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Abstract 
 

Navigation control plays a critical role in the performance and safety of autonomous 

vehicles, especially in dynamic and uncertain environments. Recent advances in artificial 

intelligence (AI) have led to the development of intelligent control strategies that improve 

lateral control, path tracking, and decision-making capabilities. The systematic review was 

performed with the PRISMA method in order both to comply with and evaluate alternatives. 

Through systematic searches in Scopus, Web of Science and IEEE databases a total of 30 

primary studies were identified and reviewed, which fell under three broad themes: 

Reinforcement Learning and Fuzzy Logic Control Approaches; Neural Networks and AI 

Control Strategies; and Hybrid Control Strategies and Advanced Path Planning. The 

selected articles were then examined and discussed to evaluate their roles in improving the 

vehicle performance, stability and behaviour adaptivity. The findings indicate that AI based 

control navigation substantially increases the capabilities of autonomous vehicles, and 

more research will consequently refine those techniques for broad use.  

  

Keywords: Autonomous vehicles, neural networks, fuzzy logic, reinforcement learning, 

navigation control 

 

Abstrak 
 

Kawalan navigasi memainkan peranan penting dalam prestasi dan keselamatan 

kenderaan autonomi, terutamanya dalam persekitaran yang dinamik dan tidak menentu. 

Kemajuan terkini dalam kecerdasan buatan (AI) telah membawa kepada pembangunan 

strategi kawalan pintar yang meningkatkan kawalan sisi, penjejakan laluan dan keupayaan 

membuat keputusan. Semakan sistematik telah dilakukan dengan kaedah PRISMA untuk 

kedua-duanya untuk mematuhi dan menilai alternatif. Melalui carian sistematik dalam 

pangkalan data Scopus, Web of Science dan IEEE, sejumlah 30 kajian utama telah dikenal 

pasti dan disemak, yang termasuk dalam tiga tema umum: Pembelajaran Pengukuhan 

dan Pendekatan Kawalan Logik Kabur; Rangkaian Neural dan Strategi Kawalan AI; dan 

Strategi Kawalan Hibrid dan Perancangan Laluan Lanjutan. Artikel yang dipilih 

kemudiannya diperiksa dan dibincangkan untuk menilai peranan mereka dalam 

meningkatkan prestasi kenderaan, kestabilan dan penyesuaian tingkah laku. Penemuan 
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menunjukkan bahawa navigasi kawalan berasaskan AI meningkatkan dengan ketara 

keupayaan kenderaan autonomi, dan juga lebih banyak penyelidikan akan seterusnya 

memperhalusi teknik tersebut untuk kegunaan luas. 

 

Kata kunci: Kenderaan autonomi, rangkaian saraf, logik kabur, pembelajaran pengukuhan, 

kawalan navigasi 

 

© 2026 Penerbit UTM Press. All rights reserved 

  

 

 

1.0 INTRODUCTION 
 

Autonomous vehicles (AVs) are one of the most 

impressive uses of artificial intelligence (AI) that has 

revolutionised several sectors. AI control techniques 

are essential to promote efficient, stable and accurate 

autonomous navigation in modern transportation. The 

need for navigational autonomy is important because 

of the complex dynamics and uncertainties that occur 

on the road, such as changing weather patterns, 

unpredictable driver behaviour, and changing traffic 

patterns [1][2][3]. Advances in machine learning, 

deep learning and reinforcement learning have 

pushed AI-based navigation control systems to 

override human decisions to improve safety, optimise 

traffic and reduce transport-related [4][5]. As cities 

and countries around the world move towards 

cleaner, more efficient and less efficient transport 

infrastructure, the pursuit of fully autonomous 

navigation is not only a technical challenge but also a 

socially relevant one. 

Due to the need to maintain smooth navigation, AI-

based control systems used in AVs use complex 

algorithms and technologies to implement laterally 

accurate and effective control for vehicles to respond 

quickly to dynamic environmental inputs [6]. Control 

strategies such as neural networks, fuzzy logic, and 

hybrid control mechanisms have a good ability to 

realise important timing adjustments for path planning, 

trajectory detection, and obstacle avoidance 

[7][8][9]. This type of control mechanism is essential for 

safe navigation across various terrains, whether 

structured or unstructured. The ability of AI systems to 

learn from data sets enables continuous improvement 

in predictive accuracy and decision-making speed. As 

AVs face uncertain and mixed traffic conditions, these 

skills become essential, not only improving the 

performance of individual vehicles but also 

contributing to a more coordinated traffic 

environment. Advanced AI control systems make it 

possible to handle the inherent uncertainty in human-

dominated situations, where machine learning models 

must quickly assess sensor data, predict potential 

hazards and make appropriate decisions. 

The integration of AI control techniques in 

autonomous navigation is an important step towards 

the realization of AVs. Figure 1 [10] illustrates how the 

AV system structure embeds this control strategy. As 

shown by the entire study of recent developments in 

neural networks, fuzzy logic, reinforcement learning 

and hybrid approaches, AI greatly improves the safety 

and efficiency of AVs and brings the industry one step 

closer to a world where autonomous transport is 

common and effective. Overall, this review provides a 

detailed understanding of these AI-based strategies, 

highlights their role and impact in achieving smooth 

navigation control, and establishes a foundation for 

future research in this rapidly growing field. 

 

 
 

Figure 1 An autonomous vehicles system architecture 

 

 

This paper contributes to the field by conducting a 

comprehensive systematic literature review of recent 

AI-based navigation control strategies for autonomous 

vehicles, specifically focusing on studies published 

between 2023 and 2024. It categorizes the reviewed 

works into three main themes: Neural Networks and AI 

Control Strategies, Reinforcement Learning and Fuzzy 

Logic Approaches, and Hybrid Control Strategies and 

Advanced Path Planning. Review findings have 

identified critical knowledge gaps and research 

opportunities that can guide future investigations and 

practical applications. 

This paper is organized as follows: Section 2 presents 

the research background on autonomous vehicle 

navigation and the role of AI. Section 3 outlines the 

methodology for the systematic literature review, 

including the PRISMA framework and article selection 

criteria. Section 4 presents the analysis of the reviewed 

articles grouped under three main themes with a 

synthesis of key findings, identified research gaps and 

recommendations for future work. Section 5 

summarizes the key findings and broader implications 

for the development of autonomous vehicle 

technologies. 

 

 

2.0 LITERATURE REVIEW 
 

The control of AV has evolved significantly, especially 

in lateral control approaches, due to the increasing 

need for efficient and dynamic systems [11][12][13].  

Effective lateral control systems are the core of AV 
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safety as they determine an AV’s capacity to maintain 

the correct lane position, manoeuvre through different 

road conditions, and guarantee vehicle stability in 

real-world dynamic conditions[14] [15].  

Recent years have seen the integration of 

sophisticated AI-driven methodologies, with neural 

networks, reinforcement learning, hybrid approaches, 

and fuzzy control strategies leading the field. All of 

these methods take advantage of the large amount 

of data to allow AVs to make decisions in real-time 

based on environmental inputs [16][17]. Based on this 

foundation, the lateral control has been developed 

with the help of the neural network-based approaches 

that are considered to be the cornerstone in the 

development of the AVs with the models that can 

learn from the large sets of the driving scenarios [18], 

[19]. Unlike traditional rule-based systems, neural 

networks are quite different from traditional rule-based 

systems; they can learn the complex patterns that exist 

in large volumes of sensory data and permit AVs to 

make decisions in real time based on those huge data 

sets. For instance, deep neural networks (DNNs) show 

high effectiveness in the processing and synthesis of 

big data from lidar, radar, and vision systems to predict 

and execute precise lateral control actions [20]. 

Convolutional neural networks (CNNs) have been used 

in image-based lateral control tasks in which real-time 

interpretation of visual data such as lane markings, 

roadsides and other vehicles is important [21]. 

Improvements in this neural network have ensured AV 

safety through accuracy, reduced lateral motion, and 

functionality to sudden changes to the environment 

[22]. 

In addition to neural networks, reinforcement 

learning (RL) has been established as a dynamic and 

adaptive lateral control method for autonomous 

vehicles (AVs) operating in unpredictable 

environments [23], [24]. Iterative learning allows 

autonomous vehicles to refine control strategies to 

adapt to the high variability of real-world road 

conditions. In this study, reinforcement learning models 

are used to enable autonomous vehicles to learn lane 

keeping behaviours by optimising reward functions 

that encourage smooth and stable trajectories [25]. 

Control based on reinforcement learning allows for 

ongoing adaptation to lane deviations and maintains 

lane accuracy in complex situations such as curved 

roads and heavy traffic [26], [27]. Additionally, 

reinforcement learning (RL) lateral control has been 

extended with transfer learning, allowing RL models 

trained in simulations to be adapted to real world 

conditions. This approach reduces field testing costs 

and provides effective lateral control [28], [29], [30]. 

These advancements further reinforce reinforcement 

learning as a fundamental method of autonomous 

vehicle lateral control, allowing for adaptable and 

responsive maneuvers in dynamic settings. Fuzzy 

control strategies improve the adaptability of 

autonomous vehicle lateral control in the face of 

uncertainties in complex road environments. In the 

meantime, fuzzy control strategies can improve the 

adaptability of autonomous vehicle lateral control in 

the face of uncertainty in complex road environments. 

Fuzzy logic provides the ability for autonomous vehicle 

systems to operate effectively in ambiguous sensor 

data conditions such as in bad weather conditions 

and unmarked lanes [31], [32]. Lateral control with 

fuzzy logic can also provide a more complex lateral 

control method based on the evaluation of many 

inputs with gradable values instead of only binary 

states. Neural networks and reinforcement learning 

equipped with fuzzy control can improve adaptability, 

especially in unpredictable conditions, by adding a 

responsive decision-making layer [31], [33]. 

A hybrid control system combines neural networks, 

reinforcement learning, and fuzzy logic to increase 

accuracy and flexibility in lateral control and exploit 

the positive features of each approach separately. 

However, single-method approaches are not sufficient 

for complex environments, and hybrid approaches 

enable high accuracy and flexibility in lateral control 

for autonomous vehicles [9], [34], [35]. Lateral control 

parameters are continuously adjusted using real-time 

data of the urban environment such as road 

curvature, traffic density, and weather conditions 

which can improve the adaptability of autonomous 

vehicles [36]. Additionally, lateral stability under 

adverse weather conditions that can severely affect 

vehicle stability is managed by a hybrid control system 

using fuzzy logic and reinforcement learning [37]. Real-

world driving scenarios show that the hybrid approach 

effectively balances control accuracy, and 

adaptability to achieve better lateral accuracy. 

 

 

3.0  MATERIAL AND METHODS 

 
3.1 Identification 

 

A rigorous systematic review methodology was 

applied to collect an extensive body of related 

literature in this study. The identification process started 

with choosing core keywords strategically, which were 

enriched with the help of the identification of relevant 

terms stemming from the dictionary, thesauri and 

encyclopaedias, and associated with the relevant 

studies on the topic in previous research studies.    

Table 1 details these related terms that were then 

synthesised into comprehensive search strings. This 

comprehensive foundation allowed for a thorough 

review of the literature to ensure that factually relevant 

and in-depth pieces of research were collected. 

Scopus, Web of Science, and IEEE. This elaborate and 

structured final approach led to the first recognition of 

a large set of 1,077 publications that each essentially 

brought about valuable insights in response to the 

study’s objectives. This comprehensive foundation 

allowed for a thorough review of the literature to 

ensure the factually relevant and in-depth pieces of 

research collected. 
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Table 1 The search string 

 

Database Search string 

Scopus TITLE-ABS-KEY ( ("autonomous vehicle*" OR 

"Self-driving vehicles" OR "Automated driving 

systems" OR "Automated driving systems" OR 

"Autonomous mobility" OR "Driverless 

technology" OR "intelligent vehicle*" ) AND ( 

"lateral control" OR "navigation control" ) AND 

( "control method*" OR "Trajectory Tracking" 

OR "control strateg*" OR "artificial intelligent" 

OR "deep learning" OR "neural-network" OR 

"neural network" OR "fuzzy" OR "ANFIS" OR " 

Neuro-Fuzzy" OR " Adaptive Neuro-Control" OR 

"Neuro PID" OR " Fuzzy PID" OR "machine 

learning" ) ) AND ( LIMIT-TO ( PUBYEAR , 2023 ) 

OR LIMIT-TO ( PUBYEAR , 2024 ) ) AND ( LIMIT-

TO ( SUBJAREA , "ENGI" ) ) AND ( LIMIT-TO ( 

DOCTYPE , "ar" ) ) AND ( LIMIT-TO ( SRCTYPE , "j" 

) ) AND ( LIMIT-TO ( LANGUAGE , "English" ) ) 

AND ( LIMIT-TO ( PUBSTAGE , "final" ) ) 

Date of Access: October 2024 

WoS ("autonomous vehicle*" OR "Self-driving 

vehicles" OR "Automated driving systems" OR 

"Automated driving systems" OR "Autonomous 

mobility" OR "Driverless technology" OR 

"intelligent vehicle*" ) AND ( "lateral control" 

OR "navigation control" ) AND ( "control 

method*" OR "Trajectory Tracking" OR "control 

strateg*" OR "artificial intelligent" OR "deep 

learning" OR "neural-network" OR "neural 

network" OR "fuzzy" OR "ANFIS" OR " Neuro-

Fuzzy" OR " Adaptive Neuro-Control" OR 

"Neuro PID" OR " Fuzzy PID" OR "machine 

learning" ) (Topic) and 2024 or 2023 

(Publication Years) and Article (Document 

Types) and English (Languages) and 

Engineering or Automation Control Systems 

(Research Areas) and Engineering (Research 

Areas) 

 Date of Access: October 2024 

IEEE ("autonomous vehicle*" OR "Self-driving 

vehicles" OR "Automated driving systems" OR 

"Automated driving systems" OR "Autonomous 

mobility" OR "Driverless technology" OR 

"intelligent vehicle*" ) AND ( "lateral control" 

OR "navigation control" ) AND ( "control 

method*" OR "Trajectory Tracking" OR "control 

strateg*" OR "artificial intelligent" OR "deep 

learning" OR "neural-network" OR "neural 

network" OR "fuzzy" OR "ANFIS" OR " Neuro-

Fuzzy" OR " Adaptive Neuro-Control" OR 

"Neuro PID" OR "PID" OR "machine learning" )  

Filter: 2024 or 2023 (Publication Years) and 

Journal (Document Types) 

Date of Access: October 2024 

 

 

3.2 Screening 

 

In the preliminary screening phase, 956 papers were 

excluded because they did not fit within the scope of 

the study’s objectives. An additional 123 papers were 

rigorously screened against defined inclusion and 

exclusion criteria in the subsequent screening stage. 

The review focused on primary research articles as the 

core sources of actionable insights, and excluded 

systematic reviews, meta-syntheses, meta-analyses, 

books series, book chapters, and conference 

proceedings to keep the focus on the most recent 

empirical research. To reflect the most recent 

advancements in AI-based navigation control for 

autonomous vehicles, the selection was intentionally 

limited to English-language publications from the most 

recent two-year period (2023–2024). This narrow 

window was chosen to capture cutting-edge 

developments and ensure that the review reflects the 

current state of the art. After following these stringent 

criteria, an additional 27 publications were excluded, 

leaving a curated, highly relevant set of sources that 

perfectly matches the study’s goals. 

 
Table 2 The selection criterion is searching 

 

Criterion Inclusion Exclusion 

Language English Non-English 

Timeline 2023 – 2024 < 2023 

Literature 

type 

Journal 

(Article) 

Conference, Book, 

Review 

Publication 

Stage 

Final In Press 

Subject Engineering Besides Engineering 

 

 

3.3 Eligibility 

 

The eligibility stage is a critical component of this 

systematic literature review (SLR), designed to ensure 

that only the most relevant and high-quality studies are 

included in the final analysis. This review started with 96 

articles accessed and carefully reviewed against pre-

defined criteria to determine whether they were in line 

with the study on Navigation Control in Autonomous 

Vehicles using Artificial Intelligence. During this process, 

66 articles were excluded for various reasons: Some 

titles were not clearly related to the topic and did not 

indicate a strong relevance to AI driven navigation 

control in autonomous vehicles, while some abstracts 

were not sufficiently related to the study’s focus on 

lateral control using AI methodologies. Furthermore, 

the lack of full text access for some articles hindered 

the comprehensive evaluation of their methodology 

and findings. After this rigorous eligibility check, 30 

articles remained to be analysed. These are the most 

valuable and relevant articles in the study. This 

eligibility process was critical to ensuring that the final 

systematic literature review (SLR) contains only high 

quality, accessible, and highly relevant studies, 

thereby improving the robustness, and relevance of 

the review's outcomes. 

 

3.4 Data Extraction and Analysis 

 

An integrative analysis was used as the primary 

assessment approach in this study to review a wide 

range of quantitative research designs. This strategy 
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was primarily aimed at identifying relevant topics and 

subtopics associated with the study. The first step 

toward thematic development was data collection. 

The authors performed extensive analysis of 30 

selected publications (refer to Figure 2 and Table 2), 

extracting assertions or content relevant to the study 

focus, Navigation Control in Autonomous Vehicles 

using Artificial Intelligence.  
 

Record 
identify 
through 
Scopus 

searching
(n =354) 

Record 
identify 

through WoS 
searching
(n =100)

Record 
identify 

through IEEE 
searching
(n =623)

Records after screened
Scopus (n= 41), WoS 
(n=23), IEEE (n=59)

(Total =123)

Duplicate record 
removed
(n = 27)

Article access for 
eligibility 
(n = 96)

Studies included in 
qualitative analysis

(n =30)

• Records excluded 
• Follow the criterion; 
• removed Non-English
• < 2023
• Conference, Book, 

Review In  Press
• Beside Engineering
(n = 954)

Id
en

ti
fi

ca
ti

o
n

Sc
re

e
n

in
g

E
lg

ib
ili

ty
In

cl
u

d
e

d

• Full text excluded 
• Due to the out of field 
• Title not significantly
• Abstract not related on 

the objective of 
the study

• No Full text access.
(n= 66)

 
Figure 2 PRISMA flow chart [38] 

 

 

A review of major studies in the field identified 

trends in approaches and key findings. The authors 

worked together to develop evidence-based 

frameworks specific to the context of the research. An 

audit trail was kept during the data analysis to capture 

working interpretations, preconceptions configured 

around what, and thoughts–questions that emerged 

while processing the data. The authors conducted 

comparisons to investigate inconsistencies in 

framework development to preserve conceptual 

consistency. During a collaborative and methodical 

discussion process, the authors quickly settled any 

arising differences, demonstrating the rigour of the 

conceptual design process and its inherent 

coherence. To ensure the validity of the problems, 

thorough examinations were conducted. This stage of 

review aimed to identify any areas of confusion or 

irrelevance in the subthemes and, in this way, verify 

the presence of domain validity in their evaluation, 

enhancing the total reliability of the assessment. By 

establishing domain content validity, the review phase 

assisted in providing assurance of the clarity, 

relevance, and adequacy of each subtheme. The 

questions are as follows: 

1. What are the challenges and solutions related to 

the implementation of neural networks and AI 

control techniques in navigation control for 

autonomous vehicles? 

2. In what way do reinforcement learning, fuzzy 

logic, and hybrid control approaches improve the 

accuracy and stability of navigation control in 

autonomous vehicles under various and complex 

driving conditions? 

 

 

4.0 RESULT AND DISCUSSION 

 

This section categorises analysis the primary data 

(Table 3) into several approaches. Each is based on 

one of three primary themes: Neural Networks and AI 

Control Strategies, Reinforcement Learning and Fuzzy 

Logic Control Approaches, and Hybrid Control 

Strategies and Advanced Path Planning. The analysis 

of each theme outlines how these approaches 

enhance the adaptability, safety, and efficiency 

across different conditions for autonomous vehicles. 

 

4.1 Neural Networks and AI Control Strategies 

 

Autonomous vehicle development has made 

substantial progress, particularly in terms of lateral 

control, tracking, and navigation—all of which are vital 

components for safe and optimal driving. The 

approach of neural networks, with the help of other 

forms of AI, has become more popular in terms of 

dealing with the millions of dynamics and 

uncertainties.  

These methods can be utilised in response to the 

real-time decision-making, trajectory fidelity, and 

vehicle robustness requirements. The Neural Networks 

and AI Control Strategies theme refers to research 

efforts to further improve these controls such that 

vehicles can achieve accurate tracking and 

adaptation in dynamic environments. Recent research 

has emphasised utilising the capabilities of neural 

networks to enhance lateral, tracking control, and to 

tackle real-world scenarios such as different road 

conditions and dynamic obstacles. For instance, 

adaptive second-order non-singular terminal sliding 

mode control with the aid of neural networks. To solve 

this issue of the unmodeled vehicle dynamics, a radial 

basis neural network structure is implemented with the 

triangular neural observer. Abdillah et al. [39] 

proposed a system that aims to enhance autonomous 

vehicles' lateral control, especially when it is 

challenging to accurately estimate some state 

variables. The performance of neural networks 

integrated with sliding mode control results in better 

trajectory control. Similarly, Wang et al. [40] introduced 

a robust H∞ control method to address the path 

tracking problem using norm-bounded uncertainty. A 

new observer for estimating unobservable state 

variables has been introduced to improve the 

robustness of the lateral controller and its accuracy, 

especially in urban and highway environments.
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Table 3 The primary data 

 

No. Authors Title Year Source title S W I Remarks 

1 Abdillah M.; 

Mellouli E.M. 

[39] 

A new adaptive second-order non-singular 

terminal sliding mode lateral control 

combined with neural networks for 

autonomous vehicle 

2024 International 

Journal of 

Vehicle 

Performance 

 

/ 

    Neural 

Networks and 

AI Control 

Strategies 

2 Wang J.; 

Wang B.; Liu 

C.; Zhang L.; 

Li L.[40] 

A Novel Robust H∞ Control Approach Based 

on Vehicle Lateral Dynamics for Practical 

Path Tracking Applications 

2024 World Electric 

Vehicle 

Journal 

 

/ 

    Neural 

Networks and 

AI Control 

Strategies 

3 Dong C.; 

Chen Y.; 

Wang H.; Ni 

D.; Shi X.; Lyu 

K. [41] 

An Evolutionary Learning Framework of 

Lane-Changing Control for Autonomous 

Vehicles at Freeway Off-Ramps 

2023 IEEE 

Transactions 

on Vehicular 

Technology 

 

/ 

 

/ 

 

/ 

Neural 

Networks and 

AI Control 

Strategies 

4 Chen L.; Liu 

Y.; Dong P.; 

Liang J.; 

Wang A. [42] 

An Intelligent Navigation Control Approach 

for Autonomous Unmanned Vehicles via 

Deep Learning-Enhanced Visual SLAM 

Framework 

2023 IEEE Access  

/ 

   

/ 

Neural 

Networks and 

AI Control 

Strategies 

5 Bayuwindra 

A.; Wonohito 

L.; Trilaksono 

B.R. [43] 

Design of DDPG-Based Extended Look-

Ahead for Longitudinal and Lateral Control 

of Vehicle Platoon 

2023 IEEE Access  

/ 

    Neural 

Networks and 

AI Control 

Strategies 

6 Tarhini, F; Talj, 

R; Doumiati, 

M. [44] 

Dynamic and real-time continuous look-

ahead distance for autonomous vehicles: 

an explicit formulation 

2024 VEHICLE 

SYSTEM 

DYNAMICS 

 
 

/ 

  Neural 

Networks and 

AI Control 

Strategies 

7 Wan J.; Liu H.; 

Xu M.; Yang 

X.; Guo Y.; 

Wang X. [45] 

Lane-Changing Tracking Control of 

Automated Vehicle Platoon Based on MA-

DDPG and Adaptive MPC 

2024 IEEE Access  

/ 

 

/ 

 

/ 

Neural 

Networks and 

AI Control 

Strategies 

8 Artuñedo A.; 

Moreno-

Gonzalez M.; 

Villagra J. [46]  

Lateral control for autonomous vehicles: A 

comparative evaluation 

2024 Annual 

Reviews in 

Control 

 

/ 

    Neural 

Networks and 

AI Control 

Strategies 

9 Kim, H; Kee, 

S.C. [19] 

Neural Network Approach Super-Twisting 

Sliding Mode Control for Path-Tracking of 

Autonomous Vehicles 

2023 ELECTRONICS    

/ 

  Neural 

Networks and 

AI Control 

Strategies 

10 Hajjami L.E.; 

Mellouli E.M.; 

Žuraulis V.; 

Berrada M.; 

Boumhidi I. 

[47] 

Neural network optimization algorithm 

based non-singular fast terminal sliding-

mode control for an uncertain autonomous 

ground vehicle subjected to disturbances 

2024 Institution of 

Mechanical 

Engineers, 

Part D: 

Journal of 

Automobile 

Engineering 

 

/ 

    Neural 

Networks and 

AI Control 

Strategies 

11 Cai Q.; Qu X.; 

Wang Y.; Shi 

D.; Chu F.; 

Wang J. [48] 

Research on Optimization of Intelligent 

Driving Vehicle Path Tracking Control 

Strategy Based on Backpropagation Neural 

Network 

2024 World Electric 

Vehicle 

Journal 

 

/ 

    Neural 

Networks and 

AI Control 

Strategies 

12 Zhang R.-Y.; 

Zhang B.; Shi 

P.-C.; Mei Y.; 

Du Y.-F.; Feng 

Y.-L. [49] 

Research on the High-Speed Collision 

Avoidance Method of Distributed Drive 

Electric Vehicles 

2023 IEEE Sensors 

Journal 

 

/ 

    Neural 

Networks and 

AI Control 

Strategies 

13 S. Teng; R. 

Yan; X. 

Zhang; Y. Li; 

X. Wang; Y. 

Wang; Y. 

Sora for Hierarchical Parallel Motion Planner: 

A Safe End-to-End Method Against OOD 

Events 

2024 IEEE 

Transactions 

on Intelligent 

Vehicles 

     

/ 

Neural 

Networks and 

AI Control 

Strategies 
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No. Authors Title Year Source title S W I Remarks 

Tian; H. Yu; L. 

Li; L. Chen; F. 

-Y. Wang [50] 

14 S. Cheng; H. 

Chen; Z. 

Wang; B. 

Yang; C. Lv; 

K. Nakano 

[51] 

A Game Theoretical Chassis Domain 

Approach to Trajectory Tracking for 

Automated Vehicles 

2023 IEEE 

Transactions 

on Vehicular 

Technology 

     

/ 

Reinforcement 

Learning and 

Fuzzy Logic 

Control 

Approaches 

15 W. Xiao; Y. 

Yang; X. Mu; 

Y. Xie; X. 

Tang; D. Cao; 

T. Liu [52] 

Decision-Making for Autonomous Vehicles in 

Random Task Scenarios at Unsignalized 

Intersection Using Deep Reinforcement 

Learning 

2024 IEEE 

Transactions 

on Vehicular 

Technology 

     

/ 

Reinforcement 

Learning and 

Fuzzy Logic 

Control 

Approaches 

16 Jennan N.; 

Mellouli E.M. 

[53]  

Direct optimal fuzzy logic adapted to sliding 

mode for lateral autonomous vehicle 

control 

2024 International 

Journal of 

Vehicle 

Performance 

 

/ 

    Reinforcement 

Learning and 

Fuzzy Logic 

Control 

Approaches 

17 J. Zhang; L. 

Zhang; S. Liu; 

J. Wang [54] 

Event-Triggered Adaptive Fuzzy Approach-

Based Lateral Motion Control for 

Autonomous Vehicles 

2024 IEEE 

Transactions 

on Intelligent 

Vehicles 

    /

  

Reinforcement 

Learning and 

Fuzzy Logic 

Control 

Approaches 

18 Lian Z.; Shi P.; 

Lim C.-C.; 

Yuan X. [55] 

Fuzzy-Model-Based Lateral Control for 

Networked Autonomous Vehicle Systems 

under Hybrid Cyber-Attacks 

2023 IEEE 

Transactions 

on 

Cybernetics 

 

/ 

   

/ 

Reinforcement 

Learning and 

Fuzzy Logic 

Control 

Approaches 

19 Q. Ma; X. Yin; 

X. Zhang; X. 

Xu; X. Yao 

[56] 

Game-Theoretic Receding-Horizon 

Reinforcement Learning for Lateral Control 

of Autonomous Vehicles 

2024 IEEE 

Transactions 

on Vehicular 

Technology 

    /

  

Reinforcement 

Learning and 

Fuzzy Logic 

Control 

Approaches 

20 Ren Y.; Xie X.; 

Li Y. [57] 

Lateral Control of Autonomous Ground 

Vehicles via a New Homogeneous 

Polynomial Parameter Dependent-Type 

Fuzzy Controller 

2024 IEEE 

Transactions 

on Industrial 

Informatics 

 

/ 

    Reinforcement 

Learning and 

Fuzzy Logic 

Control 

Approaches 

21 Taghavifar, H; 

Mohammadz

adeh, A; 

Zhang, WJ; 

Zhang, CW 

[58] 

Nonsingleton Gaussian type-3 fuzzy system 

with fractional order NTSMC for path 

tracking of autonomous cars 

2024 ISA 

TRANSACTION

S 

  /

  

  Reinforcement 

Learning and 

Fuzzy Logic 

Control 

Approaches 

22 Fan, ZX; Yan, 

Y; Wang, XY; 

Xu, HZ [59] 

Path Tracking Control of Commercial 

Vehicle Considering Roll Stability Based on 

Fuzzy Linear Quadratic Theory 

2023 MACHINES    

/ 

  Reinforcement 

Learning and 

Fuzzy Logic 

Control 

Approaches 

23 C. -J. Lin; B. -

H. Chen; J. -Y. 

Jhang [14] 

Type 2 Fuzzy Neural Controller for Navigation 

Control of an Ackermann Steering Vehicle 

2023 IEEE Access     /

  

Reinforcement 

Learning and 

Fuzzy Logic 

Control 

Approaches 

24 S. Yang; C. 

Geng [60] 

A Longitudinal/Lateral Coupled Neural 

Network Model Predictive Controller for 

Path Tracking of Self-Driving Vehicle 

2023 IEEE Access      

/ 

Hybrid Control 

Strategies and 

Advanced 

Path Planning 

25 Y. Li; Y. A Merging Strategy Framework for 2024 IEEE Access      Hybrid Control 
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No. Authors Title Year Source title S W I Remarks 

Zhang; Y. Ma 

[61] 

Connected and Automated Vehicles in 

Multi-Lane Mixed Traffic Scenarios 

/ Strategies and 

Advanced 

Path Planning 

26 L. Zhang; J. 

Zhang; S. Liu; 

C. Ren; Y. 

Kang [62] 

Adaptive Backstepping Fuzzy Lateral Motion 

Control Approach for Autonomous Vehicles 

2024 IEEE 

Transactions 

on 

Transportation 

Electrification 

     

/ 

Hybrid Control 

Strategies and 

Advanced 

Path Planning 

27 J. Fan; X. Wu; 

J. Li; M. Xu 

[63] 

Deep Reinforcement Learning Based 

Integrated Eco-Driving Strategy for 

Connected and Automated Electric 

Vehicles in Complex Urban Scenarios 

2024 IEEE 

Transactions 

on Vehicular 

Technology 

     

/ 

Hybrid Control 

Strategies and 

Advanced 

Path Planning 

28 X. Zhao; Z. 

Yin; Z. He; L. 

Nie; K. Li; Y. 

Kuang; C. Lei 

[64] 

Indirect Shared Control Strategy for Human-

Machine Cooperative Driving on Hazardous 

Curvy Roads 

2023 IEEE 

Transactions 

on Intelligent 

Vehicles 

     

/ 

Hybrid Control 

Strategies and 

Advanced 

Path Planning 

29 X. Li; X. Gong; 

Y. -H. Chen; J. 

Huang; Z. 

Zhong [65] 

Integrated Path Planning-Control Design for 

Autonomous Vehicles in Intelligent 

Transportation Systems: A Neural-Activation 

Approach 

2024 IEEE 

Transactions 

on Intelligent 

Transportation 

Systems 

     

/ 

Hybrid Control 

Strategies and 

Advanced 

Path Planning 

30 A. LelkÃ³; B. 

NÃ©meth 

[66] 

Optimal Motion Design for Autonomous 

Vehicles With Learning Aided Robust 

Control 

2024 IEEE 

Transactions 

on Vehicular 

Technology 

     

/ 

Hybrid Control 

Strategies and 

Advanced 

Path Planning 

*Noted: S-Scopus, W-Web of Siences, and I-IEEE  

 

 

In the field of lane-changing control, Dong et al. 

(2023) [41] proposed an evolutionary learning 

framework using random forest and 

backpropagation neural networks with model 

predictive control (MPC) for freeway off-ramps. 

Particularly, it demonstrates the performance of 

neural networks to make decisions and trajectory 

execution while ensuring safety under heavy traffic 

situations. In a related study, Chen et al. (2023) [42] 

present visual simultaneous localization and mapping 

(SLAM) with deep learning-assisted methods for the 

navigation of autonomous unmanned vehicles. Then, 

they proposed a method of navigation control that 

enhances the accuracy of path tracking by 5% for 

robots through interpreting visual dynamic scenarios 

with neural networks. Similarly, neural network 

methods have also been used in vehicle platooning 

control, as seen in Bayuwindra et al. [43] who 

proposed an extended lookahead in longitudinal 

and lateral control based on deep deterministic 

policy gradient  (DDPG). The use of neural networks 

enables the system to adapt to changes in 

environmental conditions, thus preventing any issues 

such as cut corners while manoeuvring.  Wan et al. 

(2024) [45] also presented a framework that 

combines multi-agent deep deterministic policy 

gradient (MA-DDPG) with adaptive model predictive 

control (AMPC) to solve lane changing in vehicle 

platoons. This method allows initial speed variations 

to extend the range of controlled platoons while 

enabling more efficient inter-vehicle communication 

via decentralized control strategies for maintaining 

separation. 

Tarhini et al. (2024) [44] and Hajjami et al. (2024) 

[47] both looked into the effect of look-ahead 

distances and sliding mode controllers upon vehicle 

stability. Consequently, Hajjami added a neural 

network to optimise sliding mode controllers, while 

Tarhini’s research made a new-form continuous look-

ahead distance for real time operation. These 

strategies offer enhancements in vehicle 

performance and control precision when 

experiencing dynamic driving conditions, such as 

lane changes or rapid manoeuvres. A comparative 

study of control strategies in different driving 

scenarios was performed by Artuñedo et al. [46] that 

only reinforces this point of view. Neural network 

optimisation algorithms have also been applied to 

path tracking problems. Cai et al. (2024) [48] 

provided a case study demonstrating the ability of 

backpropagation neural networks to adjust both 

lateral and vertical control strategies within an MPC 

framework. This method also greatly increases the 

adaptability of control systems in changing road 

conditions and vehicle speeds. Kim and Kee (2023) 

[19] make extensive use of neural networks to 

address the chattering caused by super-twisting 

sliding mode control while keeping good tracking 

performance when faced with rapid lane changes or 

other practical situations. In high-speed collision 

avoidance, it is one of the important applications 

studied so far that neural networks do best. Zhang et 
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al. (2023) [49] provided results demonstrating the 

enhancement of tracking stability under emergency 

management conditions through the combination of 

a neural control technique and an adaptive MPC. 

Sora's hierarchical parallel motion planner was used 

by Teng et al. (2024) [50] to look at how constraints 

must be met in open-world safety when AI-based 

controllers are used to handle out-of-bounds events. 

To close this section, a review of neural network 

methods has shown significant performance benefits 

across a wide range of autonomous vehicle 

functions. Several knowledge gaps have also been 

identified. Most studies rely heavily on controlled 

simulation environments and lack validation under a 

variety of real-world traffic and weather conditions. 

Furthermore, many neural models act as ‘black 

boxes’, offering limited interpretability and insight into 

the decision-making process. Future research should 

therefore focus on improving the interpretability and 

real-time robustness of these AI control architectures. 

Furthermore, they should be capable of operating in 

unstructured real-world environments to ensure safe, 

reliable and scalable deployment in practical 

autonomous navigation systems. 

 

4.2 Reinforcement Learning and Fuzzy Logic Control 

Approaches 

 

Autonomous vehicles have introduced organised 

control strategies that deal with the challenges of 

lateral control, trajectory tracking, and navigation, in 

which some start using more reinforcement learning 

(RL) techniques and fuzzy logic systems. Such 

strategies provide useful approaches to enhancing, 

even developing, decision-making and managing 

uncertainties while maintaining vehicle stability 

throughout different driving conditions. The lack of 

control by autonomous vehicles in less-clear cases 

has established the necessity of reinforcement 

learning and fuzzy logic control systems for the 

vehicle to accomplish high-control tasks such as 

running around or making more sophisticated 

manoeuvres with higher accuracy and efficiency. 

Researchers have extensively studied the use of 

fuzzy logic systems for adaptive control. Jennan and 

Mellouli (2024) [53] proposed a direct optimal fuzzy 

logic system with a fast terminal sliding mode control 

(FTSMC) for an autonomous vehicle's lateral control. 

In this approach, the particle swarm optimisation and 

butterfly optimisation algorithms are implemented to 

maximise stability of the vehicle through fuzzy 

accuracy and minimisation of uncertainty from 

external disturbances. This strategy not only 

addresses the chattering problem and exploits faster 

convergence in sliding mode control but also verifies 

its efficiency through comparative analysis and 

demonstrates Lyapunov stability. Similarly, Lian et al. 

(2023) [55] focused on finding an industrial grade 

fuzzy model-based lateral control system for cyber-

physical systems such as autonomous vehicles in 

conditions of hybrid cyber-attacks. An event-

triggered scheme (ETS) is embedded into the control 

strategies to minimise the risk caused by cyberattacks 

and information-exchange induced issues while 

guaranteeing that the vehicle maintains lateral 

stability and reduces communication burden. 

Furthermore, Ren et al. (2024) [57] also showed that a 

homogeneous polynomial parameter-dependent 

fuzzy controller can effectively deal with nonlinearity 

in vehicle dynamics. Their controller improves control 

flexibility, ensuring smooth vehicle navigation despite 

external disturbances and varying road conditions. 

Reinforcement learning methods are also 

becoming popular for autonomous vehicle decision-

making and control. Xiao et al. (2024) [52] addressed 

moving vehicles at unsignalized intersections and 

proposed a deep reinforcement learning framework 

to control autonomous vehicles in such scenarios, 

posing a high level of uncertainty, randomness, and 

time-dependence in the road network. Using an 

augmented replay buffer and a mixed-attention 

network, the neural network is trained on essential 

collision and arrival data, thus improving both safety 

and efficiency. Meanwhile, Cheng et al.  focused on 

trajectory tracking using multiple actuators (2024) 

[51] addressed integrated longitudinal and lateral 

control in the chassis domain through a game 

theoretic coordination approach. This also handles 

chassis control nonlinearities to maximise vehicle 

dynamics and improve tracking accuracy over 

challenging driving conditions. Similarly, Ma et al. [56] 

have also explored the game theory. The game-

theoretic receding-horizon reinforcement learning 

(GTRHRL) strategy is utilised for lateral tracking under 

agile conditions. The algorithm guarantees 

convergence to Nash equilibrium and stability in 

large curvature turns and non-stationary 

environments. 

Innovative adaptive and event-triggered 

mechanisms have further enhanced fuzzy logic 

systems. Zhang et al. (2024) [54] proposed an event-

triggered adaptive fuzzy control system of parameter 

uncertainty and communication problem 

management that is developed in lateral control of 

vehicle. The fuzzy logic system (FLS) approximates the 

nonlinearities, leading to reduced communications 

loads and ensuring task performance. Additionally, 

Fan et al. [59] (2023) proposed a fuzzy linear 

quadratic controller for commercial vehicles for 

tracking control  and roll stability. Improvement in 

path-tracking accuracy and vehicle safety is subject 

to the condition that adaptive control aims to ensure 

that a vehicle can remain stable and make an 

adjustment to driving conditions, but the process is 

real-time. Taghavifar et al. [58] designed a type-3 

fuzzy system integrated with an adaptive fractional-

order terminal sliding mode controller (AFOTSC) to 

tackle this problem while controlling the 

unpredictability occurring during the path tracking of 

autonomous vehicles. The system does not only 

exhibit good performance but also guarantees 

accurate control even in the presence of 

measurement errors and disturbances through 

Lyapunov stability and Barbalat's lemma. Similarly, Lin 
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et al. [14] (2023) designed a type-2 fuzzy neural 

controller (FNC) based on particle swarm 

optimization for control of an Ackermann steering 

vehicle. This technique improves navigation 

precision, and the system operates in unexplored 

environments using lidar data and systematic fuzzy 

logic, ensuring a robust control process. 

Overall, fuzzy logic and reinforcement learning 

systems have made unprecedented progress in 

certain aspects of autonomous vehicle performance 

in lateral control, decision-making, and trajectory 

tracking. However, there are still some knowledge 

gaps that remain to be addressed. Most of the 

reviewed approaches were designed and tested in 

simulated environments and lack validation in real-

world complex traffic scenarios. Furthermore, the 

integration of reinforcement learning with fuzzy logic 

for truly adaptive and safe real-time control is still 

limited. Therefore, future research should focus on the 

application of these strategies in field environments 

that can enhance the interpretability and 

adaptability of their learning in uncertain dynamic 

environments. 

 

4.3 Hybrid Control Strategies and Advanced Path 

Planning 

 

As safety considerations continue to attract attention 

during the ongoing push for autonomy in both 

personal advancing and cargo systems, the 

navigation and control of autonomous vehicles have 

been impeded and have also been studied more 

extensively. Hybrid control strategies that integrate 

various control methods, and AI solutions have 

proven effective in motion planning, lateral control, 

and path tracking. The scope of this theme aims for 

hybrid control strategies to facilitate deployment of 

deep learning, neural networks, model predictive 

control (MPC), reinforcement learning (RL), and other 

AI-based autonomous vehicles in practice.  

Yang and Geng (2023) [60] considered model 

predictive control (MPC) for path tracking by 

integrating neural networks to improve its 

performance. By adopting a recurrent neural 

network (RNN) as an alternative vehicle dynamic 

model to overcome their user-defined vehicle 

dynamic models, particularly for the high-speed 

manoeuvres. This prediction error and control error 

combination makes such a classical MPC highly 

sensitive. This hybrid method addresses the previously 

mentioned challenges by having high prediction 

fidelity under difficult conditions to effectively 

minimise control error. Similarly, Zhang et al. (2024) 

[62] described an adaptive backstepping fuzzy 

control (ABFC) method that combines backstepping 

and fuzzy logic to handle nonlinear dynamics when 

unknown disturbances are presented. Simulation 

results showed that the ABFC strategy is especially 

capable of providing stable and accurate tracking 

and control against various vehicle conditions. 

For multi-lane traffic scenarios, hybrid control 

strategies are proposed to deal with merging and 

lane changes. For instance, Li et al. (2024) [61] 

propose a merging framework integrating lateral 

speed controlled based vehicle interaction model 

and merging decision layer for safe pre-merging 

connected and automated vehicles (CAVs) in heavy 

congested traffic scenario With real-world dataset 

training, their model achieved an overlap efficiency 

of 45% higher than that needed for a safe merge. 

Similarly, Fan et al. (2024) [63] introduced a deep 

reinforcement learning based eco-driving strategy 

that simultaneously optimises energy efficiency and 

travel time for CAVs via integrated longitudinal 

speed planning with lateral lane change decisions. 

The results indicated that vehicle-to-everything 

communication procedures as well as multi-objective 

reward functions could upgrade the overall control 

framework of the vehicle. Human-machine 

cooperative driving also exemplifies hybrid control 

strategies. Zhao et al. (2023) [64] developed an 

indirect shared control system of autonomous 

systems and human drivers to allow them to 

collaborate in sharing control when negotiating a 

dangerous curvy road. The proposed method 

employs gaussian process regression (GPR) to 

perform risk assessment and multi-objective 

hierarchical MPC controller-based vehicle control, 

enabling the fusion of human and machine input to 

achieve safer driving. That collaborative method was 

validated through driving simulations in which the 

system successfully handled ambiguous roadway 

scenarios, and concurrently reduced human-

machine mode conflicts. Furthermore, path planning 

and control optimisation are further explored through 

neural activation mechanisms and reinforcement 

learning-based control frameworks. Li et al. (2024) 

[65] proposed a neural activation method for path 

tracking based on the traffic state to yield robustness 

and ensure smoothness with respect to evolving 

environment conditions. In addition, Lelkó and 

Németh (2024) [66] presented a motion optimisation 

framework that merges robust H∞ control with the 

reinforcement learning paradigm to safely control 

movements of autonomous vehicles. Simulation and 

experimental results showed that the tracking error 

can be minimised effectively. 

To close this section, although hybrid control 

strategies show great potential in combining the 

strengths of various AI methods, there are still critical 

knowledge gaps that persist. Most of the proposed 

systems have been validated only in simulated 

environments. Their application in real-world 

situations involving unpredictable human 

interactions, mixed traffic dynamics, and 

infrastructure constraints is still lacking. Furthermore, 

many hybrid models lack standardization, making it 

difficult to compare their effectiveness across use 

cases. The interpretability of control results, especially 

in shared control systems involving human-machine 

collaboration, remains unexplored. Future research 

should focus on developing standardized evaluation 

metrics for hybrid controllers, improving their 

interpretability, and validating them in complex real-
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world driving environments such as in scenarios 

involving cooperative behaviour among connected 

autonomous vehicles. 

 

 

5.0 CONCLUSION 

 

In conclusion, the review of neural networks, 

reinforcement learning, fuzzy logic, and hybrid 

control strategies highlights significant advances in 

navigation control for autonomous vehicles, 

especially in enhancing lateral stability, decision-

making, and trajectory tracking. The findings reveal 

several strengths as well as research gaps that should 

be addressed for future research. Neural network-

based models have shown promising real-time 

performance but still face challenges related to 

interpretability and validation in unstructured 

environments. Similarly, reinforcement learning and 

fuzzy logic approaches have improved adaptability 

and accuracy of control under uncertainty, yet 

many remain untested in real-world applications. 

Meanwhile, hybrid control frameworks effectively 

integrate various AI methods and offer robustness 

and flexibility. However, this approach requires further 

investigation, especially in human-machine 

collaboration and standardized benchmarking. 

Therefore, it is essential to address these identified 

gaps to ensure reliable and transparent AI-based 

navigation systems for future autonomous vehicle 

applications. 

Furthermore, although this paper focuses on the 

technical aspects of autonomous navigation, the 

economic and environmental implications are 

equally important. Efficiency in navigation and 

control systems can reduce fuel consumption, 

maintenance costs and traffic congestion, thus 

providing economic benefits to industry and end 

users. From an environmental perspective, smoother 

driving patterns and AI-driven route optimization 

contribute to reduced carbon emissions and 

enhanced integration with electric vehicle 

technology. In line with this, these benefits highlight 

the importance of overcoming existing technical 

challenges to achieve a more widespread and 

effective implementation of autonomous 

technology. 
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