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Abstrak

Permintaan terhadap bahan komposit semakin meningkat dalam pelbagai
industri  seperti  penyimpanan tenaga, aero-angkasa, automotif, dan
kesihatan, didorong oleh nisbah kekuatan dan ketahanan terhadap kakisan.
Pemesinan bahan-bahan ini menghadapi cabaran besar disebabkan oleh
struktur heterogen dan anisotropik yang menyebabkan interaksi kompleks
antara mata alat dan bahan. Kerosakan mata alat yang cepat, kualiti
permukaan yang kurang memuaskan, serta isu-isu alam sekitar memerlukan
perhatian yang teliti. Kajian ini meneroka kemajuan terkini dalam feknik
pemesinan bahan komposit, dengan penekanan khusus pada menangani
cabaran utama dan memanfaatkan penyelesaian berasaskan kecerdasan
buatan (Al). la berfungsi sebagai sumber rujukan untuk meningkatkan amalan
pemesinan dalam pembuatan bahan  komposit moden dengan
mengoptimumkan parameter pemesinan. Kajian ini juga mengenal pasti
jurang penyelidikan yang ketara dalam pemesinan hibrid dan strategi
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berasaskan Al, serta mencadangkan kajion pada masa hadapan yang
membantu untuk meningkatkan pemesinan permukaan berketepatan tinggi
bagi komposit bertetulang gentian dan memacu kemajuan dalam bidang ini.

Kata kunci: Komposit, pemesinan, cabaran, kemajuan, kecerdasan buatan

© 2025 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Composite materials are transforming industries like
energy storage, «aerospace and biomedical
engineering, thanks to their exceptional strength-to-
weight advantages. Yet, their true potential remains
untapped due to the difficulties involved in machining
them [1, 2, 3, 4]. In general, there are several types of
composites  available including polymer  matrix
composites (PMC), metal matrix composites (MMC),
and ceramic matrix com-posites (CMC) [5, 6, 7]. To
fransform these composites into useful products,
machining processes such as miling, drilling, and
turning are applied [8]. Machining complex
geometries is not a straightforward process because it
relies on trial-and-error methods or static parameter
settings, which are insufficient for optimizing cutting
conditions. This method typically takes a longer time
and is unable fto adapt to real-time changes in
material behaviour or tool wear [?]. Moreover, high
energy consumption and the ex-tensive use of cooling
lubricants contribute to environmental concerns [10,
11].

Composites also present unique challenges in
machining due fo their heterogeneous structure and
anisotropic nature [12, 13, 14]. This issue leads fo
unpredictable tool-material interactions, making
machining difficult fo optimise, hence causing
delamination, fibre pull out and thermal damage to
composites. For instance, drilling glass fibre-based
composites could accelerate rapid tool wear because
of the abrasive nature of the material [15, 16].
Researchers have been working to address these
challenges by introducing process optimisations
tailored to the unique demands of composite
materials [17]. Several well-known techniques, such as
high-speed machining, ulirasonic-assisted machining,
laser-assisted machining, and abrasive water jet
machining, have been applied to improve machining
efficiency and quality. As a result, tool wear and
surface defects can be reduced. Likewise, innovations
in tool materials and coatings, such as polycrystalline
diamond (PCD) [18] and coated carbide tools [19],
are widely used to withstand the high abrasiveness
and thermal sensitivity of compo-sites. The aim, once
again, is to extend tool life and enhance
performance.

Lately, the integration of artificial inteligence into
composites machining has become increasingly
popular. This has led to a new area of research focus,
the integration of data-driven methods. Machine
learning and artificial inteligence are widely used to
optimise machining parameters and predict tool wear
and material behaviour [20, 21].

There are many advantages to the machine
learning approach. For instance, this approach
enables real-time adjustments, reduces trial-and-error,
and minimises defects, which is particularly valuable
for complex geometries and  high-precision
applications.  Additionally, sustainable machining
practices, including cryogenic cooling and minimum
quantity lubrication (MQL), are gaining traction tfo
reduce the environmental impact of composite
machining and improve workplace safety [22]. Current
research includes an innovative longitudinal-torsional
ultrasonic cryogenic cooling created with a focus on
environmental sustainability [23]. This system includes a
novel mechanical structure to enhance both the
amplitude of longitudinal-torsional ultrasound and the
efficiency of heat dissipation. Additionally, a high-
power cryogenic cooling device utilising a vortex tube
was developed by researchers, and a distinctive
wireless power supply system was employed, enabled
the formulation of a design approach for integrating
multiple transducers with a single longitudinal-torsional
composite hollow horn.

Although numerous papers have been published
on the integrafion of Al and ML in composites
machining, comprehensive reviews in this area remain
relatively scarce. This paper provides a comprehensive
review of recent advances in composite material
machining, focusing on Al driven solutions. It examines
the latest developments in composite material
machining, highlighting ML application in process
parameter optimization, and the integration of
automation and smart manufacturing concepts fo

address the integral challenges of machining
composites.

Unlike most previous reviews, which focus mainly on
conventional machining challenges and

improvements, our review extensively explores the
infegration of Al and machine learning (ML) fo
optimize machining parameters, predict tool wear,
and improve process efficiency.
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While prior studies have examined Al in general
composite machining, they rarely discuss its real-time
implementation. Additionally, our review introduces
Digital Twin technology, where Al-driven simulations
predict and optimize machining conditions before
physical trials. This review also explores the role of
Explainable Al (XAl) in ensuring transparency in
machining parameter selection.

Figure 1 shows a growing inferest in composites

machining research, especially from 2015-2024, with a
peak in recent years.
The trend indicates that composites machining s
becoming an increasingly popular area in materials
science and engineering. Despite minor fluctuations,
this upward trajectory highlights the field's growing
importance in modern manufacturing and materials
science.
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Figure 1 Number of publications from 2015 to 2024 using the
keywords ‘’'machining of composites’’ obtained from Web of
Science

2.0 COMPOSITE MATERIALS

A composite is a material made by combining two or
more distinct materials, typically resulting in properties
that surpass those of its individual components. In the
case of polymer composites, which are the focus of
this paper, the matrix is commonly combined with
fibres to facilitate load transfer, resulting in a material
that is both lightweight and strong [24]. Another type
of composite family commonly found in industries
includes metal matrix composites and ceramic matrix
composites. Their applications are prevalent in the
energy, automotive, aerospace, and medical sectors.

In addition to being lightweight and strong,
composite materials offer several other advantages,
including corrosion and fatigue resistance, excellent
thermal stability, and an outfstanding strength-to-
weight ratio [25, 26]. These additional properties make
them suitable for electronics and construction [27, 28,
29, 30].

Composites can be manufactured through several
processes. Common methods employed are hand lay-
up, autoclave moulding, compression moulding,
pultrusion, and filament winding. These processes
enable the fabrication of composite parts that are
tailored to their near-net shape, underscoring the

versatility and capabilities inherent to this material
class. To achieve excellent surface quality and
dimensional accuracy, machining processes such as
turning, milling, and drilling are employed. Additionally,
selecting the appropriate tool geometry, cutting
speed, and feed rate is crucial in machining. These
choices ensure a good surface finish, maintain
dimensional accuracy, minimise tool wear, manage
excessive heat and stress during machining, and, most
importantly, prevent defects. However, due fo
heterogeneous and anisotropic characteristics of
composite materials, machining these materials can
lead to various problems. These include including
delamination, hole shrinkage, and fibre pull-out.

2.1 Types of Composite Materials

Composites combine diverse elements, capitalizing on
their strengths while ad-dressing weaknesses [31]. By
optimizing, designers break free from traditional
mafterials, using customizable, stronger, and lighter
options tailored fo requirements. This flexibility enables
complex, cost-effective, and superior solutions when
reimagining designs with composites. Composites
typically have a two-phase structure, with a matrix
material containing dispersed particles or fibres [32].
Figure 2 depicts composite materials, which are
divided info three main categories: Polymer Matrix
Composites (PMCs), Metal Matrix Composites (MMCs),
and Ceramic Matrix Composites (CMCs) [33,34]. Each
type of composite has specific subtypes based on the
maftrix material used, such as glass, carbon, aluminium,
magnesium, silicon carbide, and zirconia [35].

2.2 Polymer Matrix Composites (PMCs)

Polymer composites use strong, stiff fibres embedded
in a polymer matrix. The fibres carry most of the load,
but the maitrix is crucial as it bonds the fibres together,
distributes forces evenly, and transfers loads to the
fiores [36]. Additionally, the matrix material's
characteristics significantly influence the composite's
properties. Therefore, the performance of the fibres,
matrix, and their interface directly impacts the overall
composite performance. Comprising a polymeric
matrix, often derived from thermoset or thermoplastic
resins, these materials incorporate reinforcing fibres like
glass, carbon, or aramid [37, 38]. The unparalleled
design and processing versatility of polymer matrix
composites has made them highly advantageous and
invaluable across a wide range of diverse sectors, from
automotive and aerospace to sports equipment and
marine  applications. These composites  offer
exceptional flexibility and adaptability, allowing for
tailored solutions and enabling innovative
developments in numerous industries.

*Glass Fibre Reinforced Polymer (GFRP): GFRPs are
strong, lightweight, and resistant to corrosion and
impact [39]. They are widely used in the construction
industry, automotive parts, and consumer goods [40,
41, 42, 43].



138 Mohd Shahneel Saharudin et al. / Jurnal Teknologi (Sciences & Engineering) 88:1 (2026) 135-154

eCarbon Fibre Reinforced Polymer (CFRP): CFRPs
offer exceptional strength, stiffness, and lightweight
properfies, making them highly suitable for ap-
plications where high performance is crucial, such as
aerospace compo-nents, high-end automotive parts,
and sporting goods [44].

¢ Aramid Fibre Reinforced Polymer (AFRP): Known for
their high toughness and impact resistance, AFRPs are
often used in ballistic applications, protective gear,
and aerospace [45].

2.3 Metal Matrix Composites (MMCs)

Metal matrix composites consist of a metal matrix—
such as aluminum, magnesium, or titanium—reinforced
with materials like ceramics (silicon carbide, aluminum
oxide) or fibres (carbon) [46]. The addition of these
reinforcements enhances the mechanical and
thermal properties of the base metal, improving its
stfrength, wear resistance, and performance at high
temperatures [47]. MMCs are primarily used in ap-
plications where high strength, thermal conductivity,
and wear resistance are required, such as in
automotive brake components, aerospace structures,
and electronic packaging.

e Aluminum Matrix Composites: Known for their
lightweight properties and improved strength,
aluminum-based MMCs are widely used in the aero-
space and automotive industries for parts like engine
components and structural parts [48, 49].

*Magnesium Matrix Composites: Magnesium MMCs
offer excellent strength-to-weight ratios and are
commonly used in applications where weight
reduction is critical, such as in the automotive and
defense industries [50].

*Titanium Matrix Composites: Due to their high
strength, corrosion re-sistance, and thermal stability,
fitanium MMCs are often used in demanding
aerospace applications, including turbine blades and
airfframe components [51, 52, 53].

2.4 Ceramic Matrix Composites (CMCs)

Ceramic matrix composites are composed of a
ceramic matrix—such as silicon carbide, alumina, or
zirconia—reinforced with fibres, typically carbon or
ceramic fibres. CMCs are valued for their ability o
withstand exiremely high temperatures, chemical
stability, and resistance to wear, which makes them
suitable for applications in high-stress environments.
They are commonly used in the aerospace, defence,
and energy sectors, particularly in applications such as
turbine blades, heat shields, and engine components
where fraditional metals would fail under high heat
and stress.

Silicon Carbide Composites: Known for their high
strength, thermal shock resistance, and oxidation
resistance, silicon carbide-based CMCs are commonly
used in high-temperature applications, such as gas
turbines and engine components [54].

*Alumina Composites: Alumina-based CMCs offer
excellent wear resistance and chemical stability,

making them ideal for use in chemical processing
equipment and medical implants [55, 56, 57].

eZirconia Composites: With superior foughness and
thermal stability, zirconia composites are used in
applications requiring both high thermal resistance
and durability, including cutting tools and biomedical
applications [58, 59, 60].

2.5 Hybrid Composites

Hybrid composites combine two or more types of
reinforcing fibres or matrices to enhance specific
properties [61, 62, 63, 64]. For instance, combining
carbon and glass fibres within a polymer matrix can
balance the cost and weight benefits of glass fibres
with the high strength and stiffness of carbon fibres.
Hybrid composites are increasingly used in high-
performance and cost-sensitive applications across
industries like automotive, aerospace, and sports
equipment. In summary, each type of composite
material offers unique advantages suited to specific
environments and functional requirements. Through
judicious selection of matrix and reinforcement
components, engineers can create materials
optimised for performance under specific operational
stresses, enabling  applications  requiring  high
performance, durability, and weight efficiency.

Types of
composites
materials
|

|
Metal matrix

[
Polymer matrix

Ceramic matrix|
composites composites composites
(PMCs) (MMCs) (CMCs)
la br arbon Fibre Aluminium Magnesium
Reinforcec Reinforced Matrix Matrix
[Polymer (GFRP) illPolymer (CFRI Composites Composites
“:" il Titanium Matrix
- -:. Composites
Figure 2 Main catfegories of composite materials

[65,66,67,68,69]

3.0 MACHINING CHALLENGES IN POLYMER
COMPOSITE MATERIALS

The general methodology of machining process is
outlined in Figure 3. This flowchart provides a structured
approach fo machining operations, ensuring
efficiency, precision, and quality in manufacturing.
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Figure 3 Machining process workflow

Despite the advantages of composite materials,
there are significant challenges associated with their
machining processes. Unlike homogeneous metals,
composite materials are inherently heterogeneous
and anisofropic, with properties that depend on the
direction and distribution of their fibres and matrix
components. As a resulf, conventional machining
methods offen encounter difficulties that can

compromise the efficiency of manufacturing
processes and the quality of the machined
components.  Figure 4 shows the challenges

associated with composites machining.

A key challenge faced when machining composite
materials is the problem of layer separation, known as
delamination. This is a common issue with fibre-
reinforced composites, where the individual layers can
start to peel apart under the mechanical forces
encountered during drilling or milling, especially at the
points where the tool enters and exits the material.

Delamination is one of the most critical challenges
encountered in the machining of composite materials
due to their layered structure and anisofropic
properties. Delamination refers to the separatfion of
composite layers at the fibre-matrix interface, leading
to structural weakness, poor surface integrity, and
reduced mechanical performance. This phenomenon
commonly occurs in driling, miling, and furning
operations, particularly  when machining fibre-
reinforced polymer composites (FRPs) such as carbon
fibre-reinforced polymers (CFRPs) and glass fibre-
reinforced polymers (GFRPs). The core challenge lies in
the complex interplay between the cutting tool and
the composite's fibre-maitrix interface, which can give
rise to uneven cutting forces and ultimately lead to the
undesirable separation of the individual layers. The
wide variety of composite materials contributes to
uneven cutting forces during machining, with each
type requiring specific cutting parameters to address
this issue effectively. To address delamination,
researchers have developed specialized cutting tools,
backing support, and process optimizations. The use of
step drills and brad & spur drills can reduce cutting
forces and distribute loads more evenly, thereby
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minimizing entry and exit delamination. The
application of polycrystaline diomond (PCD) and
diamond-coated tools is also effective in reducing tool
wear and preventing excessive mechanical damage.
Sacrificial backing plates can be used on composite
materials to absorb exit forces and prevent push-out
delamination. Lastly, process parameter optimization,
including lower feed rates and higher cutting speeds,
is effective in reducing thrust forces that confribute to
delamination.

Composite materials containing abrasive fibers like
GFRP (Glass Fibre Reinforced Polymer) or CFRP
(Carbon Fibre Reinforced Polymer) often cause rapid
wear on cufting tools and thermal damage. These
fibers are typically harder than the primary matrix
material, leading to significant damage and wear on
standard cutting tools. As a result, tool lifespan is
reduced, dimensional accuracy declines, and
production costs increase. Furthermore, the machined
composite component may exhibit other adverse
outcomes, including diminished dimensional precision,
inferior surface quality, and fibre pullout, which can
stem from the defrimental effects on cutting
efficiency.

Another issue in composite machining is the
thermal challenge posed by infense heat generated
from high-speed cutting, which can damage the
polymer matrix. Unlike metals, which dissipate heat
quickly, composite materials have poor thermal
conductivity. This results in localized heat exposure,
leading to degraded mechanical properties in those
areas. To address this, researchers have suggested
methods like cryogenic cooling and minimum quantity
lubrication (MQL) to target the cutting area. However,
these solutions can significantly increase overall
processing costs. In addition, there are concerns
regarding air pollution and the challenges associated
with lubricant disposal. The additives in lubricants are
hazardous fo the environment and can lead fo long-
term pollution. To address this issue, vegetable oils are
increasingly being used as biodegradable and
sustainable alternatives to petfroleum-based
metalworking fluids (MWFs) in machining operations.
They offer non-toxic, renewable lubrication while
maintaining effective cooling and chip removal. To
enhance the performance of vegetable oils and MQL
systems, nanomaterials have been infroduced as
additives to improve their tribological properties,
thermal  stability, and lubrication  efficiency.
Nanoparticles such as Al,Oz;, MoS,, TiO,, graphene,
and carbon nanotubes (CNTs) are incorporated into
vegetable oils, forming hybrid nano-lubricants that
exhibit superior heat dissipation, anti-wear
characteristics, and friction reduction. These nano-
lubricants create a protective boundary layer at the
tool-workpiece interface, reducing cutting forces, tool
wear, and surface roughness.

Due to their inherent heterogeneity, composites do
not behave uniformly during machining, making it
challenging to optimise machining parameters. This is
where machine learning algorithms can be applied to
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predict optimal parameters, providing an efficient
alternative to the traditional trial-and-error approach,
which is both fime-consuming and reliant on manual
adjustments.

In summary, machining is evolving towards more
sustainable practices to protect the environment and
reduce health risks for workers. While the use of
biodegradable lubricants is becoming increasingly
popular, it does not address all the associated
challenges. In addition, techniques such as cryogenic
cooling and minimum quantity lubrication (MQL) are
being applied to reduce heat and tool wear,
supporfing both efficiency and sustainability in
machining processes but these methods also have
limitations and do not solve all challenges associated
with the composites machining process. Emulsion
coolant expenses including production, usage, and
disposal can represent as much as 15% of total
manufacturing costs  [70]. This has spurred the
advancement of more sustainable options, such as
minimum quantity lubrication (MQL) and sub-zero
cooling methods that utilise liquefied gases like
nitrogen (LN2) or carbon dioxide (LCO?2).

Challenges in
Composites
Machining
Cost and complexity Delamination
-Expensive advanced -Layer separation
techniques -Reduced structural
-High operational integrity
complexity
Tool wear
Environmental -Abrasive fibres
concerns -Frequent tool
-High energy usage replacement
-Extensive lubricant
requirements Surface defects
-Fibre pull-out
Heterogeneity & -Poor dimensional
Anisotropy accuracy
-Uneven material
behaviour Thermal sensitivity
-Difficult parameter -Localised heat
optimisation -Matrix degradation

Figure 4 List of challenges associated with composites
machining [70]

4.0 RECENT ADVANCES IN MACHINING
TECHNIQUES FOR COMPOSITE MATERIALS

In the past decade, numerous studies have reported
significant advances in machining techniques. Key
among these advancements are high-speed
machining,  ultrasonic-assisted  machining,  laser-
assisted machining, and abrasive water jet machining.
Each of these methods contributes uniquely to
overcoming specific machining challenges posed by
composites.

High-Speed Machining (HSM) is increasingly
popular for its potential to improve material removal

rates and surface quality in composite machining.
Babu et al. specified high-speed machining as 10,000-
15,000 rom and very high-speed machining as 15,000-
50,000 rpm [71]. The transition ranges are 8,000-12,000
rom (low to high speed) and 12,000-20,000 rom (high
to very high speed) [72].

By operating at higher spindle speeds and feed
rates, HSM minimizes heat generation, which is critical

since composites typically have low thermal
conductivity. This method, however, demands
advanced, high-cost machinery and careful

optimization of cutting parameters to avoid issues like
tool wear and delamination, especially in materials like
carbon fibre-reinforced polymers (CFRPs). Although
this method is a popular approach in machining, it
often results in undesirable vibrations, particularly when
working with flexible fibre materials. Future research
should focus on mitigating this issue to enhance tool
lifespan and machining quality [73].

Workpiece materials exhibit different dynamic
behaviours during high-speed machining compared
to their static properties due to the high loading rate.
Chip morphology evolves from continuous to serrated
and fragmented as cutting speed increases, which is
linked to the variation in material dynamic properties.
Ultra-high-speed machining in the brittle regime can
reduce cutting energy consumption by over 19%
compared to high-speed machining in the ductile
regime [74].

High-speed machining can produce varied surface
characteristics compared to lower-speed machining
[75]. Specific ranges of high cutting speeds can result
in fewer surface defects and lower surface roughness,
though the optimal speed depends on the workpiece
material, cutting method, and tool used. HSM can also
cause severe plastic deformation, leading to an
ultrafine grain layer and phase changes on the
machined surface. As cutting speed increases, larger
compressive residual stresses may develop deeper in
the subsurface due to greater plastic deformation.
However, a thin superficial layer can exhibit very high
tensile residual stresses, potentially causing issues in
service. Optimising the cutting speed is necessary fo
balance the surface quality parameters. Slamani et al.
analysed the cutting forces, surface roughness, and
delamination during slotting tests on FFRP composite
materials, revealing that fibre orientation significantly
affects cufting forces, defects, and surface quality,
with 90° orientation providing the best surface finish
and feed rate being the most influential cutting
parameter [76]. In case of composites machining, the
equation for delamination factor can be expressed as
follow.

Fo=Dmax/Do “) [77]
Where Fp (delamination factor), Dmax (maximum
delamination diameter) and Do (hole diameter)

The cutting force can be reduced within the HSM
speed range, due to thermal softening from chip
plastic  deformation, which weakens material
resistance. Brittle fracture of the removed material can
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also help keep the cutting force low when reaching
the ultra-high-speed machining range. The tool-chip
friction coefficient tends to decrease as cutting speed
increases. Severe fool wear under the exireme
conditions of HSM is a critical challenge for industrial
application. Understanding tool wear behaviour and
mechanisms can guide the design and fabrication of
cutting tools suitable for HSM and recommend
appropriate tools for specific workpiece materials [78,
79]. Figure 5 illustrates the development and adoption
of high-speed machining (HSM), highlighting significant
advancements in speed, material removal rates, and
application capabilities from 1820 to 2010. The
following equation describes the correlation involving
cutting speed (V) and tool life (T). This can be written
as:

VTn=C (2) [80]

» Low speed 2™_Manual
» Poor quality machine
»> High cost tool

(1920)

15-First
milling
machine

L. >

<<2000
(m/ mm)>> <10 >> 30~50
(cc/mm)>> =1 10~20

APP Nonmetallic Soft metallic and non-
material metallic materials

Conventional speed
machining

Range>> Lok §p§ed >>
machining

Where V (cutting speed), T (tool life) n, C (Constants
dependent on material and machining conditions)
HSM  has been successfully deployed in
manufacturing  various mechanical components,
offering advantages for removing large volumes of
material. Advancements in ulfra-hard cutting tools
have enabled higher speed ranges to be used
industrially [81, 82]. However, the development of
advanced engineering materials with greater strength
and toughness presents further challenges for high-
speed machining applications [83]. The current
research focuses on opfimising fool geometry,
developing more advanced lubricants, and designing
innovative materials for cutting tools. The primary goal
is to enhance durability and performance when
machining composites in demanding environments.

3rd.CNC
machine
tool

»> High speed
> High quality
> Low cost

4th.CNC + high
speed electro-
spindle

(1980)

Hard materials and
material removal vo

Most metallic an
non-metallic mate

> High speed machB

Ultra-high speed
machining

Figure 5 High-speed cutting development and use. Note: (CNC-Computer Numerical Control, RPM-revolutions per minute, CS-

cutting speed, MRR-material removal rate, APP-application) [74]

Ultrasonic Assisted Machining (UAM) has evolved
significantly over the last 60 years, building on the
concept infroduced as early as 1927 and patented in
1945 [84]. UAM applies ultrasonic vibrafions to
conventional machining, enhancing efficiency and
reducing residual stress on the workpiece’s surface,
particularly beneficial for brittle materials [85]. While
early ultrasonic machining was limited by low material
removal rates and primarily used for finishing,
advances in ulfrasonic transducers and tool design

have broadened its aqpplication across various
machining processes [86, 87, 88].

One important method in UAM is Conventional
Ultrasonic Machining (USM) [89]. It relies on abrasive
slurry impacts to shape brittle materials, and UAM itself,
which integrates high-frequency vibrations directly into
fraditional machining operations like turning, milling,
and drilling. In UAM, vibration can be applied either to
the cutting tool (Actuated Tool System, ATS) or the
workpiece (Actuated Work System, AWS), creafing a
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cyclical tool-workpiece interaction that enhances
material removal efficiency. As illustrated in Figure 6,
the vibrations result in a cyclic four-step movement,
known as approach, contact, immersion, and

withdrawal, at the cutting tip. This enhances cutting
precision and extends tool lifespan by reducing
continuous tool-workpiece contact. This advancement
in ulfrasonic machining represents a significant
breakthrough in processing hard-to-machine materials
[20].

Feeding 4= Tool Vibration «™

Tool

Workpiece

(2) Approach

(b) Contact () Immersion (d) Back Off

Figure 6 Essential fool movement in a vibration cycle [921]

Laser-Assisted Machining (LAM) uses laser heating
to enhance machining of hard, brittle materials [92]. It
has two main approaches which include pre-heat
LAM and in-situ LAM [93]. In pre-heat LAM, a laser
softens the workpiece surface before it contacts the
cutting tool, improving material removal in processes
like turning, milling, and grinding [94, 95, 96]. Research
shows that factors like laser power and scan speed
significantly influence surface quality and tool wear in
materials like hardened steel and fused silica. In
confrast, in-situ LAM directly heats the cutting zone in
real-time, ideal for ulfra-precision machining with
diamond tools [?97]. By focusing the laser on the
contact point between the tool and workpiece, in-situ
LAM enhances ductility, allowing for smoother cuts in
materials. This method increases the ductile-brittle
transition (DBT) depth, enabling more ductile removal
and reducing residual stress. Studies on in-situ LAM of
glass-ceramics have explored optimization of cutting
parameters to lower cutting forces, employing
methods like response surface methodology (RSM)
and arfificial neural networks (ANN) for parameter
prediction. In-situ LAM offers improved efficiency,
reduced machining costs, and higher surface quality
for challenging materials like thermoset and
thermoplastic composites. Figure 7 illustrates a laser-
assisted machining process (LAM). This is a two-step
process for creating a final hole using mechanical
drilling. The first step involves machining a pilot hole,
either by laser machining (red dashed line) or a
conventional drilling tool, followed by the second step,
where a larger drill (blue dashed line) is used to
complete the final hole. By using LAM, lower cutting
forces are required during the machining operation,
and tool life can be extended; however, the laser can
damage the polymer matrix. Additionally, the laser
tends to create a heat-affected zone, which can alter

the mechanical properties of the composite, making it
undesirable for the manufactured products or
components.

Step 2 - Mechanical drilling

Step 1 - Machining pilot hole

Pilot hole drilled

by laser machining
(red dash line) g

Pilot hole machined

by drilling tool

(red dash line)

Final hole cut by 10mm drill(blue dash linc)

Figure 7 Schematic of laser assisted machining (LAM) [98]

The Abrasive Water Jet Machining (WJM) process is
shown in Figure 8. This fechnique has emerged as a
versatile and advanced method suitable for a wide
range of materials, including polymer composites. It is
also suitable for small-batch production and rapid
prototyping. This technique operates as a hybrid
mechanism that combines water jet machining (WJM)
and abrasive jet machining (WJM). It offers
advantages such as precise cutting with minimal heat,
prevention of thermal distortion, and preservation of
material integrity. In the WJM process, high-speed
abrasive particles such as silicon carbide or aluminium
oxide, erode material surfaces without generating
heat, making it a “cold” machining method. WJM’s
flexibility, low power requirement, and durability make
it an ideal choice for materials with complex
geometries or those sensitive to heat [99,100,101,102].
Key components of WIM systems include a
compressor, mixing chamber, nozzle, and pressure
gauge, which together allow precise control over
cutting, achieving high-quality results across diverse
materials.
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Figure 8 lllustration of water jet machining [103]

5.0 APPLICATIONS OF ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING IN
COMPOSITES AND MACHINING

Artificial Intelligence (Al) enables machines to perform
tasks intelligently, incorporating human-like
psychological skills such as perception, association,
prediction, planning, and motor control, with diverse
information processing capabilities [104, 105, 106].
Within this field, machine learning (ML) is a subfield that
explores algorithms and statistical models enabling
computer systems to perform specific tasks, such as
classification, regression, and clustering, without
explicit programming [107, 108, 109].

Table 1 highlights the increasing reliance on
machine learning (ML) and artificial intelligence (Al)
for machining composite materials. Among the
prevalent methods, Artificial Neural Networks (ANNs)
dominate due to their predictive accuracy in
modelling complex relationships, such as machining
parameters and surface  quality.  ANNs are
computational models inspired by biological neural
systems, capable of learning complex pafterns by
adjusting connections and weights between neurons
to minimise errors, typically through backpropagation.
They are particularly effective in modelling complex
data, predicting outcomes, and optimising processes.
Recent literature increasingly highlights their efficiency
and reliability in tasks such as image recognition,

speech processing, and especially modelling and
optimising infricate manufacturing processes.
ANN variations, such as Levenberg-Marquardi (LM)

| and Particle Swarm Optimization (PSO), demonstrate
| adaptability for opfimisation tasks in  water jet

machining, furning, and drilling. These approaches
effectively address challenges like delamination and
tool wear.

Other advanced techniques like Gradient Boosting
Machines (GBM), Random Forests (RF), and Support
Vector Machines (SVMs) are applied fo specific
scenarios, especially driling and tfurning of fibre-
reinforced composites, to enhance parameter
prediction and process stability. The use of newer
approaches, such as Long Short-Term Memory (LSTM)
and Convolutional Neural Networks (CNNs), highlights
an interest in real-time, explainable predictions and
optimisation.

Despite the increasing trend in the application of

AI/ML in composites machining, the inherent
complexity of composite materials remains a
significant challenge. Accurately modelling the

anisotropic and heterogeneous properties associated
with  composite materials is particularly difficult.
Another major issue arises with the availability of high-
quality, diverse datasets required for ftraining ML
models, as recent research has reported that such
datasets are often limited or expensive to obtain.
Additionally, machine learning models, such as deep
learning, may be overfit, to small or specific datasets
reduces their generalisability to broader scenarios.

Despite their utility, simpler algorithms like Linear
Regression (LR) and Decision Trees (DT) are sfill widely
used, often in combination with statistical methods like
Response  Surface  Methodology  (RSM).  This
demonstrates a trade-off between computational
simplicity and predictive capability. On the positive
side, AI/ML techniques can significantly enhance
machining accuracy, reduce trial-and-error costs, and
contribute to sustainable practices. However, from our
review, the choice of a suitable algorithm remains
critical for effectively addressing material-specific
challenges. Figure 9 depicts the distribution of various
modelling techniques used by researchers. Each
segment represents a specific method, with the
dominant portion illustrating the use of Artificial Neural
Networks (ANN).
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machine learning

Recent development in  composites and  machining/simulation  integrated  with  arfificial  or
Composite Type Machining Cutting Tool ML Algorithm/Remark Year and Ref.
Operation
Hybrid bio- Drilling Carbide -Response Surface Methodology (RSM) 2024 [110]
composites (Nettle
and Grewia) -Arfificial Neural Networks (ANNSs)
CFRP Abrasive Abrasive -Artificial Neural Networks (ANNs) 2024 [111]
Water Jet particle
(Garnet)
Polyethylene- Turning Diamond- -ANN model with a 3-6-1 structure 2024 [112]
terephthalate-glycol shaped optimized via the Levenberg-Marquardt
(PETG) cutting inserts  (LM) fraining algorithm
CFRP/AI203/SiC Drilling (twist PVD coated -Arfificial Neural Networks (ANNs) - 2024 [113]
drill, step drill, Random Forest (RF)
and core
drill)
Jute-basalt/epoxy Turning Carbide -Gradient Boosting Machine (GBM) 2024 [114]
-Adaptive Boosting (AdaBoost)
-Extreme Gradient Boosting (XGBoost)
Hylbrid fibre- Water jet Water jet -Response Surface Methodology (RSM) 2024 [115]
reinforced polyester ~ machining
-Artificial Neural Network (ANNs)
NFRP Orthogonal Wedge- -Convolutional Neural Network (CNN) 2024 [116]
cutting shaped -Explainable machine learning approach
(XML)
Jute/rattan epoxy Drilling High speed -Support Vector Machine (SVM) 2024 [117]
steel and -Random Forest (RF)
carbide (HSS)
Banana fibre- Water jet Abrasive -Utilised Artificial Neural Network (ANNs) 2024 [118]
reinforced epoxy particle -Long Short-Term Memory (LSTM)
composites infused (garnet)
with alumina
GFRP Drilling High Speed -Linear Regression (LR), Decision Tree (DT), 2023 [119]
Steel (HSS) AdaBoost Decision Tree Regressor, XGBRF
Regressor
GFRP Drilling High Speed -An Artificial Neural Network (ANNs). 2023 [120]
Steel (HSS)
-Optimization was performed using a
Genetic Algorithm (GA)
GFRP Drilling Carbide -Artificial Neural Networks (ANN) 2023 [121]
enhanced by a Particle Swarm
Optimization (PSO) algorithm
GFRP Milling Carbide -Response Surface Methodology (RSM) 2023 [122]

used to model and optimize machining
parameters.
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Composite Type Machining Cutting Tool ML Algorithm/Remark Year and Ref.
Operation
-An Artificial Neural Network (ANNs) model
was developed, using a Back Propagation
(BP) approach, and was shown to perform
better than RSM for predicting machining
force during milling.
Glass Laminate Drilling Carbide -Multiple linear regression, a supervised 2022 [123]
Aluminium machine learning (ML) model, was
Reinforced Epoxy applied to predict thrust force based on
(GLARE) driling parameters.
GFRP Drilling Carbide -LR (Linear Regression) 2022 [124]
(twist, slot,
spur)
CFRP Milling Carbide -Artificial Neural Network (ANNs) 2022 [125]
WGFRE Drilling Carbide -A Hybrid ANN-PSO (Particle Swarm 2022 [126]
Optimization) model was employed to
predict and optimize drilling parameters,
focusing on forque and delamination
factor outcomes.
-Response Surface Methodology (RSM)
was also used alongside ANNs-PSO to
establish a correlation between drilling
parameters and process responses
CFRP Turning Polycrystalline  -Fuzzy logic 2022 [127]
diamond
(PCD) -Artificial neural network (ANNs)
(HDPE reinforced Drilling High-speed -Response Surface Methodology (RSM) 2022 [128]
with Washingtonia steel (HSS) and Artificial Neural Network (ANNs)
filifera fiber coated with models
Titanium
Nitride (TiN)
CFRP Electrical Copper -A Grey Relational Analysis (GRA) 2022 [129]
Discharge electrode in approach was utilized for multi-quality
Machining EDM analysis.
(EDM) using
aluminum as -An Artificial Neural Networks (ANNSs)
a fixture model was implemented and trained
plate for using experimental datasets to predict
guiding the hole quality atfributes like circularity, taper,
electrode material removal rate, and tool wear rate.
GFRP Turning Tungsten -Artificial Neural Network (ANNs) model 2022 [130]
carbide was developed for estimating cutting
force and surface roughness during the
turning of GFRP.
CFRP Edge Polycrystalline  -Stafistical model 2021 [131]
frimming diamond
(PCD)
Graphite-epoxy Drilling Noft specified  RNN (Recurrent Neural Network) 2021 [132]

laminate
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Composite Type Machining Cutting Tool ML Algorithm/Remark Year and Ref.
Operation
GFRP CO2 Laser COz Laser -Artificial Neural Network (ANNs) with a 3- 2021[133]
Micro-Milling  with variable  6-6-3 architecture
beam
diameters
NFRP Orthogonall Polycrystaline  -Random Forest (RF) 2020 [134]
cutting diamond
(PCD)
CFRP Drilling Tungsten -The study used statistical analysis and 2020 [135]
carbide- empirical modelling (ANOVA, regression
cobalt models) to relate drilling parameters to
outcomes like thrust force and torque.
Aramid/Phenolic Milling High Speed -k-nearest neighbour (kNN) 2019 [136]
Steel (HSS) -Decision Trees (DT)
-Support Vector Machine (SVM)
Aramid/phenolic Milling High Speed -k-nearest neighbour (kNN) 2018 [137]
Steel (HSS) -Decision Tress (DT),
-Support Vector Machine (SVM)
CFRP Abrasive Waterjet with  -Adaptive Neuro-Fuzzy Inference System 2017 [138]
Waterjet garnet (ANFIS)
Machining abrasive
UD-CFRP Orthogonal Carbide -Artificial Neural Network (ANNs) 2016 [139]
Cutting -Radial Basis Function (RBF)
CFRP Helical Miling  Tungsten -Arfificial Neural Networks (ANNs) with 2016 [139]
carbide back-propagation (BP) learning algorithm
CFRP Drilling Carbide -Logical Analysis of Data (LAD) 2015 [140]
CFRP Helical Miling  Tungsten -Artificial Neural Network (ANNs) with 2014 [141]
carbide back-propagation learning, used for
predicting delamination
GFRP End Milling Cemented -Artificial Neural Network (ANNs) with 2013 [142]
carbide end Levenberg-Marquardt (LM) learing
mills (2, 3, 4 algorithm
flutes)
Woven Graphite Drilling Carbide -Logical Analysis of Data (LAD) 2012 [143]
Epoxy
CFRP Drilling, Tungsten -Artificial neural network (ANNs) 2011 [144]
milling Carbide, PCD
CFRP End milling Carbide -Committee Neural Networks (CNNs) was 2010 [145]
developed to predict specific cutting
energies (Kc and Kt) for orthogonal
cutting, which was then applied to helical
milling.
GFRP Turning Polycrystalline  -The study used Digital Image Processing 2009 [146]

Diamond
(PCD)

(DIP) techniques to evaluate surface
roughness by analysing images captured
during machining.
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Composite Type Machining Cutting Tool
Operation

ML Algorithm/Remark Year and Ref.

PEEK with 30% Turning Cemented
Carbon Fibre Carbide

CFRP Drilling Core drill with
diamond grit

GFRP Turning Cermet

UD-FRP Milling Carbide

CFRP Drilling Carbide-
tipped ftwist
drills

-A second-order quadratic model was
developed using Response Surface
Methodology (RSM) to predict surface
roughness (Ra) based on machining
parameters.

-The average gray scale value (Ga) from
images was correlated with Ra values,
showing a strong relationship useful

-ANNs with Error Back-Propagation 2008 [147]
Algorithm

-Taguchi Method used for optimizing 2007 [148]
drilling parameters to reduce thrust force

and surface roughness rather than a

direct Al or ML model

-Arfificial neural networks (ANNs) 2006 [149]
-RSM
-The study utilized non-linear regression 2005 [150]

and Committee Neural Networks (CNNs)
to model cutting forces in FRP materials.

-No specific Al algorithm, the following 2000 [151]
sensors were used for real-time feedback

(Acoustic emission sensors, vibration

sensors, force sensors)

35%

12%

m Artificial Neural Network (ANNs) m Response Surface Methodology (RSM)
Random Forest (RF) m Gradient Boosting Machine (GBM)

® Support Vector Machine (SVM) Convolutional Neural Networks (CNNs)

u Long Short Term Memory (LSTM) m Linear Regression (LR)

m Decision Tree (DT) m Adaptive Boosting (AB)

m Fuzzy Logic (FL) m Grey Relational Analysis (GRA)

m k Nearest Neighbour (kNN) m Logical Analysis of Data (LAD)

Figure 9 Different type of machine learning and the
distribution from this review

6.0 ASSESSING CURRENT ADVANCES

Each of the composite machining tfechniques
discussed has confributed to improvements in how
these materials are processed. However, several

weaknesses remain that need fo be addressed, such
as issues with vibration and delamination. High-speed
machining, for instance, is offen considered
economically unviable when the total costs are
considered.  Similarly,  while  ultrasonic-assisted
machining successfully mitigates heat generation
and fool wear, the high fooling costs remain
unavoidable.  Additionally, achieving precise
parameter control is challenging. Laser-assisted
machining offers excellent accuracy, but it requires
careful management of thermal effects to prevent
damage to the polymer matrix. Lastly, water jet
machining necessitates post-processing because the
rough edges produced by this method are
unsatisfactory, despite its well-known versatility.

While there are currently no perfect composite
machining techniques, research in this field has
shown promising progress. Future studies are
expected to incorporate hybrid machining methods,
which involve the simultaneous combination of
several machining techniques. Hoghoughi et al. for
instance, [152] evaluates the sustainability of hybrid
machining using linear and pit-shaped fool textures
with PTFE solid lubricants. This study was focusing on
energy consumption, carbon emissions, production
rate, cost, and operator health/safety. It was found
that a linear textured tool in dry machining conditions
was identified as the most sustainable option. The
highest Sustainability Index (52.5) was achieved due
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to its balance of environmental, economic, and
social benefits.

Mahbub et al. [153] explores hybrid and sequential
machining processes, combining conventional and
non-conventional techniques like EDM, ECM, and
laser machining to enhance precision, productivity,
and surface quality for hard-to-machine materials. By
integrating methods such as vibration assistance and
powder mixing or sequencing EDM with ECM. It was
found that significant improvements in machining
efficiency, tool life, and surface integrity were
observed.

Kumar et al. [154] studied miling process of
graphene/carbon/epoxy nanocomposites. The study
utilised a hybrid optimisation method combining the
Grey Relational Analysis (GRA) and Principal
Component Analysis (PCA) techniques to optimise
multiple conflicting machining responses (material
removal rate, cutting force, and surface roughness).
By utilising a grey-PCA hybrid optimisation method,
optimal parameters (cutting speed, feed, depth of
cut, and graphene content) were identified,
demonstrating a notable enhancement in machining
quality and productivity, with MRR increasing from
3.793 mm3/min to 17.64 mm3/min and surface
roughness improving from 1.120 um to 0.750 um.
Additionally, the implementation of machine learning
and data analytics is anficipated to reduce reliance
on ftraditional methods for optimizing machining
parameters. Real-time data monitoring  during
machining processes will provide better insights,
allowing for more accurate real-fime data
processing with the assistance of these techniques.
Despite the various techniques developed and
innovated in composite machining, there is still
significant  room for improvement, particularly
regarding quality and efficiency. Each machining
technique relies on finding the right balance
between cost, precision, and the desired material
properties. Research is ongoing, especially in hybrid
machining. With advancements in the field, hybrid
machining techniques and data-driven research will
undoubtedly be the focal point for the next five
years.

7.0 RESEARCH GAPS AND FUTURE RESEARCH

From our review, we found that hybrid machining is
emerging as a highly promising research area for
enhancing the  efficiency, accuracy, and
sustainability of composite material machining.
Conventional machining fechniques, such as miling
and drilling, often face limitations such as excessive
tool wear, delamination, and heat-induced defects,
which reduce the quality and reliability of machined
composite  components.  Future research in
composite  machining should focus on hybrid
machining techniques that combine the benefits of
various processes, such as ultrasonic-assisted laser
machining and cryogenic water jet cufting, fo

address key challenges, including delamination, tool
wear, and surface roughness. Implementing
adaptive Al-driven control systems for real-time
adjustments of machining parameters could further
enhance process efficiency, especially when working
with  materials that have complex, anisotropic
properties. Advancements in machine learning,
particularly deep learning, hold promise for
improving predictive modeling of fool wear and
surface quality. Incorporating explainable Al (XAl)
intfo these models can clarify the impact of specific
variables. For instance, fibre orientation and cutting
speed on machining ouftcomes, enabling more
precise parameter optimization.

Another promising avenue is the integration of
digital twins, which are virtual models that simulate
and predict machining performance in real-time.
Combined with machine learning, digital twins could
optimize composite machining in a simulated
environment before actual production, reducing
frial-and-error and enhancing accuracy.

Sustainable  approaches are also  crucial.
Developing Al algorithms that minimize resource
usage and emissions could help meet global
environmental targets, reducing the ecological
footprint of composite manufacturing. Current trends
in Al and machine learning in composite machining
focus on defect detection, material property
optimization, and improved design processes. These
technologies are poised to fransform the field,
providing unprecedented insights and efficiencies
that will lead to more accurate and sustainable
manufacturing processes.

8.0 CONCLUSIONS

In conclusion, machining composite materials
presents three main challenges: thermal sensitivity,
tool wear, and delamination. Various approaches
have been employed to address these issues,
including ulfrasonic-assisted machining and water jet
machining. Despite these advancements, several
limitations remain. Firstly, most machining techniques
require specialised equipment with high operational
costs, limiting their adoption in smaller manufacturing
setups. Secondly, while Al-driven models show
promise in opfimising machining parameters, their
effectiveness depends on high-quality fraining data,
which is often limited due to the complexity and
variability  of  composite materials.  Thirdly,
environmental concerns, such as coolant disposal
and energy-intensive processes, remain a challenge.

Interdisciplinary collaboration among materials
scientists, Al specialists, and engineers is crucial for
developing customized machining strategies, such as
Al-opfimized cutting tools for specific composites. The
integration of explainable Al promotes transparency,
allowing engineers to better understand machining
parameters and build trust in Al-driven technologies.
Future studies should focus on sustainable machining
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approaches, optimising resource efficiency, lowering
emissions, and enhancing workplace safety. Hybrid
machining, combining laser-assisted and ultrasonic-
assisted techniques, offers a promising solution fo
issues like tool degradation and thermal effects.
Furthermore, Al-powered sensor systems can enable
real-time adaptive machining.

While cryogenic cooling and other alternative
solutions show potential, each approach has trade-
offs in cost, complexity, and material compatibility.
As composite applications expand, research should
continue refining these techniques and exploring
hybrid approaches that leverage multiple machining
stfrengths. These efforts will be vital in improving
efficiency, quality, and unlocking the broader
potential of composite materials in high-performance
sectors.
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