sea, and
2.5 km to the west is farmland.
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Figure 1 Map of sampling site location
The data source is from 1st January to 31¢

December 2021. The five climate parameters
involved are: 24-hour average mean sea level (MSL)
or atmospheric pressure, average temperature,
average relative humidity, average wind speed and
rainfall from 8 a.m. of the day before to 8 a.m. of the
next day.
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2.1 Pre-processing Data

Preliminary data manipulation involved gathering
and transforming data within the maftrix. Values
below the detection limit were standardized to half
the detection limit. Normality tests, specifically the
Shapiro-Wilk test (W test), were conducted to assess
the conformity of climate parameter distributions to a
normal distribution [33], [34]. Variables exhibiting a
normal distribution were subjected to transformation.
The data pre-processing followed the methodology
outlined in Equation (1) [35], [36]:

[ X5 —
Zy = Ju'p (1)

Here, zj is the j-th value of the standard score of
the measured variable i, x; is the j-th observation of
the variable i, u is the mean value of the variable,
and o is the standard deviation.

The analysis results will be mainly influenced by
the maximum amplitude variable [35]. In addition,
these transformations help to normalize the dispersion
of the distribution and reduce potential classification
errors caused by different variable sizes of the group
or class [35], [37].

2.2 Box Plot

The box plot, also known as the box-and-whisker plot
[38]. is a data graph that represents descriptive
statistics of a data set. In this study, boxplots of the
discriminant parameters were created to assess the
different trends of the changes in different
parameters (Figure 2). In addition, box plots can help
to understand the distribution characteristics and
seasonal changes of climate data. The star or
asterisks are outliers that signify cases with values
more than three fimes the height of the boxes [39].
The red "+" in the box plot indicates the mean value
of the data.

2.3 Principal Component Analysis (PCA)

Principal component analysis has been used as an
efficient data downsizing fechnique proposed by Karl
Pearson in 1901. This is a powerful data analysis tool
[40] and is usually used to simplify the features of
large datasets to a small amount of information rich
components. PCA is fransformed by converting the
observed value of the set of correlation variables into
a new variable [41] having a non-linear correlation
representing the linear combination of the original
variables [39], [42]. PC provides the most meaningful
information about the parameters that describe the
entire dataset [39].

PCA is used to overcome the redundancy of
datasetfs, obtain valuable information, provide
optimal decision-making, describe high contrast to
achieve  opfimal data  visualization, reduce
complexity, and improve computational efficiency.
The purpose is to extract important information from

the data and display it in an index compilation [43].

PCA has been widely applied in several fields,
such as neuroscience [44], finance [45], facial
recognition [46], and environmental monitoring [47].
The principal components (PCs) can define as in
Equation (2):

Zy = ap Xy + Aptyt .t A Xy (2)

Here, z is the component score, a is the
component loading, x is the measured value of the
variable, i is the component number, | is the sample
number and m is the fotal number of variables.

Variational rotation is commonly used to
overcome complex interpretation of PCs [48]. When
the eigenvalue is greater than 1, a variational
rotation of the PC is required to obtain a new set of
variables termed as variational factors (VFs). The
number of VF generated by maximum variable
rotation is equivalent to the number of variables,
covering unobservable, hypothetical, and latent
variables [49]. The VF coefficient is divided into
"strong" (> 0.75), "moderate" (0.50-0.75), and "weak"
(0.30-0.49) based on the correlation coefficient [50].
This study used XLSTAT 2019 to calculate PCs.

2.4 Pearson Correlation Coefficient

The Pearson correlation coefficient or r value was
utilized to identify the statistical linear correlations
among the five climate-related parameters in the
study location [51]. In general, a sample r value
between two variables x and y was mathematically
defined as in Equation (3):

) 11X =Xy -7

Pyy = 7
’ \;'Ei'.fl’i—??'*'zi'.f.?i—T'z (3)

Here, rx represented Pearson correlation
coefficient between respective variables x and y, n
was number or size of data points, i was index of
summation, x; and y; represented individual data
points of respective variables x and y, ¥ and ¥ were
means of respective variables x and y.

The correlations between the five climate
parameters were visualized using the Pearson
correlation map in Blue-Red scales. The r values
ranged from -1.00 to +1.00, with a stronger
correlation (darker color) indicated by the r values
closer to £1.00. In contrast, a weaker correlation
(lighter color in the correlation maps) was indicated
by the r values closer to 0.00. The direction of the
correlations was denoted by either the positive (red)
or negative sign (blue) of the r values. Conjointly, a -
test with a 95% confidence level (a = 0.05) was
conducted to test the statistical significance of the
parameter correlations, with r values that were
displayed in bold format in the correlation map
being high-statistically significant (P < 0.05). In terms
of the stafistical correlation strength, absolute
magnitude of r value could be categorized into
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“negligible” (0.00-0.09), “weak” (0.10-0.39).
“moderate” (0.40-0.69), “strong” (0.70-0.89), and
“very strong"” (0.90-1.00) [51].

2.5 Multiple Linear Regression (MLR)

Multiple linear regression (MLR) is a mulfivariate
statistical technique [52] that is often applied in
specific studies to predict how one variable (called
the dependent or target variable) will change based
on two or more other variables (called the
independent or predictor variables). Regression
analysis is divided into univariate and mulfivariate.
Univariate regression studies the linear relationship
between two variables and establishes equations
[53]. [54]. On the other hand, multiple regression
analysis includes one independent variable and
several independent variables. This method can
simultaneously  study the impact of multiple
independent variables on the independent variables
and their inferactions to demonstrate the variability
of the independent variables. Both analysis methods
aim to investigate the relationships, strengths, and
interactions between variables under specific control
conditions [53], [54]. MLR technology is widely used in
environmental research, especially in air pollution
research [55]. The Equation (4) is the general
expression of the MLR model.

¥ =ap+ apxy +agty+ ...+ ax; + £ (4)

Here, y represented dependent variables, a; and
x; were the regression coefficient and independent
variables, respectively [55], [56]. The statistical
analyses were performed using Excel add-ons
(XLSTAT2019).

3.0 RESULTS AND DISCUSSION
3.1 Descriptive Statistics

Descriptive statistics were used to summarize the
characteristics of a dataset [57], [58]. Through a
graphical representation of the box plot, the fime-
series tfrend of the five parameters from January to
December can be observed as in Figure 2. All the
parameter fluctuation ranges can be divided into
two parts from November to February and from June
to September. Between November and February,
rainfall, relative humidity and wind speed increase
significantly, while temperatures decrease in reverse.
The temperature peaks from June to September, and
the relative decrease in humidity and MSL pressure is
relatively obvious. According to the climate analysis
of the study site, the study site is characterized by two
monsoon patterns [59]. From May to September, the
southwest monsoon caused rainstorms on the east
coast of Peninsular Malaysia, and from November to
March, the northeast monsoon was dry. During this
period, there is a monsoon interval [60]. The data

characteristics of this study are consistent with the
climate characteristics of the study site.

3.2 Identification of Rainfall Factors

PCA provides the eigenvector values to determine
the number of rotations that the method can run on,
thus providing the information on the reliable
variables that confribute to the other variable sefs.
PCs with eigenvalues greater than 1 are generally
considered as significant variation factors [61].
According to Table 1, it can be observed that the
eigenvalues of F1 and F2 statistically explain 66.111%
of the total variance; hence, are considered as
significant variation factors.

Table 1 Eigenvalue to determine rotation number

VF1 VF2 VE3 VF4 F5

Eigenvalue 1.736 1.569 0.875 0.519 0.300
Variability 34.725 31.385 17.498 10.386  6.005
(%)
Cumulative | 34725  66.111  83.609  93.995  100.000
(%)

Table 1 shows that there are only two rotations in
VF, with two D determining the predicted change
pattern. Table 2 provides an overview of the
predictions and contributions of variables in rainfall
research, revealing the importance and reasons for
monitoring and controlling variables for future rainfall
prediction. VF1 is mainly composed of high positive
load relative humidity (0.876) and precipitation
(0.779), indicating that the increase of air humidity is
the key factor triggering precipitation under tropical
climate conditions. When the water vapor content in
the air is sufficient, the water vapor may easily
undergo condensation once the saturation point has
been reached; thus, forming precipitation. VF2 is
composed of the positive load of air pressure (0.823),
wind speed (0.652) and the negative load of
temperature  (-0.656). It represents the wind
temperature structure dominated by pressure. The
state for dry air can be defined as in Equation (5):

P = pRT (5)

Where P is the atmosphere pressure, R is the gas
constant for dry air (R=287Jkg™" K1), p is the air
density, and T is the atmosphere temperature [62].
The equation shows that both a decrease in
atmospheric  pressure and an increase in air
temperature reduce air density. The atmospheric
thermodynamic mechanism reflected by VF2 can be
used to explain the effects of wind speed and
pressure changes on the local climate system.
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pressure

As can be seen from Figure 3, the relationship
between rainfall and relative humidity is the closest.
When the water vapor content in the air increases,
the relative humidity increases. When the humidity
rises to a certain level, the water vapor in the air
begins to condense and form clouds, which in turn
form rain [63]. During rainfall, water on the ground
and plants evaporate into the air, increasing the
water vapor content in the air and thus increasing
the relative humidity [64].

Wind speed, air pressure, and temperature are
closely related. The relationship between wind speed
and air pressure is indirect and regulated by
temperature that influences air density, which in turn
affects air pressure and wind speed. As in the ideal
gas law, the temperature gradient is directly

proportional to the air pressure gradient, which
further induces wind dynamics [65], [66]. This is
evident as during the monsoons when the
convection is unstable, the warm air on the surface
rises (becomes less dense), which will leave a low-
pressure area behind it that further induce suction of
surrounding air info the center, thus, causing
significant wind movement. As the cold air in the
upper atmosphere sinks info the surface (becomes
denser), it will form a high-pressure area, which in turn
induces air outflow from the center accompanied by
wind movement [65], [66].
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Table 2 The variable factor (VFs) load of 5 climate
parameters

VF1 VF2
Mean MSL Pressure -0.191 0.823
Average Temperature -0.531 -0.656
Mean Relative Humidity 0.876 -0.222
Mean Wind Speed -0.077 0.652
Rainfalll 0.779 0.157

Variables (axes D1and D2: 66.11 %)
1 MeanMSL
p ™
075 /" MeanWind( N

', m/s) \9%

D2 (32.12 %)

N
temp
‘075 | averagd

. \’//
-1 075 05 025 0 02 05 07 1
D1 (33.99 %)

= Active variables

Figure 3 Factor loadings after Varimax rotation

3.3 Correlation Study

The findings on the correlations between the five
focused climate parameters in the study location
were visualized as in Table 3 and Figure 4. The colors
in the matrix in Figure 4 are used to represent the
stfrength of the correlation. The red series indicates
the positive correlation, the blue series indicates the
negative correlation, and the darker the color
indicates the stronger the correlation. Overall, our
correlation study revealed that most of the
correlations  between the  focused climate
parameters are high-statistically significant (P < 0.05),
except the correlation between rainfall and mean
MSL pressure which could be caused by high
variabilities between these two parameters.
According to Table 3 and Figure 4, rainfall and
average temperature show a light blue color,
showing a weak negative correlation (r =-0.293) may
suggest evaporative cooling that reflects heat
transfer from the surrounding air into the raindrops
when the rainfall occurs in the atmosphere with
unsaturated air; thus, lowering the surrounding air
temperature [67]. Rainfall and humidity are orange,
and there is a moderate positive correlation
between them (r = 0.460) is explained by the
increase in water vapor content in the air during

high-humid conditions that may increase the
probability of rainfall [68], [69]. Precipitation and
average wind speed are yellow, showing a weak
positive correlation (r = 0.139) indicates that higher
wind speed may encourage water evaporation into
the atmosphere, which induces boundary layer
destabilization and deep convection associated with
moisture convergence; thus, promoting precipitation
[70], [71]. Overall, these correlation findings are well-
aligned to the PCA results.

Whereas the correlations among other four
climate parameters are statistically evident, although
their correlation magnitude may not be necessarily
high due to their significant variability caused by the
monsoonal variation at the study location. Mean
wind speed and mean MSL pressure are shown in
yellow with a weak positive correlation (r = 0.246).
Pressure gradient is one of the main factors driving
wind speed [72]. When the pressure gap between
the two places is large, the air will flow from the high
pressure area to the low pressure area, forming a
wind. The greater the pressure gradient, the stronger
the wind speed. This is consistent with the findings of
[73]. The mean wind speed is negatively correlated
with  mean temperature (r = -0.187) and mean
relative humidity (r = -0.193), both of which are
shown in green. In the tropics, when the daytime
temperature is higher, the air is heated up, which
may cause the hot air to rise and cause the local air
flow to be smooth, resulting in lower wind speed; And
possibly due to the effect of humidity on air density,
the air is more stable at high humidity, resulting in
lower wind speed. This is similar fo the findings
produced by [74]. In addifion, the current analysis
shows that mean relative humidity and mean MSL
pressure (r = -0.280) and mean temperature (r = -
0.321) are both shown in light blue, showing a weak
negative correlation [74], [75]. According fto the
Equation (6), (7). and (8) [76]:

RH =100 - (6)
e =C exp[;Trdtd] (7)
es = Cexplz—] 8)

Where RH is relative humidity, e is the actual water
vapor pressure, es is the saturation (or equilibrium)
water vapor pressure, t and tg are initial air
temperature and dew point  temperature
(temperature at which air, with certain level of water
vapor, must be cooled to become completely
saturated) respectively, and A, B and C are the
adjusted coefficients of 17.625, 243.04 °C and 610.94
Pa respectively.

It can be seen from the equation that the
saturated water  vapor pressure increases
exponentially with the temperature, while the actual
water vapor pressure does not necessarily
synchronize well; hence, the relative humidity fends
to decrease as the temperature rises. When the air is
in a low pressure system, the air rises, and the
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temperature decreases with the increase of height,
which makes the water vapor in the air more easy to
cool and condense to form clouds and precipitation;
thus, increasing the relative humidity. This is a key
reason why areas of low pressure are often
accompanied by cloudy or rainy weather [77].

Lastly, average temperature is identified to be
moderate-negatively correlated to mean MSL
pressure (r = =0.410), which is similar to the findings of
[78]. This correlation could be attributed to the direct
contribution of high temperatures in the fropics to the
formation of cyclones as low atmospheric pressure
systems [79].

Table 3 Pearson correlation coefficient matrix of five
focused climate parameters in the study location

Mean Average Mean Mean
Variables MsL Relative Wind Rainfall
Pressure Temperature Humidity Speed
Mean MSL 1
Pressure
Average
Temperature -0.410 1
Mean Relative
Homiity -0.280 -0.321 1
Mean Wind
Speod 0.246  -0.187 -0.193 1
Rainfall -0.039 -0.293 0.46 0139 1

*The bolded correlation coefficient values are highly significant (P <

0.05).

. MeanMSL Pressure(Hpa)
. temp average
. 24 Hour Mean Relative Humidity ( % )
. 24 Hour MeanWind( m/s )
. . . Rainfall{ mm )
- e [

MeanMSL 24 Hour Mean Rainfall{ mm )
Pressure(Hpa) Relative Humidity ( %

)

Figure 4 Pearson correlation map of the five focused
climate parameters in the study location

The findings on Pearson correlations between
rainfall and other four focused climate parameters
are well-aligned with the bar chart of standardized
coefficients for rainfall linear regression model in
Figure 5. The height of the histogram represents the
stfrength of each variable's confribution to the
precipitation prediction model, while the positive
and negative directions of the column represent the
direction of statistical influence (positive or negative
correlation).

The results reveal the mean relative humidity as
the largest contributor to the rainfall occurrence in

the study location, which is followed by mean wind
speed and air temperature. There is no statistically
significant influence of mean MSL pressure on the
rainfall occurrence at 95% confidence interval level,
which may further confirm the high variabilities and
negligible statistical correlation between these two
parameters at the study location.

07 1

0.6 +

24 HoueMean
Relative Humidity

0.5 +

04 T

0.3 +

02 1

01 +

Standardized coefficients
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0.1 + Pressufe(Hpa)

temp average
02 +
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Variable

Figure § Bar chart of standardized coefficients for the four
focused climate parameters (mean MSL pressure, average
temperature, mean relafive humidity, and mean wind
speed) for rainfall linear regression model

3.4 Prediction of the Rainfall Data using MLR

An MLR model was used to finely depict the dynamic
performance of variables. The core mechanism of
this model is linear least square fitting with the
attempts of identifying the best-fitting line for the set
of data points via minimization of the sum of squared
differences or errors between the real data values
and the estimated values by the model [80].

Coefficient of determination (R?) was used to
evaluate the performance of the MLR model. The R2
value only provides information about how well it
performs on external data [81]. Root mean square
error (RMSE) measures residual error, which gives an
estimate of the average difference between
observed and simulated values for climate. If the R2
value is 1 and the RMSE value is minimal, a better
model should be executed [82]. The results showed
that the statistical R2 of goodness of fit was 0.293 and
the RMSE was 13.581 (Table 4), which indicate
relatively low R2? larger RMSE value. The numerical
results further imply that the current model has a
certain predictive capability, although it might not
be highly accurate as there is a noticeable deviation
between the predicted value and the actual
observed value caused by high data variability or
noise.
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Table 4 Summary of regression of the rainfall’'s variable
produced by this study

Goodness of fit statistics

Observations 334.000
Sum of weights 334.000
DF 329.000
R? 0.293
Adjusted R? 0.284
MSE 184.431
RMSE 13.581

Our established rainfall variability prediction
model (hence named as Wang's Rainfall Model)
produced the equation for predicting the rainfall
intensity (mm) as in the Equation (9):

Predicted rainfall (mm) = 36.947025196464 —
0.105363766442354 x P— 1.81024357154312 x T 9)
+ 1.43988809750382 x H + 3.87787550643935 X

w

Here, P represents MSL Pressure (hPa), T is the 24-
hour average temperature (°C), H is the 24-hour
average humidity (%), and W is the 24-hour average
wind speed (m/s).

3.5 Validation of Wang’'s rainfall variability
prediction model

Figure 6 displays the significant gaps or errors
between the current forecast accuracy of our rainfall
MLR model and the actual rainfall. From the
perspective of practical application, although the
model can be used as a preliminary estimation tool
of precipitation trend, its prediction accuracy is not
enough to support high-sensitivity  real-time
forecasting or disaster warning. Hence, larger sample
size along with hyperparameter tuning might be
considered to ensure higher accuracy and precision
in rainfall variability prediction. As the sample size
increases, the standard error will be more minimized,
which confributes to higher precision of rainfall
estimation by the regression model with minimized
influence of outliers [83]. This further results in lower
variance for coefficient estimates and higher R2
value, which indicates more explained variability by
the model and betfter model fit. Furthermore,
hyperparameter tuning is also essential fo ensure best
suitability and optimal performance of the model in
predicting the rainfall variability with high accuracy
and precision [84]. Nevertheless, our rainfall MLR
model is shown to exhibit roughly similar rainfall frend
shape as in the actual one, which may serve as a
feasible baseline rainfall variability prediction model.
It is also important to consider the importance of
data quality over data quantity. Noisy data,
erroneous data, or irrelevant data may negatively

affect the model. Systematic errors or biases in the
data may induce unfeasible statfistical modeling and
poor data generalization [85].

Figure é Line chart of actual rainfall compared to MLR
model

4.0 CONCLUSION

The preliminary results of this study show that the PCA
discerns average daily temperature, relative
humidity, and means wind speed as the key
meteorological parameters that play important roles
in regulating the rainfall dynamics in  Kuala
Terengganu. Additionally, despite the low predictive
capability of our current rainfall MLR model due to
high data variability or noise, it is capable to capture
the general rainfall trend shape similar to the actual
one.

Overdall, the application of MLR-based PCA has
feasibly facilitated rainfall prediction by our current
study. Combination of MLR and PCA can provide
good performance metrics and improve efficiency
by eliminating collinearity problems and reducing the
number of predictor variables. This model is thus
proved to be a useful tool for meteorological
agencies fo make more effective climate predictions
in Malaysia as it may help in reducing the cost of
instruments or tools used in sampling activities and
analysis. Future research studies or any rainfall
monitoring scheme plan should consider the
incorporation of large historical data size with high-
quality in establishing rainfall variability prediction
model along with hyperparameter tuning. The
utilization of both PCA and MLR can further develop
better sampling strategies to help local and
government authorities more effectively respond to
climate disasters. This study strongly recommends
using stafistical data and frend analysis in data
analysis, which not only provides more valuable
information but also significantly reduces sampling
costs and time. Therefore, these approaches are
crucial for the accuracy and effectiveness of future
rainfall prediction.
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