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Graphical abstract Abstract

Systematic Literature Review Navigation control plays a critical role in the performance and safety of autonomous
vehicles, especially in dynamic and uncertain environments. Recent advances in artificial
PRISMA inteligence (Al) have led to the development of intelligent control strategies that improve

lateral confrol, path tracking, and decision-making capabilities. The systematic review was

performed with the PRISMA method in order both fo comply with and evaluate alternatives.
Through systematic searches in Scopus, Web of Science and IEEE databases a total of 30
m primary studies were identified and reviewed, which fell under three broad themes:
Reinforcement Learning and Fuzzy Logic Control Approaches; Neural Networks and Al

Control Strategies; and Hybrid Control Strategies and Advanced Path Planning. The
selected articles were then examined and discussed to evaluate their roles in improving the
vehicle performance, stability and behaviour adaptivity. The findings indicate that Al based

control navigation substantially increases the capabilities of autonomous vehicles, and

more research will consequently refine those techniques for broad use.

Keywords: Autonomous vehicles, neural networks, fuzzy logic, reinforcement learning,
navigation control

Abstrak

Kawalan navigasi memainkan peranan penting dalam prestasi dan  keselamatan
kenderaan autonomi, terutamanya dalam persekitaran yang dinamik dan tidak menentu.
Kemajuan terkini dalam kecerdasan buatan (Al) telah membawa kepada pembangunan
strategi kawalan pintar yang meningkatkan kawalan sisi, penjejakan laluan dan keupayaan
membuat keputusan. Semakan sistematik telah dilakukan dengan kaedah PRISMA untuk
kedua-duanya unfuk mematuhi dan menilai alternatif. Melalui carian sistematik dalam
pangkalan data Scopus, Web of Science dan IEEE, sejumlah 30 kajian utama felah dikenal
pasti dan disemak, yang termasuk dalam figa tema umum: Pembelajaran Pengukuhan
dan Pendekatan Kawalan Logik Kabur; Rangkaian Neural dan Strategi Kawalan Al; dan
Strategi Kawalan Hibrid dan Perancangan Laluan Lanjutan.  Artikel yang dipilih
kemudiannya diperiksa dan dibincangkan untuk menilai peranan mereka dalam
meningkatkan prestasi kenderaan, kestabilan dan penyesuadian tingkah laku. Penemuan
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menunjukkan bahawa navigaosi kawalan berasaskan Al meningkatkan dengan ketara
keupayaan kenderaan autonomi, dan juga lebih banyak penyelidikan akan seterusnya
memperhalusi teknik tersebut untuk kegunaan luas.

Kata kunci: Kenderaan autonomi, rangkaian saraf, logik kabur, pembelajaran pengukuhan,

kawalan navigasi

© 2026 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Autonomous vehicles (AVs) are one of the most
impressive uses of artificial inteligence (Al) that has
revolutionised several sectors. Al control techniques
are essential to promote efficient, stable and accurate
autonomous navigation in modern fransportation. The
need for navigational autonomy is important because
of the complex dynamics and uncertainties that occur
on the road, such as changing weather patterns,
unpredictable driver behaviour, and changing traffic
patterns [1]{2][3]. Advances in machine learning,
deep learning and reinforcement learning have
pushed Al-based navigation control systems to
override human decisions to improve safety, optimise
fraffic and reduce transport-related [4][5]. As cifies
and countries around the world move tfowards
cleaner, more efficient and less efficient fransport
infrastructure, the pursuit  of fully autonomous
navigation is not only a technical challenge but also a
socially relevant one.

Due to the need to maintain smooth navigation, Al-
based control systems used in AVs use complex
algorithms and technologies to implement laterally
accurate and effective control for vehicles to respond
quickly to dynamic environmental inputs [6]. Control
strategies such as neural networks, fuzzy logic, and
hybrid control mechanisms have a good ability to
realise important fiming adjustments for path planning,
trajectory detfection, and obstacle avoidance
[71[8][9]. This type of control mechanism is essential for
safe navigation across various terrains, whether
structured or unstructured. The ability of Al systems to
learn from data sets enables contfinuous improvement
in predictive accuracy and decision-making speed. As
AVs face uncertain and mixed traffic conditions, these
skills become essential, not only improving the
performance of individual vehicles but also
confributing to a more coordinated traffic
environment. Advanced Al confrol systems make it
possible to handle the inherent uncertainty in human-
dominated situations, where machine learning models
must quickly assess sensor data, predict potential
hazards and make appropriate decisions.

The inftegration of Al confrol techniques in
autonomous navigation is an important step towards
the realization of AVs. Figure 1 [10] illustrates how the
AV system structure embeds this control strategy. As
shown by the entire study of recent developments in
neural networks, fuzzy logic, reinforcement learning
and hybrid approaches, Al greatly improves the safety

and efficiency of AVs and brings the industry one step
closer to a world where autonomous transport is
common and effective. Overall, this review provides a
detailed understanding of these Al-based strategies,
highlights their role and impact in achieving smooth
navigation control, and establishes a foundation for
future research in this rapidly growing field.
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Figure 1 An autonomous vehicles system architecture

This paper contributes to the field by conducting a
comprehensive systematic literature review of recent
Al-based navigation control strategies for autonomous
vehicles, specifically focusing on studies published
between 2023 and 2024. It categorizes the reviewed
works into three main themes: Neural Networks and Al
Control Strategies, Reinforcement Learning and Fuzzy
Logic Approaches, and Hybrid Conftrol Strategies and
Advanced Path Planning. Review findings have
identified critical knowledge gaps and research
opportunities that can guide future investigations and
practical applications.

This paper is organized as follows: Section 2 presents
the research background on autonomous vehicle
navigation and the role of Al. Section 3 outlines the
methodology for the systematic literature review,
including the PRISMA framework and article selection
criteria. Section 4 presents the analysis of the reviewed
arficles grouped under three main themes with a
synthesis of key findings, identified research gaps and
recommendations for future work. Secfion 5
summarizes the key findings and broader implications
for the development of autonomous vehicle
technologies.

2.0 LITERATURE REVIEW

The confrol of AV has evolved significantly, especially
in lateral control approaches, due to the increasing
need for efficient and dynamic systems [11][12][13].
Effective lateral control systems are the core of AV
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safety as they determine an AV's capacity to maintain
the correct lane position, manoeuvre through different
road condifions, and guarantee vehicle stability in
real-world dynamic conditions[14] [15].

Recent years have seen the integration of
sophisticated Al-driven methodologies, with neural
networks, reinforcement learning, hybrid approaches,
and fuzzy control strategies leading the field. All of
these methods take advantage of the large amount
of data to allow AVs to make decisions in real-time
based on environmental inputs [16][17]. Based on this
foundation, the lateral control has been developed
with the help of the neural network-based approaches
that are considered to be the cornerstone in the
development of the AVs with the models that can
learn from the large sets of the driving scenarios [18],
[19]. Unlike traditional rule-based systems, neural
networks are quite different from traditional rule-based
systems; they can learn the complex patterns that exist
in large volumes of sensory data and permit AVs fo
make decisions in real time based on those huge data
sets. For instance, deep neural networks (DNNs) show
high effectiveness in the processing and synthesis of
big data from lidar, radar, and vision systems to predict
and execute precise lateral control actions [20].
Convolutional neural networks (CNNs) have been used
in image-based lateral control tasks in which real-fime
interpretation of visual data such as lane markings,
roadsides and other vehicles is important [21].
Improvements in this neural network have ensured AV
safety through accuracy, reduced lateral motion, and
functionality to sudden changes to the environment
[22].

In addition to neural networks, reinforcement
learning (RL) has been established as a dynamic and
adaptive lateral control method for autonomous
vehicles (AVs) operating in unpredictable
environments [23], [24]. lterafive learning allows
autonomous vehicles to refine confrol strategies to
adapt to the high variability of real-world road
conditions. In this study, reinforcement learning models
are used to enable autonomous vehicles to learn lane
keeping behaviours by optimising reward functions
that encourage smooth and stable trajectories [25].
Control based on reinforcement learning allows for
ongoing adaptation to lane deviations and maintains
lane accuracy in complex situations such as curved
roads and heavy fraffic [26], [27]. Additionally,
reinforcement learning (RL) lateral control has been
extended with transfer learning, allowing RL models
trained in simulations to be adapted to real world
conditions. This approach reduces field testing costs
and provides effective lateral control [28], [29], [30].
These advancements further reinforce reinforcement
learning as a fundamental method of autonomous
vehicle lateral control, allowing for adaptable and
responsive maneuvers in dynamic settings. Fuzzy
confrol  strategies improve the adaptability of
autonomous vehicle lateral control in the face of
uncertainties in complex road environments. In the
meantime, fuzzy control strategies can improve the
adaptability of autonomous vehicle lateral control in

the face of uncertainty in complex road environments.
Fuzzy logic provides the ability for autonomous vehicle
systems to operate effectively in ambiguous sensor
data conditions such as in bad weather conditions
and unmarked lanes [31], [32]. Lateral control with
fuzzy logic can also provide a more complex lateral
control method based on the evaluation of many
inputs with gradable values instead of only binary
states. Neural networks and reinforcement learning
equipped with fuzzy control can improve adaptability,
especially in unpredictable conditions, by adding a
responsive decision-making layer [31], [33].

A hybrid control system combines neural networks,
reinforcement learning, and fuzzy logic to increase
accuracy and flexibility in lateral control and exploit
the positive features of each approach separately.
However, single-method approaches are not sufficient
for complex environments, and hybrid approaches
enable high accuracy and flexibility in lateral control
for autonomous vehicles [9], [34], [35]. Lateral control
parameters are continuously adjusted using real-time
data of the urban environment such as road
curvature, traffic density, and weather conditions
which can improve the adaptability of autonomous
vehicles [36]. Additionally, lateral stability under
adverse weather conditions that can severely affect
vehicle stability is managed by a hybrid confrol system
using fuzzy logic and reinforcement learning [37]. Real-
world driving scenarios show that the hybrid approach
effectively  balances confrol accuracy, and
adaptability to achieve better lateral accuracy.

3.0 MATERIAL AND METHODS

3.1 Identification

A rigorous systematic review methodology was
applied to collect an extensive body of related
literature in this study. The identification process started
with choosing core keywords strategically, which were
enriched with the help of the identification of relevant
terms stemming from the dictionary, thesauri and
encyclopaedias, and associated with the relevant
studies on the topic in previous research studies.
Table 1 details these related terms that were then
synthesised info comprehensive search strings. This
comprehensive foundation allowed for a thorough
review of the literature to ensure that factually relevant
and in-depth pieces of research were collected.
Scopus, Web of Science, and I[EEE. This elaborate and
structured final approach led to the first recognition of
a large set of 1,077 publications that each essentially
brought about valuable insights in response fo the
study’s objectives. This comprehensive foundation
allowed for a thorough review of the literature to
ensure the factually relevant and in-depth pieces of
research collected.
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Table 1 The search string

Database Search string

Scopus TITLE-ABS-KEY ( ("autonomous vehicle*' OR
"Self-driving vehicles" OR "Automated driving
systems" OR "Automated driving systems" OR
"Autonomous mobility" OR "Driverless
technology" OR "intelligent vehicle*' ) AND (
"lateral confrol" OR "navigation control" ) AND
( "control method*' OR "Trajectory Tracking"
OR "confrol strateg* OR "artificial intelligent"
OR "deep learning" OR "neural-network" OR
"neural network” OR "fuzzy" OR "ANFIS" OR "
Neuro-Fuzzy" OR " Adaptive Neuro-Control" OR
"Neuro PID" OR " Fuzzy PID" OR "machine
learning” ) ) AND ( LIMIT-TO ( PUBYEAR , 2023 )
OR LIMIT-TO ( PUBYEAR , 2024 ) ) AND ( LIMIT-
TO ( SUBJAREA , "ENGI" ) ) AND ( LIMIT-TO (
DOCTYPE, "ar" ) ) AND ( LIMIT-TO ( SRCTYPE , "
) ) AND ( LIMIT-TO ( LANGUAGE , "English" ) )
AND ( LIMIT-TO ( PUBSTAGE , “final" ) )
Date of Access: October 2024

WoS$ ("autonomous  vehicle*" OR "Self-driving
vehicles" OR "Automated driving systems" OR
"Automated driving systems" OR "Autonomous
mobility" OR "Driverless technology" OR
"infelligent vehicle*' ) AND ( "lateral control”
OR "navigation control' ) AND ( "control
method*" OR "Trajectory Tracking" OR "control
strateg™' OR "artificial inteligent” OR "deep
learning" OR "neural-network"” OR "neural
network” OR "fuzzy" OR "ANFIS" OR " Neuro-
Fuzzy" OR " Adaptive Neuro-Control' OR
"Neuro PID" OR " Fuzzy PID" OR "machine
learning” ) (Topic) and 2024 or 2023
(Publication Years) and Article (Document
Types) and English  (Languages) and
Engineering or Automation Confrol Systems
(Research Areas) and Engineering (Research
Areqs)

Date of Access: October 2024
IEEE ("autonomous  vehicle* OR  "Self-driving
vehicles" OR "Automated driving systems" OR
"Automated driving systems" OR "Autonomous
mobility"  OR "Driverless fechnology" OR
"infelligent vehicle*' ) AND ( "lateral control"
OR "navigation control' ) AND ( "control
method*" OR "Trajectory Tracking" OR "control
strateg™' OR "artificial inteligent” OR "deep
learning” OR "neural-network” OR "neural
network” OR "fuzzy" OR "ANFIS" OR " Neuro-
Fuzzy" OR Adapftive Neuro-Control" OR
"Neuro PID" OR "PID" OR "machine learning" )
Filter: 2024 or 2023 (Publication Years) and
Journal (Document Types)

exclusion criteria in the subsequent screening stage.
The review focused on primary research articles as the
core sources of actionable insights, and excluded
systematic reviews, meta-syntheses, meta-analyses,
books series, book chapters, and conference
proceedings to keep the focus on the most recent
empirical research. To reflect the most recent
advancements in  Al-based navigation control for
autonomous vehicles, the selection was intenfionally
limited to English-language publications from the most
recent two-year period (2023-2024). This narrow
window was chosen to capture cutting-edge
developments and ensure that the review reflects the
current state of the art. After following these stringent
criteria, an additional 27 publications were excluded,
leaving a curated, highly relevant set of sources that
perfectly matches the study’s goals.

Table 2 The selection criterion is searching

Date of Access: October 2024

3.2 Screening

In the preliminary screening phase, 956 papers were
excluded because they did not fit within the scope of
the study’s objectives. An additional 123 papers were
rigorously screened against defined inclusion and

Criterion Inclusion Exclusion

Language English Non-English

Timeline 2023 — 2024 <2023

Literature Journal Conference, Book,

type (Arficle) Review

Publication  Final In Press

Stage

Subject Engineering Besides Engineering
3.3 Eligibility

The eligibility stage is a critical component of this
systematic literature review (SLR), designed to ensure
that only the most relevant and high-quality studies are
included in the final analysis. This review started with 96
artficles accessed and carefully reviewed against pre-
defined criteria to determine whether they were in line
with the study on Navigation Confrol in Autonomous
Vehicles using Artificial Intelligence. During this process,
66 articles were excluded for various reasons: Some
titles were not clearly related to the topic and did not
indicate a strong relevance fo Al driven navigation
confrol in autonomous vehicles, while some abstracts
were not sufficiently related fo the study’s focus on
lateral control using Al methodologies. Furthermore,
the lack of full text access for some articles hindered
the comprehensive evaluation of their methodology
and findings. After this rigorous eligibility check, 30
articles remained to be analysed. These are the most
valuable and relevant arficles in the study. This
eligibility process was critical to ensuring that the final
systematic literature review (SLR) contains only high
quality, accessible, and highly relevant studies,
thereby improving the robustness, and relevance of
the review's outcomes.

3.4 Data Extraction and Analysis
An infegrative analysis was used as the primary

assessment approach in this study to review a wide
range of quantitative research designs. This strategy
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was primarily aimed at identifying relevant topics and
subtopics associated with the study. The first step
toward thematic development was data collection.
The authors performed extensive analysis of 30
selected publications (refer to Figure 2 and Table 2),
extracting assertions or content relevant to the study
focus, Navigation Confrol in Autonomous Vehicles
using Artificial Intelligence.

S _Record Record Record
e identify . - . .
s through identify identify
e Scopus through WoS through IEEE
‘é searcF;ing searching searching
3  2354) (n =100) (n=623)
- A J
Records after screened « Records excluded
Scopus (n= 41), WoS « Follow the criterion;
x (n=23), IEEE (n=59) « removed Non-English
£ (Total =123) * <2023
o v « Conference, Book,
3 DunTicat 3 Review In Press
uplicate recor « Beside Engineering
removed (n = 954)
(n=27)
- Article access for « Full text excluded
£ eligibility [ « Due to the out of field
) (n =96) « Title not significantly
2 « Abstract not related on
the objective of
— the study
o No Full text .
° Studies included in (n=066)u extaceess
3 qualitative analysis
E (n =30)

Figure 2 PRISMA flow chart [38]

A review of major studies in the field identified
frends in approaches and key findings. The authors
worked together to develop evidence-based
frameworks specific to the context of the research. An
audit trail was kept during the data analysis to capture
working interpretations, preconceptions configured
around what, and thoughts—questions that emerged
while processing the data. The authors conducted
comparisons  to investigate inconsistencies  in
framework development to preserve conceptual
consistency. During a collaborative and methodical
discussion process, the authors quickly settled any
arising differences, demonstrating the rigour of the
conceptual design process and its inherent
coherence. To ensure the validity of the problems,
thorough examinations were conducted. This stage of
review aimed to identify any areas of confusion or
irelevance in the subthemes and, in this way, verify
the presence of domain validity in their evaluation,
enhancing the total reliability of the assessment. By
establishing domain content validity, the review phase
assisted in  providing assurance of the clarity,
relevance, and adequacy of each subtheme. The
questions are as follows:

1. What are the challenges and solutions related to
the implementation of neural networks and Al

confrol techniques in navigation control for
autonomous vehicles?

2. In what way do reinforcement learning, fuzzy
logic, and hybrid control approaches improve the
accuracy and stability of navigatfion control in
autonomous vehicles under various and complex
driving conditions?

4.0 RESULT AND DISCUSSION

This sectfion categorises analysis the primary data
(Table 3) into several approaches. Each is based on
one of three primary themes: Neural Networks and Al
Confrol Strategies, Reinforcement Learning and Fuzzy
Logic Confrol Approaches, and Hybrid Control
Strategies and Advanced Path Planning. The analysis
of each theme outlines how these approaches
enhance the adaptability, safety, and efficiency
across different conditions for autonomous vehicles.

4.1 Neural Networks and Al Control Strategies

Autonomous vehicle development has made
substantial progress, particularly in terms of lateral
control, tracking, and navigation—all of which are vital
components for safe and optimal driving. The
approach of neural networks, with the help of other
forms of Al, has become more popular in terms of
dealing with the mililons of dynamics and
uncertainties.

These methods can be utilised in response to the
real-time decision-making, frajectory fidelity, and
vehicle robustness requirements. The Neural Networks
and Al Confrol Strategies theme refers to research
efforts to further improve these controls such that
vehicles can achieve accurate fracking and
adaptation in dynamic environments. Recent research
has emphasised utilising the capabilities of neural
networks to enhance lateral, tracking confrol, and to
tackle real-world scenarios such as different road
conditions and dynamic obstacles. For instance,
adaptive second-order non-singular terminal sliding
mode control with the aid of neural networks. To solve
this issue of the unmodeled vehicle dynamics, a radial
basis neural network structure is implemented with the
friangular neural observer. Abdillah et al. [39]
proposed a system that aims to enhance autonomous
vehicles' lateral confrol, especially when it s
challenging to accurately estimate some state
variables. The performance of neural networks
infegrated with sliding mode control results in better
trajectory control. Similarly, Wang et al. [40] intfroduced
a robust He confrol method to address the path
fracking problem using norm-bounded uncertainty. A
new observer for estimafting unobservable state
variables has been intfroduced to improve the
robustness of the lateral controller and its accuracy,
especially in urban and highway environments.
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Table 3 The primary data

No. Authors Title Year | Source title Remarks
1 Abdillah M.; A new adaptive second-order non-singular | 2024 | International Neural
Mellouli E.M. ferminal sliding mode lateral control Journal of Networks and
[39] combined with neural networks for Vehicle Al Control
autonomous vehicle Performance Strategies
2 Wang J.; A Novel Robust Ho Control Approach Based | 2024 | World Electric Neural
Wang B.; Liu on Vehicle Lateral Dynamics for Practical Vehicle Networks and
C.; Zhang L.; Path Tracking Applications Journal Al Control
Li L.[40] Strategies
3 Dong C.; An Evolutionary Learning Framework of | 2023 | IEEE Neural
ChenY.; Lane-Changing Control for Autonomous Transactions Networks and
Wang H.; Ni Vehicles at Freeway Off-Ramps on Vehicular Al Control
D.; Shi X.; Lyu Technology Strategies
K. [41]
4 Chen L.; Liu An Intelligent Navigation Control Approach | 2023 | IEEE Access Neural
Y.;Dong P.; for Autonomous Unmanned Vehicles via Networks and
Liang J.; Deep Learning-Enhanced Visual SLAM Al Control
Wang A. [42] Framework Strategies
5 Bayuwindra Design of DDPG-Based Extended Look- | 2023 | IEEE Access Neural
A.; Wonohito Ahead for Longitudinal and Lateral Control Networks and
L.; Trilaksono of Vehicle Platoon Al Control
B.R. [43] Strategies
6 Tarhini, F; Talj, | Dynamic and real-time contfinuous look- | 2024 | VEHICLE Neural
R; Doumiati, ahead distance for autonomous vehicles: SYSTEM Networks and
M. [44] an explicit formulation DYNAMICS Al Control
Strategies
7 Wan J.; LiuH.; | Lane-Changing  Tracking  Contfrol  of | 2024 | IEEE Access Neural
Xu M.; Yang Automated Vehicle Platoon Based on MA- Networks and
X.; Guo Y.; DDPG and Adaptive MPC Al Control
Wang X. [45] Strategies
8 Artunedo A.; Lateral control for autonomous vehicles: A | 2024 | Annual Neural
Moreno- comparative evaluation Reviews in Networks and
Gonzalez M.; Control Al Control
Villagra J. [46] Strategies
9 Kim, H; Kee, Neural Network Approach Super-Twisting | 2023 | ELECTRONICS Neural
S.C.[19] Sliding Mode Control for Path-Tracking of Networks and
Autonomous Vehicles Al Control
Strategies
10 Hajjami L.E.; Neural network opfimization algorithm | 2024 | Institution of Neural
Mellouli E.M.; based non-singular fast terminal sliding- Mechanical Networks and
Zuraulis V.; mode control for an uncertain autonomous Engineers, Al Control
Berrada M.; ground vehicle subjected to disturbances Part D: Strategies
Boumhidi I. Journal of
[47] Automobile
Engineering
11 Cai Q.; Qu X.; | Research on Opftimization of Intelligent | 2024 | World Electric Neural
Wang Y.; Shi Driving Vehicle Path Tracking Control Vehicle Networks and
D.;ChuF.; Strategy Based on Backpropagation Neural Journal Al Control
Wang J. [48] Network Strategies
12 Zhang R.-Y.; Research on the High-Speed Collision | 2023 | IEEE Sensors Neural
Zhang B.; Shi Avoidance Method of Distributed Drive Journal Networks and
P-C.; MeiY.,; Electric Vehicles Al Control
Du Y.-F.; Feng Strategies
Y.-L. [49]
13 S.Teng; R. Sora for Hierarchical Parallel Motion Planner: | 2024 | IEEE Neural
Yan; X. A Safe End-to-End Method Against OOD Transactions Networks and
Zhang; Y. Li; Events on Intelligent Al Control
X. Wang; Y. Vehicles Strategies

Wang; Y.
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No. Authors Title Year | Source title w Remarks
Tian; H. Yu; L.

Li; L. Chen; F.
-Y. Wang [50]

14 S. Cheng; H. A Game Theoretical Chassis Domain | 2023 | IEEE Reinforcement
Chen; Z. Approach to Tragjectory Tracking for Transactions Learning and
Wang; B. Automated Vehicles on Vehicular Fuzzy Logic
Yang: C. Lv; Technology Control
K. Nakano Approaches
[51]

15 W. Xiao; Y. Decision-Making for Autonomous Vehiclesin | 2024 | IEEE Reinforcement
Yang; X. Mu; Random Task Scenarios at Unsignalized Transactions Learning and
Y. Xie; X. Intersection Using Deep Reinforcement on Vehicular Fuzzy Logic
Tang; D. Cao; | Learning Technology Control
T. Liv [52] Approaches

16 Jennan N.; Direct optimal fuzzy logic adapted to sliding | 2024 | International Reinforcement
Mellouli E.M. mode for lateral autonomous vehicle Journal of Learning and
[53] confrol Vehicle Fuzzy Logic

Performance Control
Approaches

17 J. Zhang; L. Event-Triggered Adaptive Fuzzy Approach- | 2024 | IEEE Reinforcement
Zhang; S. Liv; Based Lateral  Motion  Control  for Transactions Learning and
J. Wang [54] Autonomous Vehicles on Infelligent Fuzzy Logic

Vehicles Control
Approaches

18 Lian Z.; Shi P.; Fuzzy-Model-Based  Lateral Confrol  for | 2023 | IEEE Reinforcement
Lim C.-C; Networked Autonomous Vehicle Systems Transactions Learning and
Yuan X. [55] under Hybrid Cyber-Attacks on Fuzzy Logic

Cybernetics Control
Approaches

19 Q. Ma; X.Yin; | Game-Theoretic Receding-Horizon | 2024 | IEEE Reinforcement
X. Zhang; X. Reinforcement Learning for Lateral Control Transactions Learning and
Xu; X. Yao of Autonomous Vehicles on Vehicular Fuzzy Logic
[56] Technology Control

Approaches
20 RenY.; Xie X.; | Lateral Confrol of Autonomous Ground | 2024 | IEEE Reinforcement
Liy. [57] Vehicles via a New Homogeneous Transactions Learning and
Polynomial  Parameter Dependent-Type on Industrial Fuzzy Logic
Fuzzy Conftroller Informatics Control
Approaches

21 Taghavifar, H; | Nonsingleton Gaussian type-3 fuzzy system | 2024 | ISA / Reinforcement
Mohammadz | with fractional order NISMC for path TRANSACTION Learning and
adeh, A; tracking of autonomous cars S Fuzzy Logic
Zhang, WJ; Control
Zhang, CW Approaches
[58]

22 Fan, ZX; Yan, Path Tracking Control of Commercial | 2023 | MACHINES Reinforcement
Y; Wang, XY; Vehicle Considering Roll Stability Based on / Learning and
Xu, HZ [59] Fuzzy Linear Quadratic Theory Fuzzy Logic

Control
Approaches

23 C.-J.Lin; B. - Type 2 Fuzzy Neural Controller for Navigation | 2023 | IEEE Access Reinforcement
H. Chen; J.-Y. | Control of an Ackermann Steering Vehicle Learning and
Jhang [14] Fuzzy Logic

Control
Approaches
24 S. Yang; C. A Longitudinal/Lateral Coupled Neural | 2023 | IEEE Access Hybrid Control
Geng [60] Network Model Predictive Controller for Strategies and
Path Tracking of Self-Driving Vehicle Advanced
Path Planning
25 Y. Li; Y. A Merging Strategy  Framework  for | 2024 | IEEE Access Hybrid Control
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No. Authors Title Year | Source title W Remarks
Zhang; Y.Ma | Connected and Automated Vehicles in Strategies and
[61] Multi-Lane Mixed Traffic Scenarios Advanced

Path Planning

26 L. Zhang; J. Adaptive Backstepping Fuzzy Lateral Motion | 2024 | IEEE Hybrid Control
Zhang; S. Liv; Conftrol Approach for Autonomous Vehicles Transactions Strategies and
C.Ren; Y. on Advanced
Kang [62] Transportation Path Planning

Electrification

27 J.Fan; X. Wu; | Deep Reinforcement Leamning Based | 2024 | IEEE Hybrid Confrol
J. Li; M. Xu Integrated Eco-Driving Strategy  for Transactions Strategies and
[63] Connected and Automated Electric on Vehicular Advanced

Vehicles in Complex Urban Scenarios Technology Path Planning

28 X. Zhao; Z. Indirect Shared Control Strategy for Human- | 2023 | IEEE Hybrid Control
Yin; Z. He; L. Machine Cooperative Driving on Hazardous Transactions Strategies and
Nie; K. Li; Y. Curvy Roads on Intelligent Advanced
Kuang; C. Lei Vehicles Path Planning
[64]

29 X. Li; X. Gong; | Integrated Path Planning-Confrol Design for | 2024 | IEEE Hybrid Control
Y.-H. Chen; J. | Autonomous Vehicles in Intelligent Transactions Strategies and
Huang: 7. Transportation Systems: A Neural-Activation on Intelligent Advanced
Zhong [65] Approach Transportation Path Planning

Systems

30 A. LelkA3; B. Optimal Motion Design for Autonomous | 2024 | IEEE Hybrid Confrol
NA®meth Vehicles With Learning Aided Robust Transactions Strategies and
[66] Control on Vehicular Advanced

Technology Path Planning

*Noted: S-Scopus, W-Web of Siences, and I-IEEE

In the field of lane-changing conftrol, Dong et al.

(2023) [41] proposed an evolutionary learning
framework using random forest and
backpropagation neural networks with  model

predictive control (MPC) for freeway off-ramps.
Particularly, it demonstrates the performance of
neural networks to make decisions and frajectory
execution while ensuring safety under heavy traffic
sifuations. In a related study, Chen ef al. (2023) [42]
present visual simultaneous localization and mapping
(SLAM) with deep learning-assisted methods for the
navigation of autonomous unmanned vehicles. Then,
they proposed a method of navigation control that
enhances the accuracy of path tracking by 5% for
robots through interpreting visual dynamic scenarios
with  neural networks. Similarly, neural network
methods have also been used in vehicle platooning
control, as seen in Bayuwindra et al. [43] who
proposed an extended lookahead in longitudinal
and lateral control based on deep deterministic
policy gradient (DDPG). The use of neural networks
enables the system fo adapt to changes in
environmental conditions, thus preventing any issues
such as cut corners while manoeuvring. Wan et al.
(2024) [45] also presented a framework that
combines multi-agent deep deterministic policy
gradient (MA-DDPG) with adaptive model predictive
confrol (AMPC) to solve lane changing in vehicle
platoons. This method allows initial speed variations
to extend the range of controlled platoons while
enabling more efficient inter-vehicle communication

via decentralized conftrol strategies for maintaining
separation.

Tarhini et al. (2024) [44] and Hajjami et al. (2024)
[47] both looked into the effect of look-ahead
distances and sliding mode controllers upon vehicle
stability. Consequently, Hajjomi added a neural
network to opfimise sliding mode confrollers, while
Tarhini’'s research made a new-form confinuous look-
ahead distance for real time operation. These
strategies offer  enhancements in vehicle
performance  and control precision  when
experiencing dynamic driving conditions, such as
lane changes or rapid manoeuvres. A comparative
study of control strategies in different driving
scenarios was performed by Artunedo et al. [46] that
only reinforces this point of view. Neural network
optimisation algorithms have also been applied to
path tracking problems. Cai et al. (2024) [48]
provided a case study demonstrating the ability of
backpropagation neural networks to adjust both
lateral and vertical control strategies within an MPC
framework. This method also greatly increases the
adaptability of confrol systems in changing road
conditions and vehicle speeds. Kim and Kee (2023)
[19] make extensive use of neural networks to
address the chattering caused by super-twisting
sliding mode confrol while keeping good tracking
performance when faced with rapid lane changes or
other practical situations. In high-speed collision
avoidance, it is one of the important applications
studied so far that neural networks do best. Zhang et
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al. (2023) [49] provided results demonstrating the
enhancement of fracking stability under emergency
management conditions through the combination of
a neural control fechnique and an adaptive MPC.
Sora's hierarchical parallel motion planner was used
by Teng et al. (2024) [50] to look at how constraints
must be met in open-world safety when Al-based
controllers are used to handle out-of-bounds events.

To close this section, a review of neural network
methods has shown significant performance benefits
across a wide range of autonomous vehicle
functions. Several knowledge gaps have also been
identified. Most studies rely heavily on controlled
simulation environments and lack validation under a
variety of real-world fraffic and weather conditions.
Furthermore, many neural models act as ‘black
boxes’, offering limited interpretability and insight into
the decision-making process. Future research should
therefore focus on improving the interpretability and
real-fime robustness of these Al control architectures.
Furthermore, they should be capable of operating in
unstructured real-world environments to ensure safe,
reliable and scalable deployment in practical
autonomous navigation systems.

4.2 Reinforcement Learning and Fuzzy Logic Control
Approaches

Autonomous vehicles have infroduced organised
conftrol strategies that deal with the challenges of
lateral control, trajectory tracking, and navigation, in
which some start using more reinforcement learning
(RL) techniques and fuzzy logic systems. Such
strategies provide useful approaches to enhancing,
even developing, decision-making and managing
uncertainties while maintaining vehicle stability
throughout different driving conditions. The lack of
confrol by autonomous vehicles in less-clear cases
has established the necessity of reinforcement
learning and fuzzy logic control systems for the
vehicle to accomplish high-control tasks such as
running around or making more sophisticated
manoeuvres with higher accuracy and efficiency.
Researchers have extensively studied the use of
fuzzy logic systems for adaptive control. Jennan and
Mellouli (2024) [53] proposed a direct optimal fuzzy
logic system with a fast terminal sliding mode confrol
(FTSMC) for an autonomous vehicle's lateral control.
In this approach, the particle swarm optimisation and
butterfly optimisation algorithms are implemented to
maximise stability of the vehicle through fuzzy
accuracy and minimisation of uncertainty from
external disturbances. This sftrategy not only
addresses the chattering problem and exploits faster
convergence in sliding mode control but also verifies
its efficiency through comparatfive analysis and
demonstrates Lyapunov stability. Similarly, Lian et al.
(2023) [55] focused on finding an industrial grade
fuzzy model-based lateral control system for cyber-
physical systems such as autonomous vehicles in
conditions of hybrid cyber-attacks. An event-
triggered scheme (ETS) is embedded into the control

strategies fo minimise the risk caused by cyberattacks
and information-exchange induced issues while
guaranteeing that the vehicle maintains lateral
stability and reduces communicatfion burden.
Furthermore, Ren et al. (2024) [57] also showed that a
homogeneous polynomial parameter-dependent
fuzzy confroller can effectively deal with nonlinearity
in vehicle dynamics. Their controller improves control
flexibility, ensuring smooth vehicle navigation despite
external disturbances and varying road conditfions.

Reinforcement learning methods are also
becoming popular for autonomous vehicle decision-
making and control. Xiao et al. (2024) [52] addressed
moving vehicles at unsignalized intersections and
proposed a deep reinforcement learning framework
fo contfrol autonomous vehicles in such scenarios,
posing a high level of uncertainty, randomness, and
fime-dependence in the road network. Using an
augmented replay buffer and a mixed-attention
network, the neural network is frained on essential
collision and arrival data, thus improving both safety
and efficiency. Meanwhile, Cheng et al. focused on
frajectory tracking using multiple actuators (2024)
[51] addressed integrated longitudinal and lateral
control in the chassis domain through a game
theoretic coordination approach. This also handles
chassis control nonlinearities to maximise vehicle
dynamics and improve tracking accuracy over
challenging driving conditions. Similarly, Ma et al. [56]
have also explored the game theory. The game-
theoretic receding-horizon reinforcement learning
(GTRHRL) strategy is utilised for lateral tfracking under
agile  conditions. The algorithm  guarantees
convergence fo Nash equilibrium and stability in
large curvature furns and non-stationary
environments.

Innovative  adaptive and  event-friggered
mechanisms have further enhanced fuzzy logic
systems. Zhang et al. (2024) [54] proposed an event-
friggered adaptive fuzzy control system of parameter
uncertainty and communication problem
management that is developed in lateral confrol of
vehicle. The fuzzy logic system (FLS) approximates the
nonlinearities, leading to reduced communications
loads and ensuring task performance. Additionally,
Fan et al. [59] (2023) proposed a fuzzy linear
quadratic controller for commercial vehicles for
fracking control and roll stability. Improvement in
path-fracking accuracy and vehicle safety is subject
to the condition that adaptive control aims to ensure
that a vehicle can remain stable and make an
adjustment to driving conditions, but the process is
real-time. Taghavifar et al. [58] designed a type-3
fuzzy system integrated with an adaptive fractional-
order terminal sliding mode controller (AFOTSC) to
tackle this problem  while confroling the
unpredictability occurring during the path tracking of
autonomous vehicles. The system does not only
exhibit good performance but also guarantees
accurate control even in the presence of
measurement errors and  disturbances  through
Lyapunov stability and Barbalat's lemma. Similarly, Lin
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et al. [14] (2023) designed a type-2 fuzzy neural
controller (FNC) based on particle swarm
opftimization for control of an Ackermann steering
vehicle. This tfechnique improves navigation
precision, and the system operates in unexplored
environments using lidar data and systematic fuzzy
logic, ensuring a robust control process.

Overall, fuzzy logic and reinforcement learning
systems have made unprecedented progress in
certain aspects of autonomous vehicle performance
in lateral control, decision-making, and trajectory
fracking. However, there are still some knowledge
gaps that remain to be addressed. Most of the
reviewed approaches were designed and fested in
simulated environments and lack validation in real-
world complex traffic scenarios. Furthermore, the
integration of reinforcement learning with fuzzy logic
for truly adaptive and safe real-time conftrol is sfill
limited. Therefore, future research should focus on the
application of these strategies in field environments
that can enhance the interpretability and
adaptability of their learning in uncertain dynamic
environments.

4.3 Hybrid Control Strategies and Advanced Path
Planning

As safety considerations continue to attract attention
during the ongoing push for autonomy in both
personal advancing and cargo systems, the
navigation and control of autonomous vehicles have
been impeded and have also been studied more
extensively. Hybrid control strategies that integrate
various confrol methods, and Al solutions have
proven effective in motion planning, lateral control,
and path tracking. The scope of this theme aims for
hybrid control strategies to facilitate deployment of
deep learning, neural networks, model predictive
confrol (MPC), reinforcement learning (RL), and other
Al-based autonomous vehicles in practice.

Yang and Geng (2023) [60] considered model
predictive control (MPC) for path tracking by
infegrating neural networks to improve ifs
performance. By adopting a recurrent neuradl
network (RNN) as an alternative vehicle dynamic
model fo overcome their user-defined vehicle
dynamic models, particularly for the high-speed
manoeuvres. This prediction error and control error
combination makes such a classical MPC highly
sensitive. This hybrid method addresses the previously
mentioned challenges by having high prediction
fidelity under difficult conditions to effectively
minimise control error. Similarly, Zhang et al. (2024)
[62] described an adaptive backstepping fuzzy
control (ABFC) method that combines backstepping
and fuzzy logic to handle nonlinear dynamics when
unknown disturbances are presented. Simulation
results showed that the ABFC strategy is especially
capable of providing stable and accurate tracking
and control against various vehicle conditions.

For multi-lane fraffic scenarios, hybrid control
strategies are proposed to deal with merging and

lane changes. For instance, Li ef al. (2024) [61]
propose a merging framework integrating lateral
speed controlled based vehicle interaction model
and merging decision layer for safe pre-merging
connected and automated vehicles (CAVs) in heavy
congested fraffic scenario With real-world dataset
fraining, their model achieved an overlap efficiency
of 45% higher than that needed for a safe merge.
Similarly, Fan ef al. (2024) [63] infroduced a deep
reinforcement learning based eco-driving strategy
that simultaneously opfimises energy efficiency and
fravel time for CAVs via integrated longitudinal
speed planning with lateral lane change decisions.
The results indicated that vehicle-to-everything
communication procedures as well as multi-objective
reward functions could upgrade the overall control
framework of the vehicle. Human-machine
cooperative driving also exemplifies hybrid control
strategies. Zhao et al. (2023) [64] developed an
indirect shared control system of autonomous
systems and human drivers fo allow them fo
collaborate in sharing control when negofiating a
dangerous curvy road. The proposed method
employs gaussian process regression (GPR) fo
perform risk  assessment and  multi-objective
hierarchical MPC controller-based vehicle control,
enabling the fusion of human and machine input to
achieve safer driving. That collaborative method was
validated through driving simulations in which the
system successfully handled ambiguous roadway
scenarios, and concurrently reduced human-
machine mode conflicts. Furthermore, path planning
and control optimisation are further explored through
neural activation mechanisms and reinforcement
learning-based control frameworks. Li ef al. (2024)
[65] proposed a neural activation method for path
fracking based on the traffic state o yield robustness
and ensure smoothness with respect to evolving
environment conditions. In addition, Lelkdé and
Németh (2024) [66] presented a motion optimisation
framework that merges robust He control with the
reinforcement learning paradigm to safely control
movements of autonomous vehicles. Simulation and
experimental results showed that the tracking error
can be minimised effectively.

To close this sectfion, although hybrid control
strategies show great potential in combining the
strengths of various Al methods, there are still critical
knowledge gaps that persist. Most of the proposed
systems have been validated only in simulated
environments. Their application in  real-world
situations involving unpredictable human
interactions, mixed traffic dynamics, and
infrastructure constraints is still lacking. Furthermore,
many hybrid models lack standardization, making it
difficult fo compare their effectiveness across use
cases. The interpretability of control results, especially
in shared confrol systems involving human-machine
collaboration, remains unexplored. Future research
should focus on developing standardized evaluation
metrics for hybrid controllers, improving their
interpretability, and validating them in complex real-
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world driving environments such as in scenarios
involving cooperative behaviour among connected
autonomous vehicles.

5.0 CONCLUSION

In conclusion, the review of neural networks,
reinforcement learning, fuzzy logic, and hybrid
control strategies highlights significant advances in
navigation confrol for autonomous vehicles,
especidlly in enhancing lateral stability, decision-
making, and trajectory tracking. The findings reveal
several strengths as well as research gaps that should
be addressed for future research. Neural network-
based models have shown promising real-fime
performance but sfill face challenges related to
interpretability and validation in  unstructured
environments. Similarly, reinforcement learning and
fuzzy logic approaches have improved adaptability
and accuracy of control under uncertainty, yet
many remain untested in real-world applications.
Meanwhile, hybrid control frameworks effectively
infegrate various Al methods and offer robustness
and flexibility. However, this approach requires further
investigation, especially in human-machine
collaboration and standardized benchmarking.
Therefore, it is essential to address these identified
gaps to ensure reliable and transparent Al-based
navigation systems for future autonomous vehicle
applications.

Furthermore, although this paper focuses on the
technical aspects of autonomous navigation, the
economic and environmental implications are
equally important. Efficiency in navigation and
confrol systems can reduce fuel consumption,
maintenance costs and fraffic congestion, thus
providing economic benefits to industry and end
users. From an environmental perspective, smoother
driving patterns and Al-driven route optimization
confribute to reduced carbon emissions and
enhanced integration  with  electric  vehicle
technology. In line with this, these benefits highlight
the importance of overcoming existing technical
challenges to achieve a more widespread and
effective implementation of autonomous
technology.
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