
 
88:1 (2026) 165−189|https://journals.utm.my/jurnalteknologi|eISSN 2180–3722 |DOI: 

|https://doi.org/10.11113/jurnalteknologi.v87.24026| 
 

 
Jurnal 
Teknologi 

 
 Full Paper 

  

 

  

 

SENSOR FUSION TECHNOLOGY ADVANCEMENT 
IN GPS-AIDED LOCALIZATION FOR 
AUTONOMOUS MOBILE ROBOTS: A 
COMPREHENSIVE SURVEY  
 
Vita Susantia,b, Mohd Saiful Azimi Mahmuda*, Roni Permana Saputrab 
 
aFaculty of Electrical Engineering, Universiti Teknologi Malaysia, 
81310, UTM Johor Bahru, Johor, Malaysia 
bResearch Center for Smart Mechatronics, National Research and 
Innovation Agency, Bandung, 40135, Indonesia 
 

Article history 
Received  

24 December 2024 
Received in revised form  

8 April 2025 
Accepted  

9 April 2025 
Published Online  

23 December 2025 
 
*Corresponding author 

azimi@utm.my 

 

Graphical abstract 
 

 

Abstract 
 
Autonomous technology enables mobile robots to perform multiple functions, 
including navigation, decision-making, and automatic control, using sensors 
and advanced software. Localization, a key element of navigation, involves 
determining mobile robots’ precise location and orientation. As most of the 
outdoor robots utilize Global Positioning System (GPS)-based data to navigate, 
this study surveys advancements in GPS (Global Positioning System)-assisted 
localization for autonomous mobile robots focusing on sensor fusion 
technology. The methodology includes collecting and analyzing papers from 
2018 to 2024 using keywords such as GPS accuracy improvement, autonomous 
navigation, outdoor localization, autonomous vehicle, and autonomous 
mobile robot. The classification and examination of the chosen papers offer a 
comprehensive overview of the advantages and disadvantages of sensors 
and methods used to improve GPS accuracy, and the evaluation of these 
sensors and methods to identify the optimal solution available. Notably, several 
sensor fusion approaches have demonstrated substantial improvements, for 
instance, reducing localization errors from 79 to 3.7 meters which thereby 
highlighting the study’s practical significance. The findings also indicate that 
visual sensors and fiducial markers are potential options to mitigate GPS signal 
loss, advanced filtering algorithms provide better accuracy and reliability, and 
real-time adaptive systems improve performance under various conditions, 
ensuring more reliable navigation. The integration of sensor fusion and 
advanced algorithms will provide significant technological progress in 
autonomous systems and intelligent environments.  
 
Keywords: GPS accuracy, outdoor localization, sensor fusion, sensor 
integration, autonomous mobile robot, localization algorithm 

 
Abstrak 
 
Teknologi autonomi membolehkan robot mudah alih melaksanakan pelbagai 
fungsi, termasuk navigasi, membuat keputusan dan kawalan automatik, 
dengan menggunakan pelbagai penderia dan perisian lanjutan. 
Penyetempatan, elemen utama navigasi, melibatkan penentuan lokasi dan 
orientasi tepat robot mudah alih. Menurut kajian terdahulu, kaedah 
Correntropy Kalman Filter (CKF) meningkatkan ketepatan GPS sebanyak 34%. 
Oleh itu, kajian ini meninjau kemajuan dalam penyetempatan berbantu GPS 
(Global Positioning System) untuk robot mudah alih autonomi yang 
memfokuskan pada teknologi gabungan sensor. Metodologi termasuk 
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1.0 INTRODUCTION 
 
The development of autonomous mobile robots 
(AMRs) has advanced significantly over the past few 
decades, driven by the increasing demand for 
intelligent systems capable of navigating and 
performing tasks in complex environments. One of the 
fundamental aspects of autonomous vehicles and 
robots is the ability to accurately determine their 
position and orientation within a given space, known 
as localization. Effective localization is crucial for 
deploying AMRs in various applications, including 
industrial automation, search and rescue operations, 
agricultural robotics, and urban mobility solutions [1]. 

GPS is a commonly used navigation sensor to 
determine location and direction in advanced vehicle 
and mobile robot systems [2], [3]. Originally developed 
to enhance military tactics, GPS relies on data from 
satellite to provide two or three-dimensional 
positioning on Earth. It operates through a 
constellation of satellites that transmit signals to GPS 
receivers, enabling accurate location determination. 
The accuracy of the determined position improves 
with the number of satellites used in the analysis [4], [5]. 
Typically, a GPS receiver tracks multiple satellites, 
although the actual number may vary depending on 
the time and geographical location. 

While GPS offers advantages in global positioning, it 
also faces limitations, particularly in regions with poor 
satellite visibility. Positional inaccuracies of 10 to 15 
meters are common, which can hinder precise 
navigation [6]. Additionally, GPS signals are often 
weak or unavailable in indoor environments or densely 
populated areas with tall buildings [7] [8], leading to 
challenges for AMRs navigating in such conditions [9]. 
Therefore, these limitations highlight the need for 
complementary technologies to enhance GPS 
accuracy and reliability. 

This study addresses the research problems concerning 
the limitations of GPS and the need for supplementary 
sensors.  What sensors can improve GPS precision? 
Sensor fusion techniques have been utilized to improve 
the accuracy of GPS-based localization and resolve 
these difficulties. In this technique, a GPS-aided 
localization system combines the GPS data with 
additional information from other sensors such as 
inertial measurement units (IMUs), inertial navigation 
systems (INS), magnetometers, LiDAR (Light Detection 
and Ranging), and radar [10] [11]. Sensor fusion 
integrates data from multiple sources to reduce 
uncertainty, minimize environmental interference, and 
improve the accuracy and reliability of localization 
systems [12],  [13], [14],  [15]. By leveraging sensor 
fusion, AMRs can maintain precise trajectories towards 
stationary or moving targets, even with minimal prior 
knowledge of their surroundings. This integration 
compensates for the weaknesses of standalone GPS 
systems, ensuring robust and accurate localization. 

This study differs from existing literature in [16] by 
providing a detailed comparison of the sensor fusion 
technologies and methodologies for enhancing GPS 
accuracy. It evaluates the benefits and drawbacks of 
various sensor combinations and identifies the most 
effective approaches for improving localization 
accuracy in AMRs. 

This paper aims to provide a comprehensive survey 
of the advancements in GPS-aided localization for 
autonomous mobile robots focusing on sensor fusion 
technology. It explores state-of-the-art techniques, 
discusses the integration of multiple sensors, and 
highlights the ongoing efforts to overcome the 
inherent limitations of GPS technology. By investigating 
various methodologies and their effectiveness in 
enhancing localization accuracy, this survey seeks to 
offer significant insights into the current state of 
autonomous vehicle and robot navigation. 

mengumpul dan menganalisis kertas kerja dari 2018 hingga 2024 
menggunakan kata kunci seperti peningkatan ketepatan GPS, navigasi 
autonomi, penyetempatan luar, kenderaan autonomi dan robot mudah alih 
autonomi. Pengelasan dan pemeriksaan kertas yang dipilih menawarkan 
gambaran menyeluruh tentang kelebihan dan kekurangan penderia dan 
kaedah yang digunakan untuk meningkatkan ketepatan GPS, dan penilaian 
penderia dan kaedah ini untuk mengenal pasti penyelesaian optimum yang 
tersedia. Terutamanya, beberapa pendekatan gabungan sensor telah 
menunjukkan peningkatan yang ketara, contohnya, mengurangkan ralat 
penyetempatan daripada 79 kepada 3.7 meter—dengan itu menonjolkan 
kepentingan praktikal kajian. Penemuan juga menunjukkan bahawa penderia 
visual dan penanda fidusia merupakan pilihan yang berpotensi untuk 
mengurangkan kehilangan isyarat GPS, algoritma penapisan lanjutan 
memberikan ketepatan dan kebolehpercayaan yang lebih baik, dan sistem 
penyesuaian masa nyata meningkatkan prestasi dalam pelbagai keadaan, 
memastikan navigasi yang lebih dipercayai. Penyepaduan gabungan sensor 
dan algoritma lanjutan akan memberikan kemajuan teknologi yang ketara 
dalam sistem autonomi dan persekitaran pintar. 
 
Kata kunci: Ketepatan GPS, penyetempatan luar, gabungan sensor, 
penyepaduan sensor, robot mudah alih autonomi, algoritma penyetempatan 
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Additionally, it proposes potential topics for future 
research and improvement, aiming to advance the 
reliability and precision of autonomous systems in 
diverse environments.  

The contributions of this study can be further outlined 
as follows: 
1. Comprehensive Review of GPS-Aided Localization 

Technologies: This study provides an extensive 
review of the current GPS-aided localization 
technologies employed in autonomous mobile 
robots. The review covers various methodologies, 
their applications, and the advancements in 
enhancing GPS accuracy for better navigation 
and localization performance. 

2. Evaluation of Sensor Combinations: The study 
evaluates the effectiveness of different sensor 
combinations in enhancing GPS accuracy—
including an in-depth analysis of how integrating 
multiple sensors, such as IMUs, LiDAR, and cameras, 
can improve the overall localization accuracy and 
reliability of autonomous systems. 

3. Assessment of Advanced Techniques: A critical 
assessment of advanced techniques such as 
Kalman filters, AI-based methods, and Bayesian 
approaches is conducted to identify the most 
effective methods for improving GPS accuracy. The 
study compares these techniques based on their 
performance, computational efficiency, and 
practical applicability in real-world scenarios. 

4. Identification of Challenges and Limitations: The 
study identifies the existing challenges and 
limitations in the current GPS-aided localization 
technologies. It highlights the areas where further 
research and innovation are needed, providing a 
roadmap for future studies to address these gaps 
and enhance the capabilities of autonomous 
mobile robots. 
This paper is further organized to provide a 

comprehensive exploration of GPS-aided localization 
for autonomous mobile robots. Section 2 details the 
survey methodology, including bibliometric analysis 
that explains research performance, identifies trends 
and research impacts in the field of GPS improvement, 
and the literature study that explains the approach 
used to compile and analyze the most relevant 
literature. Section 3 provides an overview of current 
GPS localization technologies, highlighting key 
innovations and challenges specific to autonomous 
mobile robot applications. Section 4 examines auxiliary 
sensors that enhance GPS accuracy, exploring the 
critical role and interplay with GPS data. Section 5 
focuses on sensor fusion techniques, illustrating how 
multiple sensors are combined to create robust and 
precise localization systems. Section 6 outlines future 
directions and potential gaps in GPS-aided 
localization, offering insights into emerging trends and 
research opportunities. Finally, Section 7 concludes 
with the key findings of this study. 
 
 
 

2.0 METHODOLOGY 
 
The methodology applied in this literature review 
integrates bibliometric analysis with a systematic 
approach to collecting, filtering, and analyzing 
research papers relevant to GPS-based accuracy 
within the domain of navigation, localization, vehicles, 
and outdoor robotics. The bibliometric analysis offered 
valuable insights into the evolving research trends and 
highlights areas of increasing academic interest 
related to GPS technologies. In this study, the 
bibliometric approach provided a broad overview of 
research trends regarding GPS technologies and 
applications without requiring extensive filtering. 

During the literature review phase, the inclusion 
and exclusion criteria, presented in Table 1, were 
systematically applied. These criteria, guided by the 
research question “Which sensors and methods 
enhance GPS accuracy, and how do these sensors 
and methods compare to identify the optimal choice 
for improving GPS accuracy?” involved a structured 
evaluation of titles, abstracts, and full texts to ensure 
relevance to the research subject. An explicit 
exclusion criterion was the elimination of review 
papers, which ensured that the final selection 
consisted exclusively of research articles published in 
peer-reviewed journals and conference proceedings.  
All selected publications addressed development, 
simulation, and experimentation related to GPS 
accuracy improvements. 
 

Table 1 Inclusion and exclusion criteria 
 

Selection Criteria 
Inclusion Peer reviewed 

Technical field 
Publication of 2018 – 2024 
Academic publications (journal and 
conference proceedings) 

Exclusion Review articles 
Non-English language publications 
Inaccessible articles 

 
 

The selection of publication data from 2018 to 2024 
ensured that the review reflected the most recent 
technological development and trends in sensor fusion 
and GPS accuracy enhancement techniques.  
Moreover, publications from this period were readily 
accessible, ensuring the relevance and currency of 
the review. Figure 1 illustrates the literature collection 
process for obtaining papers relevant to the research 
focus. During the identification stage, a vast amount of 
data was gathered—using predetermined 
keywords—covering a wide range of topics. Then, 
further filtering processes were implemented to refine 
these data and acquire relevant literature by including 
specific terms such as GPS, IMU, INS, and odometry, as 
this research also focuses on using these sensors. 
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Figure 1 Literature collection process 
 
 
2.1 Bibliometric Analysis 
 
Before commencing the more in-depth literature 
survey, a bibliometric analysis was conducted, as it is a 
useful method for objectively assessing academic 
work and offering a comprehensive representation of 
the research topic [17].  

Bibliometric analysis provides a comprehensive 
understanding of the progression and trends of 
research related to the subject area under 
investigation. For the purpose of this investigation, the 
Web of Science database was utilized, employing the 
following keywords: "GPS accuracy improvement," 
"autonomous mobile robot," "autonomous navigation," 
"autonomous vehicle," "enhanced GPS," "localization 
algorithm," "outdoor localization," "sensor fusion," and 
"sensor integration." The search query produced a total 
of 20,614 academic documents—including articles, 
conference papers, review articles, and early-access 
publications—published between 2018 and 2024. 
Then, these documents were exported into the RIS 
format for further analysis. The metadata extracted 
from these documents were subsequently analysed 
using VOSviewer, with a keyword occurrence 
threshold of 20. This threshold was selected to simplify 
visualization by ensuring only terms appearing more 
than 20 times were included, resulting in a 
manageable dataset of 813 keywords out of an initial 
43,701. The implementation of this approach 
guarantees that only terms exhibiting a sufficiently high 
frequency are considered, hence facilitating the 
identification of significant research patterns and 
simplifying the visualization process. 
 

 
Figure 2 VOSviewer network visualization 

 
 

Figure 2 presents seven clusters, each represented 
by a distinct color. The nodes with the largest size 
indicate the most frequently occurring terms in the 
analyzed documents. The dominant keywords 
frequently employed in academic literature are 
"sensor fusion," "autonomous vehicle," "localization," 
"navigation," "autonomous navigation," "system," 
"model," and "deep learning." Table 2 summarizes 
selected keywords that are closely associated with the 
current research under investigation. The visual size of 
the nodes correlates with the frequency of keyword 
occurrence, notably evident in keywords such as 
"sensor fusion," "autonomous vehicle," "navigation," 
and "localization." 
 

Table 2 Keywords mapping 
 

Keywords Occurrences Total link strength 
sensor fusion 3,116   12,251  
autonomous 
vehicle 

3,458 13,730 

navigation 1,054     5,489  
autonomous 
navigation 

             1,076     3,503  

localization 1,269     5,074  
outdoor 
localization 

                 31          86  

system 978     4,637  
model                  810     3,764  
deep learning                 799    3,187  
mobile robot                 597     2,567  
autonomous 
mobile robot 

               273        819  

gps                 197        865  
global 
positioning 
system 

                  97        747  

accuracy                 126        646  
sensor 
integration 

           162     282  

kalman filter 785     4,139  
extended 
kalman filter 

               248     1,071  
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This paper specifically explores "GPS accuracy 
improvement," emphasizing the keywords "GPS or 
global positioning system" and "accuracy."  

Figure 3 illustrates varying thicknesses of the labels 
for "accuracy" and "GPS" nodes, suggesting the 
frequency of use in the analysed documents. This 
analysis is also highlighted in Table 2, where the 
keywords "GPS" and "accuracy" appear only 197 and 
126 times, respectively. Figure 4 illustrates the 
connection between the "GPS" node and the 
concurrent "sensor fusion," "navigation," "localization," 
and "GNSS" nodes, highlighting the use of GPS sensors 
as one of the employed sensors in research areas 
related to sensor fusion, navigation, and localization 
systems. Figure 5 further indicates stronger usage of 
GPS sensors in navigation compared to localization, as 
visually depicted by the thicker label for GPS in the 
navigation network versus the localization network 
(Figure 6). 
 

 
 

Figure 3 Visualization of GPS and accuracy labels 
 

 
 

Figure 4 GPS network 
 

 
 

Figure 5 Navigation network 
 

 
 

Figure 6 Localization network 
 

 
 

Figure 7 Accuracy network 
 

 
 

Figure 8 Current trend in GPS research (retrieved August 20, 
2024) 
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Figure 7 highlights the association between "accuracy" 
and "sensor fusion" nodes, suggesting strong 
correlations between sensor fusion research and the 
accuracy of the employed sensors. Nevertheless, the 
lack of a direct connection between "accuracy" and 
the "GPS" indicates that investigations related to GPS 
rarely encompass an assessment of the accuracy of 
GPS sensors. This finding identifies a significant research 
gap, emphasizing opportunities for future 
investigations into "GPS accuracy improvement." 

Figure 8 presents a statistical pattern from 
academic publications related to the aforementioned 
keywords, specifically focusing on the enhancement 
of GPS accuracy. The observed trend has exhibited a 
consistent upward trend over the years, suggesting 
that further investigation into enhancing GPS 
accuracy remains highly promising. The data analysis 
reveals that 63% of the publications are academic 
journals, while 37% are conference proceedings. 
Moreover, most of the research comprises 98% 
technical publications, whereas review articles 
constitute a mere 2% of the total. 
 
2.2 Literature Study 
 
The following outline clearly describes the steps 
undertaken to ensure a comprehensive and focused 
literature review, as well as highlighting the key 
contributions of the study:  
 
A. Literature Search and Collection 
 
The first step involves an extensive literature search to 
collect relevant research papers. This process 
included: 

1. Keywords Identification: The keywords used for 
the search were "GPS accuracy improvement," 
"autonomous mobile robot," "autonomous 
navigation," "autonomous vehicle," "enhanced 
GPS," "localization algorithm," "outdoor 
localization," "sensor fusion," and "sensor 
integration." These keywords were specifically 
selected to cover a broad spectrum of research 
areas within the scope of GPS accuracy in 
autonomous systems. 

2. Databases and Sources: The search used multiple 
academic databases, including IEEE Xplore, 
Google Scholar, Scopus, and Web of Science. 
These databases provided access to a wide 
range of peer-reviewed journals and conference 
proceedings. 

3. Initial Search Results: The initial search yielded a 
large number of papers. These documents were 
then further screened based on titles and 
abstracts to assess their relevance to the topic of 
GPS accuracy improvement. 
 

B. Filtering and Selection 
 
A refined selection process was then applied to the 
initial pool of papers to specifically identify research 

addressing methods for improving GPS accuracy. The 
steps included: 

1. Relevance Screening: Abstracts and conclusions 
were carefully examined to eliminate papers that 
did not directly address GPS accuracy 
enhancement within the targeted contexts. 

2. Full-Text Review: The remaining papers underwent 
a full-text review to assess their contributions to 
the field. Only those that provide significant 
insights, methodologies, or experimental results 
related to GPS accuracy enhancement were 
included in the final selection. 
 

C. Data Categorization and Analysis 
 
The selected papers were categorized and analysed 
to provide a structured overview of the current 
research landscape: 

1. Publication Type: 
o Academic Journals: 58% of the collected 

papers are from academic journals. These 
papers undergo rigorous peer-review 
processes, ensuring high-quality and reliable 
contributions. 

o Conference Proceedings: 42% of the papers 
are from conference proceedings. 
Conferences often present the latest research 
findings and emerging trends, making them a 
valuable source of current information. 

2. Research Type: 
o Development: 8% of the papers focus on 

developing new technologies, algorithms, or 
systems to improve GPS accuracy. These 
contributions often include innovative 
approaches and theoretical advancements. 

o Simulation: 27% of the papers use simulation 
methods to model and test various hypotheses 
or systems related to GPS accuracy. 
Simulations provide a controlled environment 
for evaluating the effectiveness of different 
approaches. 

o Experiment: 65% of the papers are based on 
experimental research. These studies provide 
empirical data and practical insights by 
testing GPS accuracy improvements in real-
world conditions or controlled experiments. 
 

D. Temporal Analysis 
 
Following initial keyword-based filtering, additional 
filtering was performed to specifically analyse research 
papers focused on GPS enhancement in mobile 
robots using sensor fusion, as shown in Table 3. This 
temporal analysis helps to identify research trends, 
advancements, and changes in research focus over 
time. Understanding the temporal distribution of 
research can highlight periods of increased interest or 
significant breakthroughs in the field of GPS accuracy 
for autonomous systems. 
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Table 3 Publications across the year 
 

Year Number 
of Papers References 

2018 13 [7], [18], [19], [20], [21], [22], [23], [24], 
[25], [26], [27], [28], [29]. 

2019 12 [9], [30], [31], [32], [33], [34], [35], [36], 
[37], [38], [39], [40], [41]. 

2020 14 [6], [42], [43], [44], [45], [46], [47], [48], 
[49], [50], [51], [52], [53], [54], [16]. 

2021 13 [55], [56], [57], [58], [59], [60], [61], [62], 
[63], [64], [16], [65], [66]. 

2022 16 [67], [68], [69], [70], [71], [72], [73], [74], 
[75], [76], [77], [78], [79], [80], [81], [82]. 

2023 19 [8], [83], [84], [85], [86], [87], [88], [89], 
[90], [91], [92], [93], [94], [95], [96], [97], 
[98], [99], [100]. 

2024 20 [13], [101], [102], [103], [104], [105], [106], 
[107], [108], [109], [110], [111], [112], 
[113], [114], [115], [116], [117], [118], 
[119]. 

 
 
3.0 CURRENT GPS LOCALIZATION 
TECHNOLOGIES FOR AUTONOMOUS MOBILE 
ROBOTS 
 
Localization refers to the process of accurately 
determining the position of an object within a 
predefined coordinate reference system utilyzing 
specialized technologies and methodologies, such as 
sensors, signal processing or sensor fusion. This 
capability is essential for tasks involving navigation, 
identification, or mapping in autonomous system. 
Localization is frequently employed in advance 
vehicle and mobile robot systems to precisely 
determine the whereabouts of vehicles or mobile 
robots.  

Localization algorithms typically leverage sensor-
derived measurements, including distance and 
bearing relative to known reference points (commonly 
referred to as anchors or beacons), to estimate the 
robot's or vehicle’s position [120]. These anchors or 
beacons possess globally established coordinates and 
serve as fixed reference points for localization process.  

Localization techniques can be broadly classified 
into two categories [121]: geometric and non-
geometric approaches. Geometric approaches rely 
on spatial measurements such as distance, angles, or 
positional relationships with reference points to 
determine an object's relative position. Conversely, 
non-geometric methods use non-geometric data to 
determine position or location, such as radio signals, 
sensor data, image processing, fiducial markers, or 
advanced data analysis techniques.   

GPS-based localization is a technique that uses 
data from the Global Positioning System (GPS) to 
accurately determine an object's location [122]. GPS 
offers notable benefits for robots [6], [7], [8], [83], [67], 
allowing them to navigate precisely even with limited 
knowledge of their surroundings. The location data 
provided by GPS is also vital for tracking vehicle or 
mobile robot movements in real-time. Additionally, the 

ability of robots to transmit their location through 
wireless signals facilitates effective remote monitoring 
and control. Although GPS has various advantages, it 
also has major limitations, including the possibility of 
losing GPS signals in heavily populated regions with tall 
structures and inherent positional inaccuracies. 
Consequently, integrating supplementary sensors is 
often necessary to refine GPS localization accuracy 
and mitigate these limitations. 

This section reviews the state-of-the-art GPS-aided 
localization technologies and methodologies utilized in 
autonomous mobile robots. 

Standard GPS: Geographical coordinates and time 
information are transmitted via satellites via the Global 
Positioning System (GPS), which operates regardless of 
the weather and in close proximity to any location on 
Earth. Standard GPS operates using a constellation of 
at least 24 satellites that orbit the Earth, transmitting 
signals to GPS receivers on the ground [123]. These 
receivers use the time delay between when a signal is 
sent and received to calculate the distance from 
multiple satellites and determine the precise location. 
Figure 9 illustrates the diagram of GPS constellation 
and signal transmission. 
 

 
 

Figure 9 Standard GPS works (adopted from [124]) 
 
 

The accuracy of standard GPS is often limited to 10-
15 meters due to various sources of error [6]. 
Atmospheric disturbances, such as ionospheric and 
tropospheric delays, can affect the speed of the GPS 
signals as they travel through the Earth's atmosphere. 
Multipath effects occur when GPS signals bounce off 
buildings or other structures before reaching the 
receiver, causing inaccuracies. In urban environments, 
non-line-of-sight (NLOS) signals caused by reflections 
from tall buildings remain a major source of positioning 
errors. A GPS receiver requires signals from at least four 
satellites to determine for accurate location 
determination. However, signals from NLOS satellites 
reflected by tall buildings can increase the pseudo-
range, the estimated distance between the satellite 
and the GPS receiver, leading to errors in positioning 
[104]. Additionally, satellite clock inaccuracies and 
orbital errors contribute to the overall error margin. 
Despite these limitations, GPS remains a foundational 
technology for many localization systems, providing a 
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global frame of reference and supporting a wide 
range of applications from navigation to timing 
services. 

Differential GPS (DGPS): DGPS enhances the 
accuracy of standard GPS by using a network of fixed 
ground-based reference stations [125]. These stations 
are located at known positions and the difference 
between their true location and the location indicated 
by the GPS satellites is calculated. The reference 
stations then broadcast this correction data to DGPS 
receivers, which use the information to correct their 
GPS signals. This process significantly reduces errors, 
achieving an accuracy of 1-3 meters. Figure 10 
illustrates the DGPS system that can give positional 
correction and better accuracy than standard GPS. 

DGPS is particularly useful in applications where 
higher precision is required. Agriculture benefits from 
DGPS for precision farming techniques, such as 
planting and harvesting crops with minimal overlap or 
gaps [126]. Marine navigation uses DGPS for safe and 
efficient vessel navigation in crowded or hazardous 
waters [127]. Additionally, DGPS is used in surveying, 
where precise measurements are crucial for mapping 
and construction projects. By improving GPS data 
accuracy, DGPS helps autonomous mobile robots 
navigate more reliably and perform tasks with greater 
precision. 
 

 
 

Figure 10 DGPS illustration (adopted from [128]) 
 
 

Real-Time Kinematic (RTK) GPS: RTK GPS provides 
centimetre-level accuracy by using carrier-based 
ranging and correction signals from a fixed base 
station [129], [130]. The RTK system comprises a base 
station and one or more rover units. The base station 
remains at a known, fixed position and broadcasts the 
carrier wave phase that the GPS satellites use. The 
mobile rover unit receives these signals from the base 
station and the satellites. By comparing the phase of 
the carrier wave from the base station with the phase 
received directly from the satellites, the rover can 
determine its position with high precision. Figure 11 
illustrates the RTK-GPS system. 
 

 
 
Figure 11 The idea behind RTK GPS surveying (adopted from 
[131]) 

 
 
RTK GPS is widely used in applications requiring high 

precision. Construction projects benefit from RTK GPS 
for tasks such as grading and excavation, where 
accurate positioning is critical. Surveying uses RTK GPS 
to create highly detailed and accurate maps and to 
lay out property boundaries. Precision agriculture 
employs RTK GPS for automated steering systems on 
tractors and other equipment, enabling precise 
planting, fertilizing, and harvesting.  

Despite its high-level accuracy in localization 
systems, RTK systems also come with several 
disadvantages, including: 
• Infrastructure Requirements: RTK requires a 

network of base stations to provide correction 
signals, which can be costly and complex to set 
up and maintain, especially in large or remote 
areas. 

• Line-of-Sight Dependency: RTK performance relies 
on a clear line of sight between the base station 
and the rover receiver. Obstructions such as 
buildings, trees, or terrain can interrupt the 
correction signal, reducing accuracy. 

• High Cost: RTK systems are generally more 
expensive than standard GPS receivers, which 
can be a barrier to widespread adoption, 
particularly in cost-sensitive applications. 

• Data Transmission: RTK systems require a reliable 
data link between the base station and the rover 
receiver to transmit correction data. This 
requirement can be challenging in areas with 
poor coverage or during network outages.  

• Susceptibility to Interference: RTK signals can be 
affected by radio frequency interference and 
atmospheric conditions, which can degrade 
performance and reliability. 

Integrating these advanced GPS-aided localization 
technologies—standard GPS, DGPS, and RTK GPS—into 
autonomous mobile robots significantly enhances their 
navigation and operational capabilities. Each 
technology addresses specific limitations of standard 
GPS, providing varying levels of accuracy suitable for 
different applications. 
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In the next section, a comprehensive evaluation of 
various sensor combinations commonly used to aid 
GPS localization and their effectiveness in enhancing 
GPS accuracy will be presented. This includes an 
analysis of how these sensor combinations work 
together to overcome GPS's inherent limitations, 
thereby ensuring more reliable and precise localization 
for autonomous mobile robots in diverse environments. 
 
 
4.0 AUXILIARY SENSORS FOR IMPROVING 
GPS ACCURACY 
 
Various sensors can be integrated with GPS 
technology to enhance the accuracy of GPS-based 
localization for autonomous mobile robots. These 
sensors provide additional data that can be fused with 
GPS signals to correct errors and improve overall 
positioning accuracy. This section explores the 
commonly used sensors and their roles in enhancing 
GPS accuracy. 

LiDAR, RADAR, ultrasonic sensors, and cameras are 
the primary sensors employed in autonomous mobile 
robots to enhance object recognition accuracy and 
localization. However, the detection, localization, and 
positioning capabilities of these individual systems are 
inadequate when used alone  [132]. As a result, it is 
necessary to integrate these sensors with navigation 
and motion measurement sensors to improve the 
accuracy of position estimates and provide essential 
data for navigation purposes.  

LiDAR (Light Detection and Ranging) [133]: LiDAR 
sensors use laser pulses to measure distances to 
surrounding objects, creating detailed 3D maps of the 
environment. A LiDAR system initiates the sensing 
process by generating laser pulses towards a specified 
location. When these pulses encounter barriers, they 
reflect a fraction of their emitted light to the LiDAR 
sensor. By calculating the duration of each laser pulse 
and leveraging the constant speed of light, LiDAR 
determines the distance to the target [134]. This 
technology is highly accurate, reaching centimetre-
level accuracy  [135] and can operate in various 
lighting conditions, making it an excellent sensor to be 
fused with GPS for both outdoor and indoor 
navigation. LiDAR provides high-resolution data that is 
critical for detecting and avoiding obstacles, mapping 
the environment, and performing precise localization. 
In addition, using LiDAR is also strongly recommended 
for precision measurements over long distances. 
However, LiDAR systems can be expensive and 
computationally intensive [136] and high-power 
consumption [137], requiring efficient processing 
algorithms to handle the large volumes of data 
generated.  

RADAR [138]: RADAR sensors emit radio waves and 
measure the time it takes for the waves to bounce 
back from objects, providing information about the 
object's distance and relative speed. RADAR is 
particularly useful in adverse weather conditions, such 
as fog, rain, or snow, where optical sensors like 

cameras and LiDAR might struggle. RADAR's ability to 
penetrate certain obstacles and its robustness to 
environmental conditions make it a valuable addition 
to GPS for enhancing localization accuracy. However, 
RADAR typically offers lower resolution than LiDAR, 
necessitating the integration of multiple sensors for 
comprehensive environmental perception. 

Ultrasonic Sensors: Ultrasonic sensors use sound 
waves to detect objects and measure distances, 
making them ideal for short-range obstacle detection 
and avoidance. They are commonly used in 
applications such as parking assistance and low-speed 
manoeuvring. Ultrasonic sensors are relatively low-cost 
and can operate in various lighting conditions [139]. 
However, their range and resolution are limited, and 
they are primarily effective for detecting large, solid 
objects rather than fine details in the environment. 

Cameras [140]: Cameras capture visual information 
about the environment and are widely used for object 
recognition, tracking, and navigation. When 
combined with GPS, camera data can enhance 
localization by providing visual cues and landmarks 
that help correct GPS errors. Visual SLAM (Simultaneous 
Localization and Mapping) algorithms use camera 
data to build and update maps of the environment in 
real-time, offering precise localization even in GPS-
denied areas. Cameras are relatively low-cost and 
provide rich environmental information, but their 
performance can be affected by lighting conditions 
and require significant computational resources for 
image processing. 

Inertial Measurement Units (IMUs) [141]: IMUs consist 
of accelerometers and gyroscopes that measure 
linear acceleration and angular velocity, respectively. 
Another type of IMU is the Micro-Electro-Mechanical 
Systems Inertial Measurement Unit (MEMS-IMU), which 
uses MEMS technology to produce miniature sensors. 
The MEMS-IMU is extensively utilized in military and 
civilian applications due to its compact size, 
affordability, robust autonomy, and comprehensive 
navigation data [35]. The Inertial Navigation System 
(INS) integrates data from an IMU with sophisticated 
algorithms to deliver uninterrupted location and 
velocity estimates. These systems are beneficial in GPS-
denied environments, such as tunnels or indoor areas. 
IMUs provide high-frequency data that can help 
bridge the gaps between GPS updates, particularly 
useful in environments where GPS signals are weak or 
intermittent. However, IMUs suffer from drift over time, 
leading to cumulative errors if not corrected by other 
sensors, such as GPS or magnetometers. INS can 
correct long-term drift in IMU measurements by 
integrating GPS data, offering a more stable and 
accurate localization solution. Advanced inertial 
navigation system (INS) implementations frequently 
include Kalman filters to effectively merge data from 
many sources, hence improving the overall precision 
and dependability of the navigation system [142]. 

Odometry: Odometry uses data from wheel 
encoders to estimate the distance mobile robots 
travel. It is a valuable short-term position estimation 
tool and particularly useful in structured environments 
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like warehouses or factories. Odometry is essential for 
robot navigation. It provides relative movement data 
that can complement GPS by filling in the gaps 
between GPS updates [134]. However, it is susceptible 
to errors due to wheel slippage, uneven terrain, and 
other factors affecting wheel-ground contact [143]. 
Integrating odometry with GPS helps mitigate these 
errors and improves overall localization accuracy. 
 
 
5.0 IMPROVEMENT OF GPS BASED 
LOCALIZATION USING SENSOR FUSION 
 
Even though GPS provides significant benefits for 
autonomous robot localization—especially in terms of 
global coverage and ease of integration—its reliability 
can be compromised by signal loss, multipath effects, 
and inaccuracies in dense urban areas.  To address 
these limitations and improve GPS accuracy, 
integration with additional sensors becomes essential.  
Sensor fusion, which combines data from various 
sensors, has potential to improves overall precision, 

corrects errors, and provides more robust positioning 
across diverse environments. 
 

5.1 Sensor Combinations Used in Autonomous 
Navigation 
 

Table 4 summarizes various sensor combinations 
commonly used in autonomous navigation, 
emphasizing their respective benefits and drawbacks. 
In the following discussion, these methods are 
compared more directly, with illustrative real-world 
applications explicitly mentioning their limitations, 
computational considerations, and deployment 
requirements. 

The integration of GPS with various sensors—such as 
IMU, MEMS-IMU, odometry, INS, ultrasonic, and LiDAR—
enables the development of advanced navigation 
capabilities with exceptional precision in localization. 
Nevertheless, each sensor combination is associated 
with its own set of challenges, such as disruptions in 
GPS signals, inaccuracy of sensors in specific scenarios, 
exorbitant expenses, and complex installation 
procedures. 

Table 4 Sensor combinations in autonomous navigation: advantages and disadvantages 
 

Sensors used Advantage Disadvantage Ref 
GPS, IMU GPS provides precise position accuracy that is 

critical for autonomous navigation, while IMU 
provides weather-resistant motion data that is 
essential for speed estimation and navigation in 
GPS signal-limited areas. 

Building reflections and electronic noise can 
disrupt GPS accuracy, while IMU errors due to 
temperature and vibration can compound over 
time unless corrected by external data like GPS. 

[18], 
[56], 
[77], 
[144], 
[145] 

GPS, MEMS-IMU, 
odometry 

The combination of GPS with MEMS navigation 
systems helps reduce position and velocity 
errors in navigation by improving inertial sensors, 
while odometry through wheel monitoring 
supports position estimation in environments 
with GPS signal disturbances. 

GPS inaccuracies due to multipath effects and 
limitations in MEMS-IMU sensors contribute to 
navigation errors in position and orientation. 
Temperature changes and road conditions 
further affect odometry performance and 
position estimation accuracy. 

[25], 
[33], 
[35] 

GPS, IMU, Visual 
Odometry 

The combination of GPS, IMU, and visual 
odometry (VO) help maintain localization when 
GPS data is unreliable. IMU and VO suffer from 
cumulative drift over time, but GPS corrects 
these errors, keeping the robot’s position stable. 

VO is sensitive to environmental changes (e.g., 
poor lighting, texture less surfaces) and can lose 
track of features, leading to errors. Sensor fusion 
requires precise calibration and time 
synchronization among GPS, IMU, and VO, 
which can be challenging in dynamic 
environments. 

[41] 

GPS, INS GPS and INS integration enhances navigation 
accuracy by using GPS as a reference to 
correct INS errors, particularly in challenging 
environments with limited GPS signals.  
Its integration features small size, low cost, high 
precision, and strong autonomy. 
GPS enhances multi sensor navigation precision 
with reliable position data, while gyroscopes 
and accelerometers monitor orientation and 
motion when GPS is unavailable. 

GPS accuracy can suffer from slow updates 
and signal disruptions, while INS may have 
errors, particularly in estimating yaw rotation 
angles. 
Impulsive non-Gaussian sounds can disrupt GPS 
signals, reducing navigation system reliability. 
Strong filtering techniques are needed, as 
traditional GPS algorithms may not suffice. 
Gyroscopes, which are prone to drift, require 
calibration to maintain accuracy. 

[7], 
[9], 
[19], 
[23], 
[31], 
[54],  
[101] 

GPS, INS, 
Odometry 

The combination of INS and odometry improve 
the limitations of GPS, which can lose signal or 
experience multipath errors. While GPS assists 
INS and odometry in mitigating the 
accumulation of error (drift) that arises from 
prolonged use of INS or odometry. 

Odometry can cause significant errors if the 
wheels move or slip on uneven surfaces. 

[16] 

GPS, ultrasonic/ 
detection 
sensors 

GPS aids in determining the robot's position and 
destination; ultrasonic sensors prevent collisions 
by measuring distances, while detection sensors 
ensure safe and efficient movement by 
avoiding obstacles. 

GPS devices with high energy consumption can 
decrease a robot's battery life, and adverse 
weather conditions can disrupt GPS signals, 
leading to difficulties in determining the robot's 
location. 

[20], 
[57], 
[65], 
[69],  

GPS, LiDAR GPS provides accurate outdoor positioning Indoor GPS accuracy can vary, often [30], 
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Sensors used Advantage Disadvantage Ref 
 before entering indoor spaces, while LIDAR 

helps the robot achieve precise movement. 
Together, they ensure reliable navigation in 
open and enclosed environments, enabling 
robots to operate effectively and safely in 
various scenarios. 

necessitating additional sensors like LIDAR for 
precise positioning. However, LIDAR's high cost 
and complex installation are notable 
drawbacks. 
 

[55] 

 
 

Simple pairings of GPS with an IMU provide a 
balance of precise position data and additional, 
continuous motion readings, making them particularly 
useful in scenarios where GPS signals intermittently 
degrade [18], [56], [77], [144], [145]. Nevertheless, 
building reflections and temperature-induced drift in 
the IMU can compound errors if external GPS 
corrections are not applied consistently. Some 
deployments extend this setup by including GPS, a 
MEMS-IMU, and odometry, where the lower-cost 
MEMS-IMU contributes compact inertial sensing and 
odometry bolsters position estimates in environments 
prone to GPS signal disturbances [24], [32], [34]. 
However, road condition changes, multipath effects, 
and inherent sensor limitations can degrade 
orientation accuracy unless robust calibration and 
error-filtering procedures are in place. 

Other approaches merge GPS, IMU, and Visual 
Odometry (VO) to stabilize localization when GPS 
signals are unreliable [41]. GPS aids in correcting drift 
that accumulates from VO and IMU measurements, 
though effective time synchronization, precise 
calibration, and adequate environmental features are 
essential to avoid tracking failures—particularly in 
poorly lit or low-texture settings. A more integrated 
solution uses GPS and INS—where the IMU feeds into 
an onboard navigation system that tracks position, 
velocity, and orientation. This method helps correct INS 
errors via GPS signals in challenging or partially 
obstructed areas [7], [9], [19], [23], [31], [54], [101]. 
However, updating rates and signal disruptions can still 
pose accuracy challenges if gyroscopic drift or non-
Gaussian noise is not properly handled through 
advanced filtering. 

Some implementations add odometry to the INS-
based setup to form a GPS, INS, and odometry 
combination, where INS drift is partially mitigated by 
odometry inputs when GPS quality declines [54]. If 
wheels slip or ground conditions vary, though, 
odometry errors can grow rapidly, highlighting the 
need for continuous calibration and appropriate 
filtering. Meanwhile, simpler obstacle-avoidance 
scenarios may only require GPS teamed with ultrasonic 
or detection sensors, ensuring fundamental collision 
warnings at low speeds or short ranges [20], [57], [65], 
[69]. Although this setup is relatively cost-effective and 
power-efficient, it offers limited mapping capacity and 
depends heavily on stable GPS power and signal 
availability. 

At the higher end, GPS and LiDAR can be fused for 
accurate outdoor positioning and 3D mapping—an 
approach that proves valuable when robots move 
between open fields and enclosed areas [30], [55]. 

LiDAR captures high-resolution distance 
measurements, compensating for GPS reliability issues 
and enabling more precise indoor navigation. The 
associated cost, installation complexity, and data-
processing overhead are notable disadvantages, 
requiring specialized hardware acceleration or 
efficient point-cloud algorithms to maintain real-time 
performance. 

Overall, each of these sensor-fusion strategies aims 
to address the inherent weaknesses of standalone 
GPS, yet they differ in terms of cost, calibration 
requirements, computational overhead, and suitability 
for particular environments. Choice depends on 
operational constraints—whether indoor or outdoor 
navigation is prioritized, tolerance for drift, available 
processing resources, and the target level of 
localization accuracy. 

By examining these sensor-fusion combinations—
GPS + LiDAR, GPS + INS/IMU + odometry, GPS + 
camera, and GPS + detection systems—developers 
can select the most effective strategy based on cost, 
computational capacity, environment, and the 
required level of accuracy. Each combination 
addresses specific weaknesses in standalone GPS and 
delivers more reliable localization under variable 
conditions. Nevertheless, every additional sensor 
introduces new requirements for power, calibration, 
and data throughput, underscoring the need to 
balance hardware constraints with performance 
objectives. 
 
5.2.3 Frequently Used Techniques for Sensor Fusion 
 
Various methods and sensor fusion techniques have 
been developed for effective data integration. The 
primary goal of sensor fusion is to combine the data 
from multiple sensors in a way that minimizes the 
overall error and provides a more accurate estimate 
of the robot's position. This involves the use of 
sophisticated algorithms that can handle the 
uncertainties and noise associated with individual 
sensor measurements. 

Table 5 illustrates the frequently used techniques for 
combining several sensor data with GPS to improve 
localization accuracy, with the Kalman filter-based 
method and its variations being the most utilized This 
section discusses various methods developed to 
enhance the accuracy of GPS-aided localization, 
highlighting algorithms extensively utilized in recent 
decades. Kalman filters are employed in various forms, 
often combined with other methodologies that 
integrate fuzzy logic, neural networks, and Bayesian 
algorithms. These integrated approaches aim to tackle 
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issues such as measurement inaccuracies and rapid 
environmental changes. 

While several of these systems provide significant 
performance improvements, they often have 
limitations such as high computational costs or 

reliance on specific navigation scenarios. Thus, this 
review offers a comprehensive perspective on the 
progress made in navigation technology and the 
continuous endeavours to improve the precision and 
reliability of autonomous navigation systems. 

 
 

Table 5 Methods to solve GPS accuracy 
 

Kalman Filter 
Approach 

Kalman filter [21], [23], [24], [26], [31], [34], [37], [38], [44], [16], [74], [80], [82], [86], [88], [91], [92], [110], [113], 
[118] 
Extended Kalman filter (EKF) [7], [9], [13], [23], [29], [33], [36], [37], [39], [40],[41], [49], [53], [71], [75], [81], [85], 
[89], [93], [98], [99], [100], [103], [110], [114], [115] 
Adaptive Kalman filter (AKF) [18] 
Adaptive Extended Kalman filter (AEKF) [114] 
Adaptive and Robust Maximum Correntropy Extended Kalman filter (MCEKF) [119] 
Unscented Kalman filter (UKF) [28], [47], [53], [61], [64], [85], [95], [107] 
Augmented Quaternion Unscented Kalman filter (AQUKF) [112] 
Adaptive Robust UKF (ARUKF) [53] 
Mahalanobis Distance based Adaptive Unscented Kalman filter (MDAUKF) [35] 
Maximum Likelihood based Adaptive UKF (MLAUKF) [53] 
Federal Kalman filter (FKF) [23], [87] 
Cubature Kalman filter [81] 
MH∞-5thCKF [102] 
Multiple Fading Factor Square Root Cubature Kalman filter (MSCKF) [60], [94] 
Distributed Kalman filter Data Fusion with Feedback (DKFDFWF) [29] 
Weighted Kalman filter [51] 
Interactive Multi-Model Kalman filter (IMMKF) [29] 
Correntropy Kalman filter [82], [78] 
Kalman and Complimentary filter-based Fusion Schemes [16] 
Adaptive Students T-based Kalman filter (STKF) [59] 
Minimum Error Entropy-Gauss Quadrature Kalman filter (MEE-GQKF) [54] 

Artificial 
Intelligence 
Approach 

Naive Bayes Prediction [57] 
Adam Optimizer [48] 
Backpropagation algorithm [48], [74] 
Back Propagation Neural Network (BPNN) [102] 
Gradient Boosting Decision Tree [31] 
Decision Tree Regressor [109] 
Random Forest Regressor [109] 
Automated ARIMA model [52] 
Neural Network [16], [73] 
Nonlinear Autoregressive Neural Networks with External Inputs (NARX) [47], [61] 
Extreme Learning Machine (ELM) Optimized by Minimum Learning Parameter (MLP) [101] 
Deep Neural Network (DNN) [104] 
CNN-LSTM model [56] 
Artificial Neural Network (ANN) [49], [16] 
Fully Convolutional Neural Network (FCNN) [106] 
ALSTM-GCN Networks [117] 
Fuzzy Inference System (FIS) [40], [68] 
Fuzzy Logic And Fuzzy Wall-Following Controllers [43] 
Intelligent Adaptive Kalman Filter Based on Deep Neural Network and Fuzzy Logic [48] 
Adaptive Fuzzy Neural Network-Aided Progressive Gaussian filter [73] 
Fuzzy Neural Network (FNN) model [60], [96] 
Fuzzy Logic System (FLS) [16] 
Adaptive Neuro Fuzzy Inference System (ANFIS) [68], [69] 
Adaptive Fuzzy Neural Network [74] 
Hybrid GPS-ANFIS method [42] 

Statistical 
Approach 

Gaussian Mixtures [27], [71] 
Mixture Of Gaussian and Cauchy Distribution [27] 
Gaussian Sum filtering [54] 
Progressive Gaussian Approximate filter (PGAF) [46], [74] 
Robust Bayesian filtering algorithm [27] 
Variational Bayesian approach [46], [66], [73] 
The Variance Accounted For (VAF) [22] 
Root Mean Square (RMS) [22], [92], [97], [100],  
Root Mean Square Error (RMSE) [107], [110] 
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Mean Square Error (MSE) [109], [111] 
Kullback_Leibler Divergence [27] 
Least Square (LS) [34] 
Recursive Least Square (RLS) [34] 
Linear Interpolation [49] 
Linear Regression [109] 
Nonlinear Autoregressive (NAR) model [49] 
The Adaptive Factor Graph (AFG) [101] 
Hidden Markov model (HMM) [116] 
Particle Weighting Monte Carlo Localization (MCL) [45] 
Adaptive Monte Carlo Localization algorithm [45] 
Particle Generation approach [45] 

Other Approach 

Lidar-based SLAM method [30] 
Fiducial Augmented Global Positioning System (FAGPS) [6] 
Fusion Calculation of Angles and Vectors [19] 
Gauss-Kruger Projection Plane Rectangular Coordinate System [19] 
Fusion method combining RTK-GPS [30] 
Fusion Navigation algorithm [19] 
Dead Reckoning (DR) [7], [33], [44], [75] 
Non-Holonomic Constraint (NHC) model [33], [84] 
Dijkstra algorithm [43], [57] 
the B-spline method [43] 
Chord Secant method [35] 
Adaptive Decision-Making algorithm [108] 
FDE (Fault Detection and Exclusion) based on K-Means Clustering [110] 
RANSAC (Random Sample Consensus) algorithm [111] 
Simultaneous Localization and Mapping (SLAM) [116] 
Factor Graph Optimization (FGO) [118] 
Particle Swarm Optimization (PSO) [31]  
A* algorithm [13]  
Dynamic Window approach (DWA) [106]  
Pure Pursuit algorithm [106] 

 
 
5.2.1 Kalman Filter based Fusion Approach 
 
Kalman filters are widely used in sensor fusion due to 
their ability to provide optimal estimates by minimizing 
the mean squared error. Various forms of Kalman filters 
exist, including the Extended Kalman Filter (EKF) and 
Unscented Kalman Filter (UKF), each suited to different 
types of measurement inaccuracies and 
environmental conditions. Kalman filters are 
particularly effective in combining GPS data with 
inputs from IMUs and other sensors, significantly 
reducing drift and improving overall localization 
accuracy. 

Kalman filter offer several advantages, including 
the ability to increase navigation accuracy in areas 
with restricted GPS visibility. Furthermore, by 
incorporating new constraints on vehicle position, this 
method can be integrated into existing localization 
methods to improve vehicle localization outcomes [21] 
[80]. However, Kalman filters also have limitations, 
particularly related to inaccuracies in computing the 
Kalman gain. Initially, the Kalman gain is calculated 
correctly, but inaccuracies can arise when gains from 
previous sensor measurements are incorrectly 
accumulated or integrated into their original positions 
within the gain matrix, leading to potential errors in the 
estimation process. [146].  

According to prior research in [21] and [80], 
integrating Kalman filter methods with other sensors 
data and HD maps can minimize localization 

inaccuracy to less than half or even one-third of the 
original GPS position errors. In areas with low GPS 
visibility, the data integration strategy can greatly 
improve localization results and navigation accuracy. 
Despite their benefits, Kalman filter remains vulnerable 
to model flaws, incorrect starting estimates, and 
significant computational load. 

The Correntropy Kalman Filter (CKF) is being 
compared to the Kalman filter in the study presented 
in [78] and  [82]. The CKF demonstrates a substantial 
improvement in the accuracy of the GPS position 
estimate, exhibiting an improvement of up to 34% 
when compared to the conventional Kalman Filter. 
Nevertheless, it is crucial to acknowledge that this 
study exclusively assesses low-latitude regions, so the 
findings may not accurately represent the broader 
environmental circumstances. 

Implementing the weighted Kalman filter [34], [51], 
can considerably improve the accuracy of GPS 
positioning through improved estimation of variance. 
This improvement is consistently observed in numerous 
motion scenarios, including straight and circular 
movements at varying speeds. This method performs 
better than compared to traditional recursive least 
squares (RLS) and standard Kalman filter algorithms. 
Nevertheless, it is important to acknowledge that this 
study has a restricted number of comparisons with 
alternative advanced filtering algorithms. 
The fast indirect in-motion coarse alignment method, 
in conjunction with the adaptive Student's t-based 



178                                   Vita Susanti et al. / Jurnal Teknologi (Sciences & Engineering) 88:1 (2026) 165−189 
 

 

Kalman filter (STKF) method [59], provides a solution to 
minimize the computational load of current methods. 
This combination method performs more efficiently for 
real-time applications. The STKF method effectively 
handles non-Gaussian measurement noise and 
incorrect covariance matrices, enhancing navigation 
robustness. However, this study does not compare the 
proposed method to similar approaches or alternative 
state estimation methods, making it difficult to assess 
the superiority or advantages of the proposed 
methodology. 

The implementation of the adaptively robust 
Kalman filter approach [26] greatly enhances the 
accuracy of GPS positioning. Furthermore, 
experimental results confirm their efficiency in 
managing measurement errors. Nevertheless, this study 
is flawed as it fails to perform a comparative analysis 
with other sophisticated filtering techniques and 
neglects to address the method's resilience against 
different forms of noise and interference. 

The Federal Kalman Filter (FKF) outperforms the 
GPS-KF by utilizing the Kalman filter, extended Kalman 
filter, and Federal Kalman filter [23]. It achieves stability 
rapidly and provides a more accurate estimation of 
real values. The FKF algorithm is capable of accurately 
estimating the condition of vehicles even in situations 
where GPS signals are not available. Nevertheless, this 
study fails to investigate the constraints of the Federal 
Kalman Filter across different circumstances. 

Using the extended Kalman filter (EKF) method [9], 
[36], [71], [75], integrating GPS with the EKF filter can 
enhance accuracy by around 10 % compared to GPS 
alone, resulting in more accurate location and velocity 
estimations and better long-term navigation 
accuracy. Nevertheless, employing low-cost sensors 
can compromise the precision and reliability of the 
measurements, particularly in situations where GPS 
signals are not accessible or lost, resulting in a 
reduction in horizontal accuracy by as much as 3 
meters. 

The Distributed Kalman Filter with Feedback 
(DKFDFWF), the Interactive Multi-Model Kalman Filter 
(IMMKF), the extended Kalman filter, and Differential 
GPS (DGPS) techniques [29] have effectively 
decreased maximum position errors by 22.96 % when 
compared to a single-point GPS Kalman filter. 
Additionally, these techniques have enhanced 
position accuracy by 48.59 % compared to the 
averaging method, which utilizes data from three GPS 
receivers. The feedback mechanism of DKFDFWF is 
essential for correcting significant estimation mistakes 
from GPS receivers, thereby improving the overall 
accuracy of location determination. Nevertheless, this 
approach has a disadvantage in that it raises 
computing complexity as a result of iterative 
computations, and its use may be restricted by the 
requirement for several GPS receivers, particularly in 
certain situations. 

The system improves the unscented Kalman filter's 
(UKF) resilience by modifying the process noise 
covariance online. This is achieved by implementing 
the extended Kalman filter, unscented Kalman filter 

(UKF), adaptive robust UKF (ARUKF), maximum 
likelihood (ML), and maximum likelihood-based 
adaptive UKF (MLAUKF) [53]. This approach utilizes 
maximum likelihood estimation to handle the 
uncertainty in process noise for integrating the vehicle 
inertial navigation system (INS) and global positioning 
system (GPS). Empirical evidence shows that it 
outperforms conventional unscented Kalman filter 
(UKF) and augmented unscented Kalman filter 
(ARUKF) methods. Nevertheless, this approach also 
suffers from the disadvantage of imposing a 
substantial computing load due to the need to 
calculate partial derivatives. 

The augmented quaternion unscented Kalman 
filter (AQUKF) approach [112] was created to improve 
the integration of loosely connected GPS/INS. This 
method specifically addresses the non-Euclidean unit 
quaternion mathematics, resulting in enhanced 
attitude estimation. The results derived from this 
approach successfully tackle the direct nonlinear 
estimate of vehicle states for the purpose of outdoor 
vehicle localization. During GPS outages, AQUKF can 
greatly decrease INS errors in comparison to indirect 
EKF and conventional UKF measurements. The intensity 
of this effect increases with a longer outage duration. 
This demonstrated the need to obtain highly precise 
estimations between GPS measurements to rectify bias 
in IMU sensors and minimize divergence in INS. 
Nevertheless, the existence of nonlinear INS state 
equations and the representation using unit 
quaternions can complicate the implementation and 
comprehension. Furthermore, the emphasis on 
locating vehicles outside may restrict the utility of the 
approach in certain situations or settings. 

The integration of GPS with gyro uses a two-stage 
cascaded EKF method, where the first stage employs 
an adaptive extended Kalman filter (AEKF) [114] to 
process position, velocity, and attitude data from 
magnetometer, accelerometer, and gyroscope 
sensors. The second filter is an EKF that uses GPS data 
to update the INS velocity and position states. Due to 
drift, an INS with a low-grade IMU cannot serve as a 
precise position reference. The proposed two-stage 
EKF algorithm has a total execution time of 11.697 ms, 
which is faster than the standard EKF's execution time 
of 19.812 ms, which includes all attitude, velocity, and 
position states. Therefore, unmanned vehicles can 
implement the two-stage cascaded EKF in real-time, 
providing an optimal navigation solution. However, the 
discussion in this paper does not explore alternative 
navigation methods or technologies beyond GPS. 
 
5.2.2 Artificial Intelligence based Approach 
 
The KGP approach, which combines the Kalman filter, 
Gradient Boosting Decision Tree (GBDT), and Particle 
Swarm Optimization (PSO) methods [31], significantly 
improves positioning accuracy. It outperforms 
methods that utilize multi-layer perceptron neural 
networks and random forest regression by 28.20 % to 
59.89 %. In addition, this technology effectively resolves 
the problem of nonlinearity between vehicle attributes 
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and location data. It also corrects errors in the Inertial 
Navigation System (INS) caused by unstable GPS 
signals, resulting in a substantial improvement in 
positioning continuity and accuracy. Nevertheless, a 
disadvantage of this approach is the very high 
computing load resulting from the incorporation of 
numerous intricate techniques.  

The AFNPGA-VS algorithm utilizes a Kalman filter, a 
progressive Gaussian approximate filter with variable 
step size (PGAFVS), and an adaptive fuzzy neural 
network controller with backpropagation based on 
PGAFVS [74]. This algorithm significantly enhances the 
reliability and accuracy of the system, particularly in 
situations where there has been uncertainty in the 
past. Simulations suggest that this approach surpasses 
existing methods, showcasing significant potential for 
enhancing overall system performance. Nevertheless, 
the practical efficiency of AFNPGA-VS has not been 
confirmed purely through simulations, and the 
algorithm's complexity necessitates significant 
processing resources. 

By integrating the Kalman approach with a 
complementary filter-based fusion scheme, a neural 
network, and an expert fuzzy logic system [16], the 
neural network effectively represents GPS data and 
can make precise  estimations of the robot's location 
in the absence of a GPS signal indoors. In outdoor 
environments, the Kalman fusion technique and 
complementary filter are effective at integrating data 
from proprioceptive sensors and GPS. In addition, the 
expert fuzzy logic system corrects positional 
inaccuracies caused by wheel slippage. Nevertheless, 
the disadvantage of this approach lies in its substantial 
dependence on GPS for outdoor positioning, which 
may not be reliable in all conditions or locations. 

The integration of the multiple fading factor square 
root cubature Kalman filter (MSCKF) method and fuzzy 
neural network (FNN) model [60] significantly 
enhances the accuracy and speed of the navigation 
system by substantially reducing position and velocity 
errors, surpassing the performance of the pure inertial 
navigation approach. Furthermore, this approach can 
prevent issues with excessive training and overfitting in 
the network, as well as improve the speed at which 
the network reaches convergence. However, the 
performance in terms of training time relative to other 
models is not clearly defined. 

The proposed methodology [47], [61] introduces a 
novel technique for selecting inputs from NARX 
networks based on mutual information (MI) criteria and 
lag-space estimation (LSE). The experimental findings 
clearly establish the superiority of this method over 
other approaches, such as UKF. This method has the 
ability to significantly improve the overall accuracy 
and performance of the system. Nevertheless, it is 
crucial to acknowledge that employing sophisticated 
methods like Unscented Kalman Filter (UKF) and 
Nonlinear AutoRegressive with External Inputs (NARX) 
networks can result in a rise in the intricacy of the 
system, requiring meticulous deliberation during 
practical execution. 

When fuzzy logic is compared to the unscented 
Kalman filter (UKF) method [64], this system performs 
69.2 % better than the unscented Kalman filter. The 
main benefit of this system is its superior capacity to 
handle fluctuations and uncertainties in GPS data. 
Logical operations enable the design of non-linear 
functions using the 'if else' structure. However, the 
quality and attributes of the datasets used might 
influence the system's performance, and it only 
compares with the unscented Kalman filter without 
evaluating its performance against alternative options.  

The optimization of extreme learning machines 
(ELM) with minimal learning parameters (MLP) and the 
use of factor graph technology [101] for robust 
information fusion greatly enhance the navigation of 
the INS/GPS system during GPS outages. Empirical 
investigations conducted on ground vehicles 
demonstrated the approach's effectiveness in real-
time applications by minimizing computational burden 
and improving system performance, particularly in 
difficult conditions without GPS signals. Nevertheless, 
the execution of this approach is more complex 
because it necessitates the use of several optimization 
methods. Furthermore, the system's success still 
depends on the quality of the sensors it implements. 
 
5.3 Statistical based Approach 
 
The Gaussian-based approach employs various 
advanced filtering techniques to enhance the 
performance and resilience of navigation systems, 
particularly in the presence of extreme noise and 
disturbances. This section elaborates on these methods 
and their contributions to improving localization 
accuracy and robustness. 

Linear and Nonlinear Kalman Filters: These filters are 
foundational in sensor fusion and are used to provide 
optimal estimates by minimizing the mean squared 
error. Linear Kalman filters are suitable for systems with 
linear dynamics, while nonlinear Kalman filters, such as 
the Extended Kalman Filter (EKF) and Unscented 
Kalman Filter (UKF), are designed to handle 
nonlinearities in the system. These filters are effective in 
combining data from various sensors to improve the 
overall localization accuracy. 

Minimum Error Entropy-Gauss Quadrature Kalman 
Filters (MEE-GQKF): The MEE-GQKF method is a 
significant advancement in dealing with non-Gaussian 
noise. It combines the principles of minimum error 
entropy and Gauss quadrature to improve the 
accuracy and robustness of state estimation in 
multisensory navigation systems. This approach is 
particularly effective in scenarios with heavy-tailed 
noise distributions, which are common in real-world 
applications. 

Gaussian Sum Filtering: This technique 
approximates the probability distribution of the 
system's state using a sum of Gaussian components. 
Gaussian sum filtering is beneficial in managing non-
linear and non-Gaussian processes, providing a more 
accurate representation of the state distribution than 
 



180                                   Vita Susanti et al. / Jurnal Teknologi (Sciences & Engineering) 88:1 (2026) 165−189 
 

 

a single Gaussian assumption. This method enhances 
the system's ability to handle complex noise patterns 
and improves the overall accuracy of the state 
estimates. 

Huber-Based Estimators: These estimators are 
designed to be robust to outliers and extreme noise by 
using Huber's criterion, which combines the best 
features of least squares and absolute value 
estimations. Huber-based estimators adjust the 
influence of outliers on the estimation process, making 
the system more resilient to unexpected and abnormal 
disturbances. 

Maximum Correntropy Criterion (MCC): The MCC is 
an advanced approach used to handle non-Gaussian 
noise and outliers. It maximizes correntropy, a measure 
of similarity between two random variables, to improve 
the robustness of the estimation process. MCC-based 
methods are particularly effective in environments with 
impulsive noise, providing a higher level of resilience 
compared to traditional mean squared error 
minimization techniques. 

Using various methods such as linear and nonlinear 
Kalman filters, Minimum Error Entropy-Gauss 
Quadrature Kalman Filters (MEE-GQKF), Gaussian sum 
filtering, Huber-based estimators, Maximum 
Correntropy Criterion (MCC), and Extended, 
Unscented, Cubature Kalman Filters [54], the system 
demonstrates superior performance in handling 
extreme noise, enhancing the system's resilience to 
unexpected and abnormal disturbances. The 
development of MEE-GQKF is a crucial step in 
strengthening multisensory navigation systems against 
non-Gaussian noise. Nevertheless, a disadvantage of 
this method is the increased computing complexity of 
direct filtering alternatives. 

Combining the adaptive fuzzy neural network-
aided progressive Gaussian filter method, Bayesian 
variational approach, and neural network model [73], 
the system outperforms existing advanced filters in 
terms of accuracy and reliability, as demonstrated by 
experimentation. This filter demonstrates exceptional 
precision and consistency in estimating values, 
particularly in the northern, eastern, and downward 
orientations. Nevertheless, its specialized design for 
GPS/INS integrated navigation makes it inappropriate 
for other navigation systems. 

Technology enhances the precision of GPS by 
discerning multipath errors, particularly in urban areas. 
This is achieved by the utilization of a strong Bayesian 
filtering technique, multiple hypothesis tracking (MHT), 
Gaussian mixture reduction based on Kullback-Leibler 
divergence, and a combination of Gaussian and 
Cauchy distributions [27]. This method is more resilient 
than extended Kalman filters and other optimization 
algorithms, and it decreases computational 
complexity by employing Gaussian mixture reduction, 
although at a higher expense. 

Robust Kalman filtering and ANN [49] are used to 
maintain location accuracy during GPS data 
interruptions in the extended Kalman filter, 
nonlinearauto-regressive (NAR) model, linear 
interpolation, and artificial neural network 

approaches. During these disruptions, the technique 
effectively improved the integrated GPS/INS system's 
accuracy by 67% on each axis. However, because this 
method was only evaluated in an outdoor area with a 
specified path and for a limited time, these constraints 
must be considered when assessing the system's 
accuracy and applicability. 
 
5.2.4 Other Approach 
 
Using the extended Kalman filter, Dead Reckoning 
(DR), and Non-Holonomic Constraint (NHC) 
approaches [33], the suggested system effectively 
reduces navigation errors on uneven terrain, such as 
slopes that go up and down. The proposed approach 
exhibits consistent performance in accurately 
determining horizontal locations, even in situations 
where GPS data is deliberately obstructed for a brief 
duration. Nevertheless, the performance of the system 
may differ among vehicles because of alterations in 
the odometer scale factor, and its effectiveness has 
not been evaluated across all varieties of terrain and 
driving circumstances. 

Combining Unscented Kalman Filtering (UKF) with I-
Q values [28] produces extremely precise carrier 
phase and frequency readings, particularly in rapidly 
changing settings. Its strengths are fast convergence 
and durable performance achieved through the 
implementation of the innovative I-Q combination 
approach. Moreover, the UKF loop effectively monitors 
and adjusts for fluctuations in carrier frequency, 
showcasing its capability to manage substantial 
alterations in the signal. Nevertheless, its disadvantage 
lies in the increased computing burden in comparison 
to conventional tracking techniques. 

The integration of GPS and visual navigation result 
[106] indicate that combining navigation techniques 
can enhance the performance of autonomous robots 
in agricultural fields. The Pure Pursuit algorithm with GPS 
had a lateral deviation of 8.3 cm, while the deep 
learning model with Dynamic Window Approach 
(DWA) achieved a deviation of 4.8 cm. The integration 
of GPS with the deep learning model and DWA 
resulted in a lateral error of 9.5 cm, offering a more 
practical and effective navigation method. However, 
reliance on GPS can be problematic in areas with 
poor signal, and the complexity of integrating multiple 
navigation methods can complicate system design 
and require precise calibration. These points highlight 
both the advantages and potential limitations of 
navigation solutions in agricultural robotics. 
 
5.3 Methods Summary and Discussion 
 
The sensor fusion techniques discussed in the previous 
sections highlight a number of approaches widely 
used to enhance GPS-based localization techniques. 
Each approach is characterized by pros and cons, 
which are summarized in Table 6 and Table 7. This 
section briefly discusses and compares the four main 
approaches—Kalman filter-based, artificial intelligence 
(AI)--based, statistical-based, and other specialized 
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methods—emphasizing their practicality, 
computational challenges, real-time feasibility, and 
implementation constraints. 

It can be found in Table 6 that fusion approaches 
based on the Kalman filter technique offer strong real-
time performance and efficient integration of sensor 
data (e.g., GPS and IMU). Widely used methods such 
as EKF and UKF effectively address sensor inaccuracies 
and nonlinear dynamics, significantly reducing 
localization errors across various scenarios. The work 
presented in [41], for example, demonstrates that 
utilizing EKF-based sensor fusion—which combines GPS, 
IMU, and odometry on autonomous vehicles—can 
significantly minimize localization errors from several 
meters down to just a few centimetres during urban 
navigation. While there is potential for enhancement, 
Kalman filters may exhibit inaccuracies due to model 
limitations and require rigorous initial calibration along 
with reliable sensor quality to maintain their accuracy.  
In addition, adaptive or complex variants like AQUKF 
also pose significant computational challenges, 
potentially straining the capabilities of real-time 
embedded systems [112]. 

AI-based techniques, such as neural networks and 
fuzzy logic, show significant promise in addressing 
complex nonlinear sensor data to outperform 
traditional techniques in terms of accuracy. For 
example, the work in [54] presents a combination of 
neural networks and fuzzy logic for a localization 
approach that could improve indoor robot localization 
accuracy, particularly when GPS signals are lost. 
Nevertheless, these approaches are constrained by 
notable limitations, including the requirement for 
extensive training data, substantial computational 
demands, and reliance on consistent sensor quality. 
These limitations constrain the methods from being 
deployed only to the systems with strong 
computational capabilities [31].  

Statistical approaches—including Gaussian sum 
filtering and Bayesian techniques—are known for their 
adaptability in handling non-Gaussian and 
unpredictable noise. This noise is common in densely 
populated urban environments. These statistical 
approaches can enhance adaptability toward 
multipath errors affecting standard GPS performance. 
The work presented in [27] demonstrates that 
implementing the Gaussian mixture reduction method 
could enhance the accuracy of urban localization. 
While statistical methods are generally reliable, they 
demand significant computational resources and 
parameter tuning. Hence, they are not always the best 
choice, especially when dealing with situations that 
demand quick real-time updates or have limited 
hardware resources. 

The other specialized techniques, including dead 
reckoning, LiDAR-based SLAM, and other tailored 
algorithms, have been effectively deployed in several 

controlled environments [30] [55]. For example, LiDAR-
based SLAM methods enable highly accurate indoor 
localization for autonomous warehouse robots 
transitioning from GPS-based outdoor navigation [30]. 
Despite their precision, these approaches have 
significant limitations related to their environmental 
specificity, substantial calibration efforts, and high 
computational overhead due to real-time processing 
demands of dense sensor data. 

A comparative analysis clearly indicates trade-offs 
between accuracy, computational complexity, and 
implementation constraints. The artificial intelligence 
approach and the statistical approach exhibit 
significantly higher than the Kalman filter approach. 
Statistical approaches like Gaussian mixture reduction 
techniques are particularly computationally intensive. 
On the other hand, the Kalman filter approach 
generally demonstrates lower computational 
demands but occasionally experiences inaccuracies 
related to calculating the Kalman gain. In terms of the 
improvements in GPS accuracy, the artificial 
intelligence approach has substantially higher 
accuracy than the other methods, but present greater 
implementation challenges in real world scenarios. 
Specialized techniques (e.g., LiDAR-based SLAM) offer 
exceptional accuracy in specific environments but 
lack generalizability and carry high implementation 
complexity.  

Real-world case studies effectively illustrate these 
trade-offs between accuracy, computational 
complexity, and implementation constraints. For 
instance, research employing GPS, IMU, and visual 
odometry fusion processed with the EKF has 
demonstrated significant improvements in localization 
accuracy, reducing error from 79 meters down to 3.7 
meters in urban autonomous vehicle applications [41]. 
This notable improvement is achieved through mutual 
sensor supports; if GPS signals are lost, the IMU and 
visual odometry data compensate for the positioning 
errors. Conversely, when visual odometry struggles due 
to lighting conditions or environmental obstacles, GPS 
provides reliable positional information. Additionally, 
the computational load associated with EKF-based 
sensor fusion is substantially lower than that of artificial 
intelligence methods, making it a more practical 
choice for real-world implementations. In addition, 
data processing using the EKF method is less 
computationally expensive than the artificial 
intelligence method, making it a more practical 
choice for real-world implementations. 

In summary, sensor fusion methods need to 
balance accuracy, computational complexity, and 
practicality. Future research should optimize algorithms 
to decrease computational requirements, provide 
adaptive real-time sensor variance, and simplify sensor 
calibration. These improvements should make GPS-
based localization better for autonomous systems.  
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Table 6 The summary of methods 
 

Methods Advantage  Disadvantage 
Kalman Filter 
Approach 

The Kalman filter has many advantages, including its 
ability to provide optimal estimates by improving 
navigation accuracy, especially in areas with limited 
GPS visibility. This filter, available in various forms such 
as EKF and UKF, is flexible in handling sensor 
inaccuracies and dynamic environments. 
Additionally, the Kalman filter is effective in 
combining data from GPS, IMU, and other sensors, 
significantly reducing localization errors. Some 
variants, like the two-stage EKF, are also efficient for 
real-time applications. 
 

The Kalman filter is susceptible to model weaknesses, 
such as incorrect initial estimates or inaccuracies in 
calculating the Kalman gain, which can lead to 
suboptimal results. Some algorithms require intensive 
computations, especially when using adaptive 
variants or methods like AQUKF, which can slow down 
system performance. Although it improves accuracy, 
the Kalman filter still relies on GPS signals, and in 
situations where GPS signal loss occurs, its accuracy 
decreases over time. 

Artificial 
Intelligence 
Approach 

The artificial intelligence approach significantly 
improves the accuracy and speed of navigation 
systems by substantially reducing position and 
velocity errors, surpassing the performance of 
traditional navigation systems. Neural networks can 
effectively represent GPS data and accurately 
estimate the robot's location even without GPS 
signals. Additionally, the expert fuzzy logic system 
corrects positional inaccuracies caused by wheel 
slippage. The fuzzy neural network (FNN) prevents 
overtraining and overfitting in the network while also 
increasing the speed at which it reaches 
convergence. 

This approach has a very high computational burden 
due to the integration of various complex techniques. 
Additionally, it relies heavily on GPS signals for 
outdoor positioning, which may be less reliable under 
certain conditions, and it also depends on the quality 
of the sensors used. 

Statistical 
Approach 

The statistical approach offers several advantages, 
including significantly enhancing multisensor 
navigation systems against non-Gaussian noise. This 
filter demonstrates exceptional accuracy and 
consistency, particularly in estimating north, east, and 
down orientations. Furthermore, this method is more 
robust than extended Kalman filters and other 
optimization algorithms, while also reducing 
computational complexity by using Gaussian mixture 
reduction techniques. 

These methods have several drawbacks, including 
high computational complexity due to the use of 
advanced techniques such as Kalman filters and 
Huber-based estimators. Specific design for GPS/INS 
navigation systems renders variational Bayesian and 
fuzzy neural network approaches less suitable for 
other applications. Although techniques like Gaussian 
mixture reduction improve GPS accuracy, their 
computational costs remain high. Additionally, the 
limited evaluation of specific areas reduces the 
broader applicability of these methods. 

Other Approach This approach effectively reduces errors in uneven 
terrain, consistently achieving accurate horizontal 
location determination, even when GPS data is 
temporarily obstructed. Additionally, the 
combination with signal processing methods provides 
highly precise phase and carrier frequency readings, 
particularly in rapidly changing conditions, and 
achieves fast convergence. The integration of GPS 
and visual navigation also demonstrates improved 
performance for autonomous robots in agriculture, 
resulting in smaller lateral deviations. 

The integration of GPS and visual navigation show 
potential for performance improvement; however, 
reliance on GPS signals poses challenges in areas with 
poor signal quality. The complexity of integrating 
multiple navigation methods can complicate system 
design and necessitate precise calibration, thereby 
hindering broader implementation. Additionally, 
there is an increased computational burden 
compared to conventional tracking techniques. 

 
Table 7 Method comparison summary 

 
Algorithm / 

Methods 
Computational 

Complexity Accuracy Adaptability Real-Worl 
Implement Ability 

Kalman Filter 
Approach Moderate Moderate 

to High Moderate Moderate 

AI-based 
Approach 

Training: High 
Inference: Low High High Difficult  

Statistical 
Approach High High Moderate Difficult  

Other / 
Specialized 
Approach 

Moderate to 
High High  Low Moderate to Difficult  
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6.0 FUTURE DIRECTIONS IN GPS-AIDED 
LOCALIZATION FOR AUTONOMOUS MOBILE 
ROBOTS 
 
Despite significant advancements in integrating GPS 
with other sensors like IMUs, LiDAR, and cameras, there 
remains a need for more advanced sensor fusion 
techniques. Future research should focus on 
developing robust algorithms that seamlessly combine 
data from multiple sources to enhance localization 
accuracy. These algorithms must effectively handle 
the uncertainties and inaccuracies inherent in each 
sensor type. For instance, while IMUs provide good 
short-term accuracy, they suffer from drift over time, 
which can be corrected using GPS data. Conversely, 
GPS inaccuracies can be mitigated using precise IMU 
data in short bursts, creating a balanced, reliable 
localization system. 

Visual Sensors and Fiducial Markers: The visual 
sensor is another sensor with significant potential for 
use in autonomous mobile robots. This sensor has the 
ability to record more complex environmental data, 
such as the textures on walls that make perception 
easier [147]. Researchers have developed several 
approaches to improve mobile robot localization 
accuracy by integrating visual sensors with other 
sensors.  

Another technique uses fiducial markers as a 
reference point for determining position and 
orientation. There are fiducial markers that have been 
installed along the route of the autonomous mobile 
robot, and the vision sensor is able to identify and 
extract them. A fiducial marker is a mechanism for 
identifying objects or locations in navigation systems or 
computer visual recognition. This approach is often 
used for augmented reality (AR), robot navigation, 
and object detection. Fiducial markers make use of 
specifically designed markers or things that computer 
systems can quickly detect and identify. These markers 
usually possess distinct visual patterns or attributes that 
are exclusive, such as checkerboard patterns, QR 
codes, or other symbols.  

Fiducial markers offer several key benefits, including 
their user-friendly nature, the minimal expense 
associated with the markers themselves, and the 
affordability of cameras and computing equipment. 
Nevertheless, markers have other drawbacks, such as 
potential issues with camera resolution, limitations in 
marker size, and the dependence on favorable 
lighting conditions for reliable detection, identification, 
and localization of markers [148], [149]. To detect 
markers in low-light conditions, an IR camera can be 
used. Optimizing the size and contrast of the marker 
can overcome the problem of limited marker size. 

Advanced Filtering Algorithms: Existing filtering 
methods, such as the Kalman filter, have shown 
promise in improving GPS accuracy but still face 
limitations, particularly in managing non-Gaussian 
noise and model uncertainties. Therefore, developing 
more sophisticated filtering algorithms that provide 
better accuracy and reliability under varying 

environmental conditions is crucial. Advanced 
variations of Kalman filters, such as the Unscented 
Kalman Filter (UKF) and Particle Filters, have been 
proposed. However, these methods often come with 
increased computational complexity and require 
further optimization for real-time applications. 

Real-Time Adaptable Systems: Another potential 
research area is developing real-time adaptable 
systems. Many current approaches lack the ability to 
adjust dynamically to changing environmental 
conditions and sensor errors. Research should aim to 
create adaptive systems that can modify their 
parameters in real-time to improve localization 
accuracy. For instance, adaptive Kalman filters that 
adjust their noise parameters based on observed data 
can provide better performance in varying conditions, 
ensuring more reliable navigation. 

Cost-Effective and Scalable Solutions: There is also 
a need for low-cost, scalable solutions that can be 
easily implemented in various autonomous mobile 
robots. This includes developing cost-effective sensor 
fusion techniques and algorithms that do not require 
extensive computational resources. Research should 
focus on optimizing existing algorithms to reduce 
computational load without compromising accuracy, 
making advanced localization techniques accessible 
for a broader range of applications, from small 
consumer robots to large industrial machines. 

Comprehensive Testing and Validation: Many 
proposed methods and algorithms have not been 
extensively tested across different environments and 
scenarios. Comprehensive testing and validation of 
these techniques in diverse real-world conditions are 
essential to ensure their robustness and reliability. For 
instance, testing should cover a wide range of 
environments, including urban canyons, dense forests, 
and indoor settings, to evaluate the performance and 
limitations of the proposed solutions. Additionally, long-
term field studies are necessary to assess the durability 
and consistency of these methods over extended 
periods. 

By addressing these challenges and research gaps, 
the field of GPS-aided localization for autonomous 
mobile robots can make significant strides. Improved 
localization systems will lead to more accurate, 
reliable, and efficient navigation, enhancing the 
capabilities of autonomous robots in various 
applications, from urban delivery systems to 
agricultural automation and beyond. This progress will 
not only advance the state-of-the-art in robotics but 
also contribute to broader technological innovations 
in autonomous systems and smart environments. 

In the localization of autonomous mobile robots, 
the main challenges include heavy computing (such 
as AI processing and deep learning), real-time 
processing, and implementation constraints. Therefore, 
to overcome high computing challenges, the 
algorithm used must be an optimizing algorithm, such 
as using EKF, particle filter, or graph-based SLAM. In 
addition, use hardware that has specific requirements 
(e.g., when processing data from Lidar or images), 
such as GPU or FPGA devices. To lighten the 
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computational load, selection techniques can be 
employed to extract the relevant features from sensor 
data. 

In real-time processing, the challenge is often high 
latency in sensor fusion processing; for that, 
hierarchical Kalman filters can be employed to 
accelerate data processing from sensor fusion. 
Furthermore, it can employ the factor graph 
optimization method to accelerate convergence in 
multi-sensor data processing. Machine learning 
algorithms can employ motion prediction models to 
reduce the necessity for excessive data processing. 

To address the challenges in real-world 
implementation, it can use GPS, IMU, and Lidar sensors 
to ensure high accuracy in the event of GPS signal loss. 
Marker-aided localization techniques, such as AprilTag 
and ArUco, can enhance accuracy in environments 
with limited GPS visibility. Furthermore, the integration 
of robots and control systems is essential for facilitating 
communication between sensors and robot modules. 
This can utilize ROS (Robot Operating System) or RTOS 
(Real-Time Operating System). Before implementing it 
in the real world, simulate it in Gazebo or CARLA to 
detect potential field difficulties. In addition, 
implementation can be started from a small scale or 
limited area; if successful, then it can be applied to 
more complex areas. 
 
 
7.0 CONCLUSION 
 
Autonomous vehicles and mobile robots commonly 
rely on GPS as for determining their location, benefiting 
from its global positioning capabilities while facing 
inherent drawbacks such as signal disruptions and 
positional inaccuracies. To enhance GPS precision and 
mitigate its limitations, a number of works employ 
sensor fusion techniques to complement GPS system. 
This comprehensive survey has highlighted the 
strengths and limitations of current GPS-aided 
localization methods and the importance of sensor 
fusion techniques in overcoming these challenges. 

This study has found that the integration of GPS with 
various sensors, such as IMUs, Odometry, LiDAR, 
cameras, and other advanced technologies, has 
significantly enhanced the localization capabilities of 
autonomous mobile robots, providing more robust 
positioning solutions. Advanced filtering methods, 
particularly the Kalman Filter and its variants, have 
proven its effectiveness in managing noises and 
uncertainties, further enhancing the reliability of GPS-
aided systems. 

This study provides a comprehensive evaluation of 
GPS-aided localization technologies and emphasizes 
the role of sensor fusion in addressing GPS limitations. It 
analyzes the effectiveness of sensor combinations in 
improving localization accuracy, assesses the 
performance of filtering algorithms, and identifies 
research gaps that require further exploration. In 
particular, the study highlights the need for more 
efficient algorithms, real-time adaptable systems, and 

cost-effective, scalable solutions for wider 
applications. 

Future research should build on the findings of this 
study by developing more robust algorithms that can 
combine data from multiple sources to further 
enhance localization accuracy by effectively handling 
the uncertainties and inherent limitations in each 
sensor type. Based on the demonstrated potential of 
visual sensors and fiducial markers in reducing 
positional errors further exploration of these sensors, 
particularly in urban environments, is recommended. 
Additionally, advancements adaptive filtering 
methods like hierarchical Kalman filters are necessary 
to manage non-Gaussian noise and model 
uncertainties, improving the overall reliability of GPS-
aided localization systems. 

Developing cost-effective and scalable solutions 
using affordable sensors will require innovative sensor 
fusion algorithms that minimize reliance on expensive 
sensors while maximizing localization accuracy. Low-
cost sensors combined with optimized algorithms can 
achieve reliable results for various applications, 
particularly in resource-constrained environments.  

Given the computational challenges identified, 
future work should also focus on optimizing algorithms 
for real-time processing without sacrificing accuracy. 
Furthermore, to ensure practical applicability, testing 
these systems in realistic simulation environments such 
as CARLA or Gazebo, can effectively identify potential 
issues before the system is deployed in real-world 
environment.  

By addressing these challenges, the development 
of more accurate, reliable, and efficient navigation 
systems will be possible, thereby significantly 
enhancing the capabilities of autonomous robots 
across various applications. Advancements in sensor 
fusion and algorithms development will not only 
contribute to broader technological innovations in 
autonomous systems but also support the growth of 
smart environments and intelligent mobility solutions. 
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