
 

88:1 (2026) 135−154|https://journals.utm.my/jurnalteknologi|eISSN 2180–3722 |DOI: 

|https://doi.org/10.11113/jurnalteknologi.v87.23923| 

 

 

Jurnal 

Teknologi 

 
 

Full Paper 

  

 

  

 

MACHINING OF COMPOSITE MATERIALS: 

CHALLENGES, ADVANCES AND AI-DRIVEN 

SOLUTIONS 
 

Mohd Shahneel Saharudina*, Syafawati Hasbia,b Muhammad 

Younasa, Asif Ullahc 

 
aSchool of Computing and Engineering Technology, Robert 

Gordon University, Aberdeen AB10 7GE, UK 
bDepartment of Mechanical Engineering, Faculty of Engineering, 

Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000, 

Wilayah Persekutuan Kuala Lumpur, Malaysia  
cFaculty of Mechanical Engineering, Ghulam Ishaq Khan Institute of 

Engineering Sciences and Technology, Swabi 23460, KPK, Pakistan 

 

Article history 

Received  

9 December 2024 

Received in revised form  

9 May 2025 

Accepted  

13 May 2025 

Published Online  

23 December 2025 

 

*Corresponding author 

s.saharudin@rgu.ac.uk 
 

 

Graphical abstract 

 
 

 

Abstract 
 

The demand for composite materials is increasing across industries like energy 

storage, aerospace, automotive, and healthcare, driven by their exceptional 

attributes such as high strength-to-weight ratios and resistance to corrosion. 

However, machining these materials presents significant challenges due to 

their heterogeneous and anisotropic structures, leading to complex tool-

workpiece interactions, rapid tool wear, poor surface quality, and 

environmental concerns. This review explores recent advancements in 

machining techniques for composite materials, with a particular focus on 

addressing key challenges and leveraging artificial intelligence (AI) solutions. It 

serves as a comprehensive resource to enhance machining practices in 

modern composite manufacturing by optimising machining parameters. The 

paper concludes by pinpointing significant research gaps in hybrid machining 

and AI-driven strategies, suggesting promising avenues for enhancing high-

precision surface machining of fibre-reinforced composites and propelling the 

field forward. 

 

Keywords: Composites, machining, delamination, sustainable machining 

strategies, AI-driven machining optimisation 

 

Abstrak 
 

Permintaan terhadap bahan komposit semakin meningkat dalam pelbagai 

industri seperti penyimpanan tenaga, aero-angkasa, automotif, dan 

kesihatan, didorong oleh nisbah kekuatan dan ketahanan terhadap kakisan. 

Pemesinan bahan-bahan ini menghadapi cabaran besar disebabkan oleh 

struktur heterogen dan anisotropik yang menyebabkan interaksi kompleks 

antara mata alat dan bahan. Kerosakan mata alat yang cepat, kualiti 

permukaan yang kurang memuaskan, serta isu-isu alam sekitar memerlukan 

perhatian yang teliti. Kajian ini meneroka kemajuan terkini dalam teknik 

pemesinan bahan komposit, dengan penekanan khusus pada menangani 

cabaran utama dan memanfaatkan penyelesaian berasaskan kecerdasan 

buatan (AI). Ia berfungsi sebagai sumber rujukan untuk meningkatkan amalan 

pemesinan dalam pembuatan bahan komposit moden dengan 

mengoptimumkan parameter pemesinan. Kajian ini juga mengenal pasti 

jurang penyelidikan yang ketara dalam pemesinan hibrid dan strategi 
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1.0 INTRODUCTION 
 

Composite materials are transforming industries like 

energy storage, aerospace and biomedical 

engineering, thanks to their exceptional strength-to-

weight advantages. Yet, their true potential remains 

untapped due to the difficulties involved in machining 

them [1, 2, 3, 4]. In general, there are several types of 

composites available including polymer matrix 

composites (PMC), metal matrix composites (MMC), 

and ceramic matrix com-posites (CMC) [5, 6, 7]. To 

transform these composites into useful products, 

machining processes such as milling, drilling, and 

turning are applied [8]. Machining complex 

geometries is not a straightforward process because it 

relies on trial-and-error methods or static parameter 

settings, which are insufficient for optimizing cutting 

conditions. This method typically takes a longer time 

and is unable to adapt to real-time changes in 

material behaviour or tool wear [9]. Moreover, high 

energy consumption and the ex-tensive use of cooling 

lubricants contribute to environmental concerns [10, 

11]. 

Composites also present unique challenges in 

machining due to their heterogeneous structure and 

anisotropic nature [12, 13, 14]. This issue leads to 

unpredictable tool-material interactions, making 

machining difficult to optimise, hence causing 

delamination, fibre pull out and thermal damage to 

composites. For instance, drilling glass fibre-based 

composites could accelerate rapid tool wear because 

of the abrasive nature of the material [15, 16]. 

Researchers have been working to address these 

challenges by introducing process optimisations 

tailored to the unique demands of composite 

materials [17]. Several well-known techniques, such as 

high-speed machining, ultrasonic-assisted machining, 

laser-assisted machining, and abrasive water jet 

machining, have been applied to improve machining 

efficiency and quality. As a result, tool wear and 

surface defects can be reduced. Likewise, innovations 

in tool materials and coatings, such as polycrystalline 

diamond (PCD) [18] and coated carbide tools [19], 

are widely used to withstand the high abrasiveness 

and thermal sensitivity of compo-sites. The aim, once 

again, is to extend tool life and enhance 

performance. 

Lately, the integration of artificial intelligence into 

composites machining has become increasingly 

popular. This has led to a new area of research focus, 

the integration of data-driven methods. Machine 

learning and artificial intelligence are widely used to 

optimise machining parameters and predict tool wear 

and material behaviour [20, 21].  

There are many advantages to the machine 

learning approach. For instance, this approach 

enables real-time adjustments, reduces trial-and-error, 

and minimises defects, which is particularly valuable 

for complex geometries and high-precision 

applications. Additionally, sustainable machining 

practices, including cryogenic cooling and minimum 

quantity lubrication (MQL), are gaining traction to 

reduce the environmental impact of composite 

machining and improve workplace safety [22]. Current 

research includes an innovative longitudinal-torsional 

ultrasonic cryogenic cooling created with a focus on 

environmental sustainability [23]. This system includes a 

novel mechanical structure to enhance both the 

amplitude of longitudinal-torsional ultrasound and the 

efficiency of heat dissipation. Additionally, a high-

power cryogenic cooling device utilising a vortex tube 

was developed by researchers, and a distinctive 

wireless power supply system was employed, enabled 

the formulation of a design approach for integrating 

multiple transducers with a single longitudinal-torsional 

composite hollow horn. 

Although numerous papers have been published 

on the integration of AI and ML in composites 

machining, comprehensive reviews in this area remain 

relatively scarce. This paper provides a comprehensive 

review of recent advances in composite material 

machining, focusing on AI driven solutions. It examines 

the latest developments in composite material 

machining, highlighting ML application in process 

parameter optimization, and the integration of 

automation and smart manufacturing concepts to 

address the integral challenges of machining 

composites.  

Unlike most previous reviews, which focus mainly on 

conventional machining challenges and 

improvements, our review extensively explores the 

integration of AI and machine learning (ML) to 

optimize machining parameters, predict tool wear, 

and improve process efficiency. 

berasaskan AI, serta mencadangkan kajian pada masa hadapan yang 

membantu untuk meningkatkan pemesinan permukaan berketepatan tinggi 

bagi komposit bertetulang gentian dan memacu kemajuan dalam bidang ini. 

 

Kata kunci: Komposit, pemesinan, cabaran, kemajuan, kecerdasan buatan  

© 2025 Penerbit UTM Press. All rights reserved 
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While prior studies have examined AI in general 

composite machining, they rarely discuss its real-time 

implementation. Additionally, our review introduces 

Digital Twin technology, where AI-driven simulations 

predict and optimize machining conditions before 

physical trials. This review also explores the role of 

Explainable AI (XAI) in ensuring transparency in 

machining parameter selection. 

Figure 1 shows a growing interest in composites 

machining research, especially from 2015-2024, with a 

peak in recent years.  

The trend indicates that composites machining is 

becoming an increasingly popular area in materials 

science and engineering. Despite minor fluctuations, 

this upward trajectory highlights the field's growing 

importance in modern manufacturing and materials 

science. 

 

 
Figure 1 Number of publications from 2015 to 2024 using the 

keywords ‘’machining of composites’’ obtained from Web of 

Science 

 

 

2.0 COMPOSITE MATERIALS 
 

A composite is a material made by combining two or 

more distinct materials, typically resulting in properties 

that surpass those of its individual components. In the 

case of polymer composites, which are the focus of 

this paper, the matrix is commonly combined with 

fibres to facilitate load transfer, resulting in a material 

that is both lightweight and strong [24]. Another type 

of composite family commonly found in industries 

includes metal matrix composites and ceramic matrix 

composites. Their applications are prevalent in the 

energy, automotive, aerospace, and medical sectors. 

In addition to being lightweight and strong, 

composite materials offer several other advantages, 

including corrosion and fatigue resistance, excellent 

thermal stability, and an outstanding strength-to-

weight ratio [25, 26]. These additional properties make 

them suitable for electronics and construction [27, 28, 

29, 30].  

Composites can be manufactured through several 

processes. Common methods employed are hand lay-

up, autoclave moulding, compression moulding, 

pultrusion, and filament winding. These processes 

enable the fabrication of composite parts that are 

tailored to their near-net shape, underscoring the 

versatility and capabilities inherent to this material 

class. To achieve excellent surface quality and 

dimensional accuracy, machining processes such as 

turning, milling, and drilling are employed. Additionally, 

selecting the appropriate tool geometry, cutting 

speed, and feed rate is crucial in machining. These 

choices ensure a good surface finish, maintain 

dimensional accuracy, minimise tool wear, manage 

excessive heat and stress during machining, and, most 

importantly, prevent defects. However, due to 

heterogeneous and anisotropic characteristics of 

composite materials, machining these materials can 

lead to various problems. These include including 

delamination, hole shrinkage, and fibre pull-out.  

 

2.1 Types of Composite Materials 

 

Composites combine diverse elements, capitalizing on 

their strengths while ad-dressing weaknesses [31]. By 

optimizing, designers break free from traditional 

materials, using customizable, stronger, and lighter 

options tailored to requirements. This flexibility enables 

complex, cost-effective, and superior solutions when 

reimagining designs with composites. Composites 

typically have a two-phase structure, with a matrix 

material containing dispersed particles or fibres [32]. 

Figure 2 depicts composite materials, which are 

divided into three main categories: Polymer Matrix 

Composites (PMCs), Metal Matrix Composites (MMCs), 

and Ceramic Matrix Composites (CMCs) [33,34]. Each 

type of composite has specific subtypes based on the 

matrix material used, such as glass, carbon, aluminium, 

magnesium, silicon carbide, and zirconia [35]. 

 

2.2 Polymer Matrix Composites (PMCs) 

 

Polymer composites use strong, stiff fibres embedded 

in a polymer matrix. The fibres carry most of the load, 

but the matrix is crucial as it bonds the fibres together, 

distributes forces evenly, and transfers loads to the 

fibres [36]. Additionally, the matrix material's 

characteristics significantly influence the composite's 

properties. Therefore, the performance of the fibres, 

matrix, and their interface directly impacts the overall 

composite performance. Comprising a polymeric 

matrix, often derived from thermoset or thermoplastic 

resins, these materials incorporate reinforcing fibres like 

glass, carbon, or aramid [37, 38]. The unparalleled 

design and processing versatility of polymer matrix 

composites has made them highly advantageous and 

invaluable across a wide range of diverse sectors, from 

automotive and aerospace to sports equipment and 

marine applications. These composites offer 

exceptional flexibility and adaptability, allowing for 

tailored solutions and enabling innovative 

developments in numerous industries. 

•Glass Fibre Reinforced Polymer (GFRP): GFRPs are 

strong, lightweight, and resistant to corrosion and 

impact [39]. They are widely used in the construction 

industry, automotive parts, and consumer goods [40, 

41, 42, 43]. 
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•Carbon Fibre Reinforced Polymer (CFRP): CFRPs 

offer exceptional strength, stiffness, and lightweight 

properties, making them highly suitable for ap-

plications where high performance is crucial, such as 

aerospace compo-nents, high-end automotive parts, 

and sporting goods [44]. 

•Aramid Fibre Reinforced Polymer (AFRP): Known for 

their high toughness and impact resistance, AFRPs are 

often used in ballistic applications, protective gear, 

and aerospace [45]. 

 

2.3 Metal Matrix Composites (MMCs) 

 

Metal matrix composites consist of a metal matrix—

such as aluminum, magnesium, or titanium—reinforced 

with materials like ceramics (silicon carbide, aluminum 

oxide) or fibres (carbon) [46]. The addition of these 

reinforcements enhances the mechanical and 

thermal properties of the base metal, improving its 

strength, wear resistance, and performance at high 

temperatures [47]. MMCs are primarily used in ap-

plications where high strength, thermal conductivity, 

and wear resistance are required, such as in 

automotive brake components, aerospace structures, 

and electronic packaging. 

•Aluminum Matrix Composites: Known for their 

lightweight properties and improved strength, 

aluminum-based MMCs are widely used in the aero-

space and automotive industries for parts like engine 

components and structural parts [48, 49]. 

•Magnesium Matrix Composites: Magnesium MMCs 

offer excellent strength-to-weight ratios and are 

commonly used in applications where weight 

reduction is critical, such as in the automotive and 

defense industries [50]. 

•Titanium Matrix Composites: Due to their high 

strength, corrosion re-sistance, and thermal stability, 

titanium MMCs are often used in demanding 

aerospace applications, including turbine blades and 

airframe components [51, 52, 53]. 

 

2.4 Ceramic Matrix Composites (CMCs) 

 

Ceramic matrix composites are composed of a 

ceramic matrix—such as silicon carbide, alumina, or 

zirconia—reinforced with fibres, typically carbon or 

ceramic fibres. CMCs are valued for their ability to 

withstand extremely high temperatures, chemical 

stability, and resistance to wear, which makes them 

suitable for applications in high-stress environments. 

They are commonly used in the aerospace, defence, 

and energy sectors, particularly in applications such as 

turbine blades, heat shields, and engine components 

where traditional metals would fail under high heat 

and stress. 

•Silicon Carbide Composites: Known for their high 

strength, thermal shock resistance, and oxidation 

resistance, silicon carbide-based CMCs are commonly 

used in high-temperature applications, such as gas 

turbines and engine components [54]. 

•Alumina Composites: Alumina-based CMCs offer 

excellent wear resistance and chemical stability, 

making them ideal for use in chemical processing 

equipment and medical implants [55, 56, 57]. 

•Zirconia Composites: With superior toughness and 

thermal stability, zirconia composites are used in 

applications requiring both high thermal resistance 

and durability, including cutting tools and biomedical 

applications [58, 59, 60]. 

 

2.5 Hybrid Composites 

 

Hybrid composites combine two or more types of 

reinforcing fibres or matrices to enhance specific 

properties [61, 62, 63, 64]. For instance, combining 

carbon and glass fibres within a polymer matrix can 

balance the cost and weight benefits of glass fibres 

with the high strength and stiffness of carbon fibres. 

Hybrid composites are increasingly used in high-

performance and cost-sensitive applications across 

industries like automotive, aerospace, and sports 

equipment. In summary, each type of composite 

material offers unique advantages suited to specific 

environments and functional requirements. Through 

judicious selection of matrix and reinforcement 

components, engineers can create materials 

optimised for performance under specific operational 

stresses, enabling applications requiring high 

performance, durability, and weight efficiency.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Main categories of composite materials 

[65,66,67,68,69] 

 

 

3.0 MACHINING CHALLENGES IN POLYMER 

COMPOSITE MATERIALS 
 

The general methodology of machining process is 

outlined in Figure 3. This flowchart provides a structured 

approach to machining operations, ensuring 

efficiency, precision, and quality in manufacturing.  
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Figure 3 Machining process workflow 

 

 

Despite the advantages of composite materials, 

there are significant challenges associated with their 

machining processes. Unlike homogeneous metals, 

composite materials are inherently heterogeneous 

and anisotropic, with properties that depend on the 

direction and distribution of their fibres and matrix 

components. As a result, conventional machining 

methods often encounter difficulties that can 

compromise the efficiency of manufacturing 

processes and the quality of the machined 

components. Figure 4 shows the challenges 

associated with composites machining.  

A key challenge faced when machining composite 

materials is the problem of layer separation, known as 

delamination. This is a common issue with fibre-

reinforced composites, where the individual layers can 

start to peel apart under the mechanical forces 

encountered during drilling or milling, especially at the 

points where the tool enters and exits the material. 

Delamination is one of the most critical challenges 

encountered in the machining of composite materials 

due to their layered structure and anisotropic 

properties. Delamination refers to the separation of 

composite layers at the fibre-matrix interface, leading 

to structural weakness, poor surface integrity, and 

reduced mechanical performance. This phenomenon 

commonly occurs in drilling, milling, and turning 

operations, particularly when machining fibre-

reinforced polymer composites (FRPs) such as carbon 

fibre-reinforced polymers (CFRPs) and glass fibre-

reinforced polymers (GFRPs). The core challenge lies in 

the complex interplay between the cutting tool and 

the composite's fibre-matrix interface, which can give 

rise to uneven cutting forces and ultimately lead to the 

undesirable separation of the individual layers. The 

wide variety of composite materials contributes to 

uneven cutting forces during machining, with each 

type requiring specific cutting parameters to address 

this issue effectively. To address delamination, 

researchers have developed specialized cutting tools, 

backing support, and process optimizations. The use of 

step drills and brad & spur drills can reduce cutting 

forces and distribute loads more evenly, thereby 

minimizing entry and exit delamination. The 

application of polycrystalline diamond (PCD) and 

diamond-coated tools is also effective in reducing tool 

wear and preventing excessive mechanical damage. 

Sacrificial backing plates can be used on composite 

materials to absorb exit forces and prevent push-out 

delamination. Lastly, process parameter optimization, 

including lower feed rates and higher cutting speeds, 

is effective in reducing thrust forces that contribute to 

delamination. 

Composite materials containing abrasive fibers like 

GFRP (Glass Fibre Reinforced Polymer) or CFRP 

(Carbon Fibre Reinforced Polymer) often cause rapid 

wear on cutting tools and thermal damage. These 

fibers are typically harder than the primary matrix 

material, leading to significant damage and wear on 

standard cutting tools. As a result, tool lifespan is 

reduced, dimensional accuracy declines, and 

production costs increase. Furthermore, the machined 

composite component may exhibit other adverse 

outcomes, including diminished dimensional precision, 

inferior surface quality, and fibre pullout, which can 

stem from the detrimental effects on cutting 

efficiency.  

Another issue in composite machining is the 

thermal challenge posed by intense heat generated 

from high-speed cutting, which can damage the 

polymer matrix. Unlike metals, which dissipate heat 

quickly, composite materials have poor thermal 

conductivity. This results in localized heat exposure, 

leading to degraded mechanical properties in those 

areas. To address this, researchers have suggested 

methods like cryogenic cooling and minimum quantity 

lubrication (MQL) to target the cutting area. However, 

these solutions can significantly increase overall 

processing costs. In addition, there are concerns 

regarding air pollution and the challenges associated 

with lubricant disposal. The additives in lubricants are 

hazardous to the environment and can lead to long-

term pollution. To address this issue, vegetable oils are 

increasingly being used as biodegradable and 

sustainable alternatives to petroleum-based 

metalworking fluids (MWFs) in machining operations. 

They offer non-toxic, renewable lubrication while 

maintaining effective cooling and chip removal. To 

enhance the performance of vegetable oils and MQL 

systems, nanomaterials have been introduced as 

additives to improve their tribological properties, 

thermal stability, and lubrication efficiency. 

Nanoparticles such as Al₂O₃, MoS₂, TiO₂, graphene, 

and carbon nanotubes (CNTs) are incorporated into 

vegetable oils, forming hybrid nano-lubricants that 

exhibit superior heat dissipation, anti-wear 

characteristics, and friction reduction. These nano-

lubricants create a protective boundary layer at the 

tool-workpiece interface, reducing cutting forces, tool 

wear, and surface roughness. 

Due to their inherent heterogeneity, composites do 

not behave uniformly during machining, making it 

challenging to optimise machining parameters. This is 

where machine learning algorithms can be applied to 

 



140                        Mohd Shahneel Saharudin et al. / Jurnal Teknologi (Sciences & Engineering) 88:1 (2026) 135−154 

 

 

predict optimal parameters, providing an efficient 

alternative to the traditional trial-and-error approach, 

which is both time-consuming and reliant on manual 

adjustments. 

In summary, machining is evolving towards more 

sustainable practices to protect the environment and 

reduce health risks for workers. While the use of 

biodegradable lubricants is becoming increasingly 

popular, it does not address all the associated 

challenges. In addition, techniques such as cryogenic 

cooling and minimum quantity lubrication (MQL) are 

being applied to reduce heat and tool wear, 

supporting both efficiency and sustainability in 

machining processes but these methods also have 

limitations and do not solve all challenges associated 

with the composites machining process. Emulsion 

coolant expenses including production, usage, and 

disposal can represent as much as 15% of total 

manufacturing costs [70]. This has spurred the 

advancement of more sustainable options, such as 

minimum quantity lubrication (MQL) and sub-zero 

cooling methods that utilise liquefied gases like 

nitrogen (LN2) or carbon dioxide (LCO2). 

 

 
 

Figure 4 List of challenges associated with composites 

machining [70] 

 

 

4.0 RECENT ADVANCES IN MACHINING 

TECHNIQUES FOR COMPOSITE MATERIALS  

 
In the past decade, numerous studies have reported 

significant advances in machining techniques. Key 

among these advancements are high-speed 

machining, ultrasonic-assisted machining, laser-

assisted machining, and abrasive water jet machining. 

Each of these methods contributes uniquely to 

overcoming specific machining challenges posed by 

composites. 

High-Speed Machining (HSM) is increasingly 

popular for its potential to improve material removal 

rates and surface quality in composite machining. 

Babu et al. specified high-speed machining as 10,000–

15,000 rpm and very high-speed machining as 15,000–

50,000 rpm [71]. The transition ranges are 8,000–12,000 

rpm (low to high speed) and 12,000–20,000 rpm (high 

to very high speed) [72]. 

By operating at higher spindle speeds and feed 

rates, HSM minimizes heat generation, which is critical 

since composites typically have low thermal 

conductivity. This method, however, demands 

advanced, high-cost machinery and careful 

optimization of cutting parameters to avoid issues like 

tool wear and delamination, especially in materials like 

carbon fibre-reinforced polymers (CFRPs). Although 

this method is a popular approach in machining, it 

often results in undesirable vibrations, particularly when 

working with flexible fibre materials. Future research 

should focus on mitigating this issue to enhance tool 

lifespan and machining quality [73].  

Workpiece materials exhibit different dynamic 

behaviours during high-speed machining compared 

to their static properties due to the high loading rate. 

Chip morphology evolves from continuous to serrated 

and fragmented as cutting speed increases, which is 

linked to the variation in material dynamic properties. 

Ultra-high-speed machining in the brittle regime can 

reduce cutting energy consumption by over 19% 

compared to high-speed machining in the ductile 

regime [74]. 

High-speed machining can produce varied surface 

characteristics compared to lower-speed machining 

[75]. Specific ranges of high cutting speeds can result 

in fewer surface defects and lower surface roughness, 

though the optimal speed depends on the workpiece 

material, cutting method, and tool used. HSM can also 

cause severe plastic deformation, leading to an 

ultrafine grain layer and phase changes on the 

machined surface. As cutting speed increases, larger 

compressive residual stresses may develop deeper in 

the subsurface due to greater plastic deformation. 

However, a thin superficial layer can exhibit very high 

tensile residual stresses, potentially causing issues in 

service. Optimising the cutting speed is necessary to 

balance the surface quality parameters. Slamani et al. 

analysed the cutting forces, surface roughness, and 

delamination during slotting tests on FFRP composite 

materials, revealing that fibre orientation significantly 

affects cutting forces, defects, and surface quality, 

with 90° orientation providing the best surface finish 

and feed rate being the most influential cutting 

parameter [76]. In case of composites machining, the 

equation for delamination factor can be expressed as 

follow. 

 

FD=Dmax/Do                        (1) [77] 

Where FD (delamination factor), Dmax (maximum 

delamination diameter) and Do (hole diameter) 

 

The cutting force can be reduced within the HSM 

speed range, due to thermal softening from chip 

plastic deformation, which weakens material 

resistance. Brittle fracture of the removed material can 
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also help keep the cutting force low when reaching 

the ultra-high-speed machining range. The tool-chip 

friction coefficient tends to decrease as cutting speed 

increases. Severe tool wear under the extreme 

conditions of HSM is a critical challenge for industrial 

application. Understanding tool wear behaviour and 

mechanisms can guide the design and fabrication of 

cutting tools suitable for HSM and recommend 

appropriate tools for specific workpiece materials [78, 

79]. Figure 5 illustrates the development and adoption 

of high-speed machining (HSM), highlighting significant 

advancements in speed, material removal rates, and 

application capabilities from 1820 to 2010. The 

following equation describes the correlation involving 

cutting speed (V) and tool life (T). This can be written 

as: 

VTn=C                             (2) [80] 

Where V (cutting speed), T (tool life) n, C (Constants 

dependent on material and machining conditions)  

HSM has been successfully deployed in 

manufacturing various mechanical components, 

offering advantages for removing large volumes of 

material. Advancements in ultra-hard cutting tools 

have enabled higher speed ranges to be used 

industrially [81, 82]. However, the development of 

advanced engineering materials with greater strength 

and toughness presents further challenges for high-

speed machining applications [83]. The current 

research focuses on optimising tool geometry, 

developing more advanced lubricants, and designing 

innovative materials for cutting tools. The primary goal 

is to enhance durability and performance when 

machining composites in demanding environments. 

 
 

Figure 5 High-speed cutting development and use. Note: (CNC-Computer Numerical Control, RPM-revolutions per minute, CS-

cutting speed, MRR-material removal rate, APP-application) [74] 

 

 

Ultrasonic Assisted Machining (UAM) has evolved 

significantly over the last 60 years, building on the 

concept introduced as early as 1927 and patented in 

1945 [84]. UAM applies ultrasonic vibrations to 

conventional machining, enhancing efficiency and 

reducing residual stress on the workpiece’s surface, 

particularly beneficial for brittle materials [85]. While 

early ultrasonic machining was limited by low material 

removal rates and primarily used for finishing, 

advances in ultrasonic transducers and tool design 

have broadened its application across various 

machining processes [86, 87, 88]. 

One important method in UAM is Conventional 

Ultrasonic Machining (USM) [89]. It relies on abrasive 

slurry impacts to shape brittle materials, and UAM itself, 

which integrates high-frequency vibrations directly into 

traditional machining operations like turning, milling, 

and drilling. In UAM, vibration can be applied either to 

the cutting tool (Actuated Tool System, ATS) or the 

workpiece (Actuated Work System, AWS), creating a 
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cyclical tool–workpiece interaction that enhances 

material removal efficiency. As illustrated in Figure 6, 

the vibrations result in a cyclic four-step movement, 

known as approach, contact, immersion, and 

withdrawal, at the cutting tip. This enhances cutting 

precision and extends tool lifespan by reducing 

continuous tool-workpiece contact. This advancement 

in ultrasonic machining represents a significant 

breakthrough in processing hard-to-machine materials 

[90]. 

 
 

Figure 6 Essential tool movement in a vibration cycle [91] 

 

 

Laser-Assisted Machining (LAM) uses laser heating 

to enhance machining of hard, brittle materials [92]. It 

has two main approaches which include pre-heat 

LAM and in-situ LAM [93]. In pre-heat LAM, a laser 

softens the workpiece surface before it contacts the 

cutting tool, improving material removal in processes 

like turning, milling, and grinding [94, 95, 96]. Research 

shows that factors like laser power and scan speed 

significantly influence surface quality and tool wear in 

materials like hardened steel and fused silica. In 

contrast, in-situ LAM directly heats the cutting zone in 

real-time, ideal for ultra-precision machining with 

diamond tools [97]. By focusing the laser on the 

contact point between the tool and workpiece, in-situ 

LAM enhances ductility, allowing for smoother cuts in 

materials. This method increases the ductile-brittle 

transition (DBT) depth, enabling more ductile removal 

and reducing residual stress. Studies on in-situ LAM of 

glass-ceramics have explored optimization of cutting 

parameters to lower cutting forces, employing 

methods like response surface methodology (RSM) 

and artificial neural networks (ANN) for parameter 

prediction. In-situ LAM offers improved efficiency, 

reduced machining costs, and higher surface quality 

for challenging materials like thermoset and 

thermoplastic composites. Figure 7 illustrates a laser-

assisted machining process (LAM). This is a two-step 

process for creating a final hole using mechanical 

drilling. The first step involves machining a pilot hole, 

either by laser machining (red dashed line) or a 

conventional drilling tool, followed by the second step, 

where a larger drill (blue dashed line) is used to 

complete the final hole. By using LAM, lower cutting 

forces are required during the machining operation, 

and tool life can be extended; however, the laser can 

damage the polymer matrix. Additionally, the laser 

tends to create a heat-affected zone, which can alter 

the mechanical properties of the composite, making it 

undesirable for the manufactured products or 

components. 

 

 
 

Figure 7 Schematic of laser assisted machining (LAM) [98] 

 

 

The Abrasive Water Jet Machining (WJM) process is 

shown in Figure 8. This technique has emerged as a 

versatile and advanced method suitable for a wide 

range of materials, including polymer composites. It is 

also suitable for small-batch production and rapid 

prototyping. This technique operates as a hybrid 

mechanism that combines water jet machining (WJM) 

and abrasive jet machining (WJM). It offers 

advantages such as precise cutting with minimal heat, 

prevention of thermal distortion, and preservation of 

material integrity. In the WJM process, high-speed 

abrasive particles such as silicon carbide or aluminium 

oxide, erode material surfaces without generating 

heat, making it a “cold” machining method. WJM’s 

flexibility, low power requirement, and durability make 

it an ideal choice for materials with complex 

geometries or those sensitive to heat [99,100,101,102]. 

Key components of WJM systems include a 

compressor, mixing chamber, nozzle, and pressure 

gauge, which together allow precise control over 

cutting, achieving high-quality results across diverse 

materials. 
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Figure 8 Illustration of water jet machining [103] 

 

 

5.0 APPLICATIONS OF ARTIFICIAL 

INTELLIGENCE AND MACHINE LEARNING IN 

COMPOSITES AND MACHINING 
 

Artificial Intelligence (AI) enables machines to perform 

tasks intelligently, incorporating human-like 

psychological skills such as perception, association, 

prediction, planning, and motor control, with diverse 

information processing capabilities [104, 105, 106]. 

Within this field, machine learning (ML) is a subfield that 

explores algorithms and statistical models enabling 

computer systems to perform specific tasks, such as 

classification, regression, and clustering, without 

explicit programming [107, 108, 109]. 

Table 1 highlights the increasing reliance on 

machine learning (ML) and artificial intelligence (AI) 

for machining composite materials. Among the 

prevalent methods, Artificial Neural Networks (ANNs) 

dominate due to their predictive accuracy in 

modelling complex relationships, such as machining 

parameters and surface quality. ANNs are 

computational models inspired by biological neural 

systems, capable of learning complex patterns by 

adjusting connections and weights between neurons 

to minimise errors, typically through backpropagation. 

They are particularly effective in modelling complex 

data, predicting outcomes, and optimising processes. 

Recent literature increasingly highlights their efficiency 

and reliability in tasks such as image recognition,  
  

 

speech processing, and especially modelling and 

optimising intricate manufacturing processes. 

ANN variations, such as Levenberg–Marquardt (LM) 

and Particle Swarm Optimization (PSO), demonstrate 

adaptability for optimisation tasks in water jet 

machining, turning, and drilling. These approaches 

effectively address challenges like delamination and 

tool wear. 

Other advanced techniques like Gradient Boosting 

Machines (GBM), Random Forests (RF), and Support 

Vector Machines (SVMs) are applied to specific 

scenarios, especially drilling and turning of fibre-

reinforced composites, to enhance parameter 

prediction and process stability. The use of newer 

approaches, such as Long Short-Term Memory (LSTM) 

and Convolutional Neural Networks (CNNs), highlights 

an interest in real-time, explainable predictions and 

optimisation. 

Despite the increasing trend in the application of 

AI/ML in composites machining, the inherent 

complexity of composite materials remains a 

significant challenge. Accurately modelling the 

anisotropic and heterogeneous properties associated 

with composite materials is particularly difficult. 

Another major issue arises with the availability of high-

quality, diverse datasets required for training ML 

models, as recent research has reported that such 

datasets are often limited or expensive to obtain. 

Additionally, machine learning models, such as deep 

learning, may be overfit, to small or specific datasets 

reduces their generalisability to broader scenarios. 

Despite their utility, simpler algorithms like Linear 

Regression (LR) and Decision Trees (DT) are still widely 

used, often in combination with statistical methods like 

Response Surface Methodology (RSM). This 

demonstrates a trade-off between computational 

simplicity and predictive capability. On the positive 

side, AI/ML techniques can significantly enhance 

machining accuracy, reduce trial-and-error costs, and 

contribute to sustainable practices. However, from our 

review, the choice of a suitable algorithm remains 

critical for effectively addressing material-specific 

challenges. Figure 9 depicts the distribution of various 

modelling techniques used by researchers. Each 

segment represents a specific method, with the 

dominant portion illustrating the use of Artificial Neural 

Networks (ANN). 
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Table 1 Recent development in composites and machining/simulation integrated with artificial or 

machine learning 

 

Composite Type Machining 
Operation 

Cutting Tool ML Algorithm/Remark Year and Ref. 

Hybrid bio-
composites (Nettle 
and Grewia) 

Drilling Carbide  -Response Surface Methodology (RSM)   

-Artificial Neural Networks (ANNs)  

2024 [110] 

CFRP Abrasive 
Water Jet 

Abrasive 
particle 
(Garnet) 

-Artificial Neural Networks (ANNs) 2024 [111] 

Polyethylene-
terephthalate-glycol 
(PETG) 

Turning Diamond-
shaped 
cutting inserts 

-ANN model with a 3-6-1 structure 
optimized via the Levenberg–Marquardt 
(LM) training algorithm 

2024 [112] 

CFRP/Al2O3/SiC Drilling (twist 
drill, step drill, 
and core 
drill) 

PVD coated -Artificial Neural Networks (ANNs)       -
Random Forest (RF) 

2024 [113] 

Jute-basalt/epoxy Turning Carbide -Gradient Boosting Machine (GBM)             
-Adaptive Boosting (AdaBoost)                     
-Extreme Gradient Boosting (XGBoost) 

2024 [114] 

Hybrid fibre-
reinforced polyester 

Water jet 
machining 

Water jet  -Response Surface Methodology (RSM)   

-Artificial Neural Network (ANNs)  

2024 [115] 

NFRP Orthogonal 
cutting 

Wedge-
shaped  

-Convolutional Neural Network (CNN)         
-Explainable machine learning approach 
(XML)                   

2024 [116] 

Jute/rattan epoxy Drilling High speed 
steel and 
carbide (HSS) 

-Support Vector Machine (SVM)                   
-Random Forest (RF)  

2024 [117] 

Banana fibre-
reinforced epoxy 
composites infused 
with alumina 

Water jet Abrasive 
particle 
(garnet) 

-Utilised Artificial Neural Network (ANNs)                                 
-Long Short-Term Memory (LSTM) 

2024 [118] 

GFRP Drilling High Speed 
Steel (HSS) 

-Linear Regression (LR), Decision Tree (DT), 
AdaBoost Decision Tree Regressor, XGBRF 
Regressor 

2023 [119] 

GFRP Drilling High Speed 
Steel (HSS) 

-An Artificial Neural Network (ANNs). 

-Optimization was performed using a 
Genetic Algorithm (GA)  

2023 [120] 

GFRP Drilling Carbide -Artificial Neural Networks (ANN) 
enhanced by a Particle Swarm 
Optimization (PSO) algorithm 

2023 [121] 

GFRP Milling Carbide -Response Surface Methodology (RSM) 
used to model and optimize machining 
parameters. 

 

2023 [122] 
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Composite Type Machining 
Operation 

Cutting Tool ML Algorithm/Remark Year and Ref. 

-An Artificial Neural Network (ANNs) model 
was developed, using a Back Propagation 
(BP) approach, and was shown to perform 
better than RSM for predicting machining 
force during milling. 

Glass Laminate 
Aluminium 
Reinforced Epoxy 
(GLARE) 

Drilling Carbide -Multiple linear regression, a supervised 
machine learning (ML) model, was 
applied to predict thrust force based on 
drilling parameters. 

2022 [123] 

GFRP Drilling 

(twist, slot, 
spur) 

Carbide -LR (Linear Regression) 2022 [124] 

CFRP Milling Carbide -Artificial Neural Network (ANNs)  2022 [125] 

WGFRE Drilling Carbide -A Hybrid ANN-PSO (Particle Swarm 
Optimization) model was employed to 
predict and optimize drilling parameters, 
focusing on torque and delamination 
factor outcomes. 

-Response Surface Methodology (RSM) 
was also used alongside ANNs-PSO to 
establish a correlation between drilling 
parameters and process responses 

2022 [126] 

CFRP Turning Polycrystalline 
diamond 
(PCD) 

-Fuzzy logic  

-Artificial neural network (ANNs) 

2022 [127] 

(HDPE reinforced 
with Washingtonia 
filifera fiber  

Drilling High-speed 
steel (HSS) 
coated with 
Titanium 
Nitride (TiN) 

-Response Surface Methodology (RSM) 
and Artificial Neural Network (ANNs) 
models 

2022 [128] 

CFRP Electrical 
Discharge 
Machining 
(EDM) using 
aluminum as 
a fixture 
plate for 
guiding the 
electrode 

Copper 
electrode in 
EDM 

-A Grey Relational Analysis (GRA) 
approach was utilized for multi-quality 
analysis. 

-An Artificial Neural Networks (ANNs) 
model was implemented and trained 
using experimental datasets to predict 
hole quality attributes like circularity, taper, 
material removal rate, and tool wear rate. 

2022 [129] 

GFRP Turning Tungsten 
carbide 

-Artificial Neural Network (ANNs) model 
was developed for estimating cutting 
force and surface roughness during the 
turning of GFRP. 

2022 [130] 

CFRP Edge 
trimming 

Polycrystalline 
diamond 
(PCD) 

-Statistical model 2021 [131] 

Graphite-epoxy 
laminate 

Drilling Not specified RNN (Recurrent Neural Network) 2021 [132] 
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Composite Type Machining 
Operation 

Cutting Tool ML Algorithm/Remark Year and Ref. 

GFRP CO2 Laser 
Micro-Milling 

CO2 Laser 
with variable 
beam 
diameters 

-Artificial Neural Network (ANNs) with a 3-
6-6-3 architecture 

2021[133] 

NFRP Orthogonal 
cutting 

Polycrystalline 
diamond 
(PCD) 

-Random Forest (RF)  2020 [134] 

CFRP Drilling Tungsten 
carbide-
cobalt 

-The study used statistical analysis and 
empirical modelling (ANOVA, regression 
models) to relate drilling parameters to 
outcomes like thrust force and torque. 

2020 [135] 

Aramid/Phenolic Milling High Speed 
Steel (HSS) 

-k-nearest neighbour (kNN)                            
-Decision Trees (DT)                                          
-Support Vector Machine (SVM)  

2019 [136] 

Aramid/phenolic Milling High Speed 
Steel (HSS) 

-k-nearest neighbour (kNN)                            
-Decision Tress (DT),                                         
-Support Vector Machine (SVM)  

2018 [137] 

CFRP Abrasive 
Waterjet 
Machining 

Waterjet with 
garnet 
abrasive 

-Adaptive Neuro-Fuzzy Inference System 
(ANFIS) 

2017 [138] 

UD-CFRP Orthogonal 
Cutting 

Carbide  -Artificial Neural Network (ANNs)                  
-Radial Basis Function (RBF)  

2016 [139] 

CFRP Helical Milling Tungsten 
carbide 

-Artificial Neural Networks (ANNs) with 
back-propagation (BP) learning algorithm 

2016 [139] 

CFRP Drilling Carbide -Logical Analysis of Data (LAD) 2015 [140] 

CFRP Helical Milling Tungsten 
carbide 

-Artificial Neural Network (ANNs) with 
back-propagation learning, used for 
predicting delamination 

2014 [141] 

GFRP End Milling Cemented 
carbide end 
mills (2, 3, 4 
flutes) 

-Artificial Neural Network (ANNs) with 
Levenberg-Marquardt (LM) learning 
algorithm 

2013 [142] 

Woven Graphite 
Epoxy 

Drilling Carbide -Logical Analysis of Data (LAD) 2012 [143] 

CFRP Drilling, 
milling 

Tungsten 
Carbide, PCD 

-Artificial neural network (ANNs) 2011 [144] 

CFRP End milling Carbide -Committee Neural Networks (CNNs) was 
developed to predict specific cutting 
energies (Kc and Kt) for orthogonal 
cutting, which was then applied to helical 
milling. 

2010 [145] 

GFRP Turning Polycrystalline 
Diamond 
(PCD) 

-The study used Digital Image Processing 
(DIP) techniques to evaluate surface 
roughness by analysing images captured 
during machining. 

2009 [146] 
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Composite Type Machining 
Operation 

Cutting Tool ML Algorithm/Remark Year and Ref. 

-A second-order quadratic model was 
developed using Response Surface 
Methodology (RSM) to predict surface 
roughness (Ra) based on machining 
parameters. 

-The average gray scale value (Ga) from 
images was correlated with Ra values, 
showing a strong relationship useful 

PEEK with 30% 
Carbon Fibre 

Turning Cemented 
Carbide 

-ANNs with Error Back-Propagation 
Algorithm 

2008 [147] 

CFRP Drilling Core drill with 
diamond grit 

-Taguchi Method used for optimizing 
drilling parameters to reduce thrust force 
and surface roughness rather than a 
direct AI or ML model 

2007 [148] 

GFRP Turning Cermet -Artificial neural networks (ANNs)                                
-RSM 

2006 [149] 

UD-FRP Milling Carbide -The study utilized non-linear regression 
and Committee Neural Networks (CNNs) 
to model cutting forces in FRP materials. 

2005 [150] 

CFRP Drilling 

 

Carbide-
tipped twist 
drills 

-No specific AI algorithm, the following 
sensors were used for real-time feedback 
(Acoustic emission sensors, vibration 
sensors, force sensors) 

2000 [151] 

 

 

 
Figure 9 Different type of machine learning and the 

distribution from this review 

 

 

6.0 ASSESSING CURRENT ADVANCES 
 

Each of the composite machining techniques 

discussed has contributed to improvements in how 

these materials are processed. However, several 

weaknesses remain that need to be addressed, such 

as issues with vibration and delamination. High-speed 

machining, for instance, is often considered 

economically unviable when the total costs are 

considered. Similarly, while ultrasonic-assisted 

machining successfully mitigates heat generation 

and tool wear, the high tooling costs remain 

unavoidable. Additionally, achieving precise 

parameter control is challenging. Laser-assisted 

machining offers excellent accuracy, but it requires 

careful management of thermal effects to prevent 

damage to the polymer matrix. Lastly, water jet 

machining necessitates post-processing because the 

rough edges produced by this method are 

unsatisfactory, despite its well-known versatility. 

While there are currently no perfect composite 

machining techniques, research in this field has 

shown promising progress. Future studies are 

expected to incorporate hybrid machining methods, 

which involve the simultaneous combination of 

several machining techniques. Hoghoughi et al. for 

instance, [152] evaluates the sustainability of hybrid 

machining using linear and pit-shaped tool textures 

with PTFE solid lubricants. This study was focusing on 

energy consumption, carbon emissions, production 

rate, cost, and operator health/safety. It was found 

that a linear textured tool in dry machining conditions 

was identified as the most sustainable option. The 

highest Sustainability Index (52.5) was achieved due 
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to its balance of environmental, economic, and 

social benefits.  

Mahbub et al. [153] explores hybrid and sequential 

machining processes, combining conventional and 

non-conventional techniques like EDM, ECM, and 

laser machining to enhance precision, productivity, 

and surface quality for hard-to-machine materials. By 

integrating methods such as vibration assistance and 

powder mixing or sequencing EDM with ECM. It was 

found that significant improvements in machining 

efficiency, tool life, and surface integrity were 

observed. 

Kumar et al. [154] studied milling process of 

graphene/carbon/epoxy nanocomposites. The study 

utilised a hybrid optimisation method combining the 

Grey Relational Analysis (GRA) and Principal 

Component Analysis (PCA) techniques to optimise 

multiple conflicting machining responses (material 

removal rate, cutting force, and surface roughness). 

By utilising a grey-PCA hybrid optimisation method, 

optimal parameters (cutting speed, feed, depth of 

cut, and graphene content) were identified, 

demonstrating a notable enhancement in machining 

quality and productivity, with MRR increasing from 

3.793 mm³/min to 17.64 mm³/min and surface 

roughness improving from 1.120 µm to 0.750 µm. 

Additionally, the implementation of machine learning 

and data analytics is anticipated to reduce reliance 

on traditional methods for optimizing machining 

parameters. Real-time data monitoring during 

machining processes will provide better insights, 

allowing for more accurate real-time data 

processing with the assistance of these techniques. 

Despite the various techniques developed and 

innovated in composite machining, there is still 

significant room for improvement, particularly 

regarding quality and efficiency. Each machining 

technique relies on finding the right balance 

between cost, precision, and the desired material 

properties. Research is ongoing, especially in hybrid 

machining. With advancements in the field, hybrid 

machining techniques and data-driven research will 

undoubtedly be the focal point for the next five 

years. 

 

 

7.0 RESEARCH GAPS AND FUTURE RESEARCH 
 

From our review, we found that hybrid machining is 

emerging as a highly promising research area for 

enhancing the efficiency, accuracy, and 

sustainability of composite material machining. 

Conventional machining techniques, such as milling 

and drilling, often face limitations such as excessive 

tool wear, delamination, and heat-induced defects, 

which reduce the quality and reliability of machined 

composite components. Future research in 

composite machining should focus on hybrid 

machining techniques that combine the benefits of 

various processes, such as ultrasonic-assisted laser 

machining and cryogenic water jet cutting, to 

address key challenges, including delamination, tool 

wear, and surface roughness. Implementing 

adaptive AI-driven control systems for real-time 

adjustments of machining parameters could further 

enhance process efficiency, especially when working 

with materials that have complex, anisotropic 

properties. Advancements in machine learning, 

particularly deep learning, hold promise for 

improving predictive modeling of tool wear and 

surface quality. Incorporating explainable AI (XAI) 

into these models can clarify the impact of specific 

variables. For instance, fibre orientation and cutting 

speed on machining outcomes, enabling more 

precise parameter optimization. 

Another promising avenue is the integration of 

digital twins, which are virtual models that simulate 

and predict machining performance in real-time. 

Combined with machine learning, digital twins could 

optimize composite machining in a simulated 

environment before actual production, reducing 

trial-and-error and enhancing accuracy. 

Sustainable approaches are also crucial. 

Developing AI algorithms that minimize resource 

usage and emissions could help meet global 

environmental targets, reducing the ecological 

footprint of composite manufacturing. Current trends 

in AI and machine learning in composite machining 

focus on defect detection, material property 

optimization, and improved design processes. These 

technologies are poised to transform the field, 

providing unprecedented insights and efficiencies 

that will lead to more accurate and sustainable 

manufacturing processes. 

 

 

8.0 CONCLUSIONS 
 

In conclusion, machining composite materials 

presents three main challenges: thermal sensitivity, 

tool wear, and delamination. Various approaches 

have been employed to address these issues, 

including ultrasonic-assisted machining and water jet 

machining. Despite these advancements, several 

limitations remain. Firstly, most machining techniques 

require specialised equipment with high operational 

costs, limiting their adoption in smaller manufacturing 

setups. Secondly, while AI-driven models show 

promise in optimising machining parameters, their 

effectiveness depends on high-quality training data, 

which is often limited due to the complexity and 

variability of composite materials. Thirdly, 

environmental concerns, such as coolant disposal 

and energy-intensive processes, remain a challenge. 

Interdisciplinary collaboration among materials 

scientists, AI specialists, and engineers is crucial for 

developing customized machining strategies, such as 

AI-optimized cutting tools for specific composites. The 

integration of explainable AI promotes transparency, 

allowing engineers to better understand machining 

parameters and build trust in AI-driven technologies. 

Future studies should focus on sustainable machining 
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approaches, optimising resource efficiency, lowering 

emissions, and enhancing workplace safety. Hybrid 

machining, combining laser-assisted and ultrasonic-

assisted techniques, offers a promising solution to 

issues like tool degradation and thermal effects. 

Furthermore, AI-powered sensor systems can enable 

real-time adaptive machining. 

While cryogenic cooling and other alternative 

solutions show potential, each approach has trade-

offs in cost, complexity, and material compatibility. 

As composite applications expand, research should 

continue refining these techniques and exploring 

hybrid approaches that leverage multiple machining 

strengths. These efforts will be vital in improving 

efficiency, quality, and unlocking the broader 

potential of composite materials in high-performance 

sectors. 
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