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Graphical abstract Abstract

Sensor Fusion Technology Advancement in GPS-Aided Localization

Autonomous technology enables mobile robots to perform multiple functions,
for Autonomous Mobile Robots: A Comprehensive Survey

including navigation, decision-making, and automatic control, using sensors

= § rindings: and advanced software. Localization, a key element of navigation, involves

® s f:;i%':;;‘;i"ﬁ;";:m%‘j‘% determining mobile robots' precise location and orientation. As most of the

\ —a ) e — outdoor robots utilize Global Positioning System (GPS)-based data to navigate,
Ao B i this study surveys advancements in GPS (Global Positioning System)-assisted
/ G localization for autonomous mobile robots focusing on sensor fusion

Real-Time Adaptale technology. The methodology includes collecting and analyzing papers from

— - 2018 to 2024 using keywords such as GPS accuracy improvement, autonomous

Sl St g navigation, outdoor localization, autonomous vehicle, and autonomous

mobile robot. The classification and examination of the chosen papers offer a
comprehensive overview of the advantages and disadvantages of sensors
and methods used to improve GPS accuracy, and the evaluation of these
sensors and methods to identify the optimal solution available. Notably, several
sensor fusion approaches have demonstrated substantial improvements, for
instance, reducing localization errors from 79 to 3.7 meters which thereby
highlighting the study’s practical significance. The findings also indicate that
visual sensors and fiducial markers are potential opfions to mitigate GPS signal
loss, advanced filtering algorithms provide better accuracy and reliability, and
real-time adaptive systems improve performance under various conditions,
ensuring more reliable navigation. The integration of sensor fusion and
advanced algorithms will provide significant technological progress in
autonomous systems and intelligent environments.

Keywords: GPS accuracy, outdoor localization, sensor fusion, sensor
infegration, autonomous mobile robot, localization algorithm

Abstrak

Teknologi autonomi membolehkan robot mudah alih melaksanakan pelbagai
fungsi, termasuk navigasi, membuat keputusan dan kawalan automatik,
dengan menggunakan pelbagai  penderia  dan perisian  lanjutan.
Penyetempatan, elemen utama navigasi, melibatkan penentuan lokasi dan
orientasi tepat robot mudah alih. Menurut kajion terdahulu, kaedah
Correntropy Kalman Filter (CKF) meningkatkan ketepatan GPS sebanyak 34%.
Oleh itu, kajian ini meninjau kemajuan dalam penyetempatan berbantu GPS
(Global Positioning System) untuk robot mudah alih autonomi yang
memfokuskan pada teknologi gabungan sensor. Metodologi termasuk
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mengumpul dan menganalisis kertas kerja dari 2018 hingga 2024
menggunakan kata kunci seperti peningkatan ketepatan GPS, navigasi
autonomi, penyetempatan luar, kenderaan autonomi dan robot mudah alih
autonomi. Pengelasan dan pemeriksaan kertas yang dipilih menawarkan
gambaran menyeluruh tentang kelebihan dan kekurangan penderia dan
kaedah yang digunakan untuk meningkatkan ketepatan GPS, dan penilaian
penderia dan kaedah ini untuk mengenal pasti penyelesaian optimum yang
tersedia. Terutamanya, beberapa pendekatan gabungan sensor telah
menunjukkan peningkatan yang ketara, confohnya, mengurangkan ralat
penyetempatan daripada 79 kepada 3.7 meter—dengan itu menonjolkan
kepentingan praktikal kajian. Penemuan juga menunjukkan bahawa penderia
visual dan penanda fidusia merupakan pilihan yang berpotensi untuk
mengurangkan kehilangan isyarat GPS, algoritma penapisan lanjutan
memberikan ketepatan dan kebolehpercayaan yang lebih baik, dan sistem
penyesuaian masa nyata meningkatkan prestasi dalam pelbagai keadaan,
memastikan navigasi yang lebih dipercayai. Penyepaduan gabungan sensor
dan algoritma lanjutan akan memberikan kemajuan teknologi yang ketara
dalam sistem autonomi dan persekitaran pintar.

Kata kunci: Ketepatan GPS, penyetempatan luar, gabungan sensor,
penyepaduan sensor, robot mudah alih autonomi, algoritma penyetempatan

© 2026 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

The development of autonomous mobile robots
(AMRs) has advanced significantly over the past few
decades, driven by the increasing demand for
intelligent systems capable of navigating and
performing tasks in complex environments. One of the
fundamental aspects of autonomous vehicles and
robots is the ability to accurately determine their
position and orientation within a given space, known
as localization. Effective localization is crucial for
deploying AMRs in various applications, including
industrial automation, search and rescue operations,
agricultural robotics, and urban mobility solutions [1].

GPS is a commonly used navigation sensor to
determine location and direction in advanced vehicle
and mobile robot systems [2], [3]. Originally developed
to enhance military tactics, GPS relies on data from
safelite to provide two or three-dimensional
positioning on Earth. It operates through a
constellation of satellites that transmit signals fo GPS
receivers, enabling accurafe location determination.
The accuracy of the determined position improves
with the number of satellites used in the analysis [4], [5].
Typically, a GPS receiver tracks multiple satellites,
although the actual number may vary depending on
the time and geographical location.

While GPS offers advantages in global positioning, it
also faces limitations, partficularly in regions with poor
satellite visibility. Positional inaccuracies of 10 to 15
meters are common, which can hinder precise
navigation [6]. Additionally, GPS signals are often
weak or unavailable in indoor environments or densely
populated areas with tall buildings [7] [8]. leading fo
challenges for AMRs navigating in such conditions [?].
Therefore, these limitations highlight the need for
complementary technologies to enhance GPS
accuracy and reliability.

This study addresses the research problems concerning
the limitations of GPS and the need for supplementary
sensors.  What sensors can improve GPS precision?
Sensor fusion fechniques have been utilized to improve
the accuracy of GPS-based localization and resolve
these difficulties. In this technique, a GPS-aided
localization system combines the GPS data with
additional information from other sensors such as
inertial measurement units (IMUs), inertial navigation
systems (INS), magnetometers, LIDAR (Light Detection
and Ranging), and radar [10] [11]. Sensor fusion
infegrates data from multiple sources to reduce
uncertainty, minimize environmental interference, and
improve the accuracy and reliability of localization
systems [12], [13], [14], [15]. By leveraging sensor
fusion, AMRs can maintain precise trajectories towards
stationary or moving targets, even with minimal prior
knowledge of their surroundings. This integration
compensates for the weaknesses of standalone GPS
systems, ensuring robust and accurate localization.

This study differs from existing literature in [16] by
providing a detailed comparison of the sensor fusion
technologies and methodologies for enhancing GPS
accuracy. It evaluates the benefits and drawbacks of
various sensor combinations and identifies the most
effective approaches for improving localization
accuracy in AMRs.

This paper aims to provide a comprehensive survey
of the advancements in GPS-aided localization for
autonomous mobile robots focusing on sensor fusion
technology. It explores state-of-the-art techniques,
discusses the infegration of multiple sensors, and
highlights the ongoing efforts to overcome the
inherent limitations of GPS technology. By investigating
various methodologies and their effectiveness in
enhancing localization accuracy, this survey seeks to
offer significant insights info the current state of
autonomous  vehicle and robot  navigation.
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Additionally, it proposes potential topics for future
research and improvement, aiming to advance the
reliability and precision of autonomous systems in
diverse environments.

The contributions of this study can be further outlined
as follows:

1. Comprehensive Review of GPS-Aided Localization
Technologies: This study provides an extensive
review of the current GPS-aided localization
technologies employed in autonomous mobile
robots. The review covers various methodologies,
their applications, and the advancements in
enhancing GPS accuracy for better navigation
and localization performance.

2. Evaluation of Sensor Combinations: The study
evaluates the effectiveness of different sensor

combinatfions in enhancing GPS accuracy—

including an in-depth analysis of how integrating

multiple sensors, such as IMUs, LIDAR, and cameras,
can improve the overall localization accuracy and
reliability of autonomous systems.

3. Assessment of Advanced Techniques: A crifical
assessment of advanced techniques such as
Kalman filters, Al-based methods, and Bayesian
approaches is conducted to identify the most
effective methods for improving GPS accuracy. The
study compares these techniques based on their
performance, computational efficiency, and
practical applicability in real-world scenarios.

4. ldentification of Challenges and Limitations: The
study identifies the existing challenges and
limitations in the current GPS-aided localization
technologies. It highlights the areas where further
research and innovation are needed, providing a
roadmap for future studies to address these gaps
and enhance the capabilities of autonomous
mobile robots.

This paper is further organized to provide a
comprehensive exploration of GPS-aided localization
for autonomous mobile robots. Section 2 details the
survey methodology, including bibliometric analysis
that explains research performance, identifies trends
and research impacts in the field of GPS improvement,
and the literature study that explains the approach
used to compile and analyze the most relevant
literature. Section 3 provides an overview of current
GPS localization technologies, highlighting key
innovations and challenges specific fo autonomous
mobile robot applications. Section 4 examines auxiliary
sensors that enhance GPS accuracy, exploring the
critical role and interplay with GPS data. Section 5
focuses on sensor fusion fechniques, illustrating how
multiple sensors are combined to create robust and
precise localization systems. Section 6 outlines future
directions and potential gaps in GPS-aided
localization, offering insights intfo emerging trends and
research opportunities. Finally, Section 7 concludes
with the key findings of this study.

2.0 METHODOLOGY

The methodology applied in this literature review
infegrates bibliometric analysis with a systematic
approach to collecting, filtering, and analyzing
research papers relevant to GPS-based accuracy
within the domain of navigation, localization, vehicles,
and outdoor robotics. The bibliometric analysis offered
valuable insights into the evolving research trends and
highlights areas of increasing academic interest
related to GPS technologies. In this study, the
bibliometric approach provided a broad overview of
research frends regarding GPS technologies and
applications without requiring extensive filtering.

During the literature review phase, the inclusion
and exclusion criteria, presented in Table 1, were
systematically applied. These criteria, guided by the
research question “Which sensors and methods
enhance GPS accuracy, and how do these sensors
and methods compare to identify the optimal choice
for improving GPS accuracy?” involved a structured
evaluation of titles, abstracts, and full texts to ensure
relevance to the research subject. An explicit
exclusion criterion was the elimination of review
papers, which ensured that the final selection
consisted exclusively of research articles published in
peer-reviewed journals and conference proceedings.
All selected publications addressed development,
simulation, and experimentation related to GPS
accuracy improvements.

Table 1 Inclusion and exclusion criteria

Selection Criteria
Inclusion Peer reviewed
Technical field
Publication of 2018 — 2024
Academic  publications  (journal  and
conference proceedings)
Exclusion Review articles

Non-English language publications
Inaccessible articles

The selection of publication data from 2018 to 2024
ensured that the review reflected the most recent
technological development and trends in sensor fusion
and GPS accuracy enhancement techniques.
Moreover, publications from this period were readily
accessible, ensuring the relevance and currency of
the review. Figure 1 illustrates the literature collection
process for obtaining papers relevant to the research
focus. During the identification stage, a vast amount of

data was gathered—using predetermined

keywords—covering a wide range of topics. Then,
further filtering processes were implemented to refine
these data and acquire relevant literature by including
specific terms such as GPS, IMU, INS, and odometry, as
this research also focuses on using these sensors.
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Studies were identified using Web of Science database with the keyword
search: "GPS accuracy improvement,” "autonomous mobile robot,”
“autonomous navigation," “autonomous vehicle," "enhanced GPS,"

“localization algerithm," “outdoor localization," “sensor fusion,” and “sensor

integration.”
The time range is from 2018 to 2024,
The database source is Web of Science.
[N=20,614)

Identification

13 articles duplicated

514 review articles excluded

]

A
Without duplicated and review articles (title and abstract
screening per year including words GPS; IMU; INS; Odometry;
outdoor robot: outdoor vehicle)

(N=325)

Screening

50 articles excluded (no
access)

|

\

Full-text articles assessed for eligikility

Eligibility

43 articles excluded with
reasons

|

Y

Included

Articles included
(N=109)

Figure 1 Literature collection process

2.1 Bibliometric Analysis

Before commencing the more in-depth literature
survey, a bibliometric analysis was conducted, as it is a
useful method for objectively assessing academic
work and offering a comprehensive representation of
the research topic [17].

Bibliometric analysis provides a comprehensive
understanding of the progression and trends of
research related fo the subject area under
investigation. For the purpose of this investigation, the
Web of Science database was utilized, employing the
following keywords: "GPS accuracy improvement,”
"autonomous mobile robot," "autonomous navigation,”
"autonomous vehicle," "enhanced GPS," "localization
algorithm," "outdoor localization," "sensor fusion," and
"sensor intfegration." The search query produced a total
of 20,614 academic documents—including articles,
conference papers, review articles, and early-access
publications—published between 2018 and 2024.
Then, these documents were exported info the RIS
format for further analysis. The metadata extracted
from these documents were subsequently analysed
using VOSviewer, with a keyword occurrence
threshold of 20. This threshold was selected to simplify
visualization by ensuring only terms appearing more
than 20 fimes were included, resulting in a
manageable dataset of 813 keywords out of an initial
43,701. The implementation of this approach
guarantees that only terms exhibiting a sufficiently high
frequency are considered, hence facilitating the
identification of significant research patterns and
simplifying the visualization process.
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Figure 2 VOSviewer network visualization

Figure 2 presents seven clusters, each represented
by a distinct color. The nodes with the largest size
indicate the most frequently occurring terms in the
analyzed documents. The dominant keywords
frequently employed in academic literature are
"sensor fusion,” "autonomous vehicle," "localization,”
"navigation,” "autonomous navigation,” "system,"
"model," and "deep learning." Table 2 summarizes
selected keywords that are closely associated with the
current research under investigation. The visual size of
the nodes correlates with the frequency of keyword
occurrence, notably evident in keywords such as
"sensor fusion,” "autonomous vehicle," "navigation,”
and "localization.”

Table 2 Keywords mapping

Keywords Occurrences _ Total link strength
sensor fusion 3.116 12,251
autonomous 3,458 13,730
vehicle
navigation 1,054 5,489
autonomous 1,076 3,503
navigation
localization 1,269 5,074
outdoor 31 86
localization
system 978 4,637
model 810 3.764
deep learning 799 3,187
mobile robot 597 2,567
autonomous 273 819
mobile robot
gps 197 865
global 97 747
positioning
system
accuracy 126 646
sensor 162 282
integration
kalman filter 785 4,139
extended 248 1,071

kalman filter
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This paper specifically explores "GPS accuracy
improvement,” emphasizing the keywords "GPS or
global positioning system" and "accuracy.”

Figure 3 illustrates varying thicknesses of the labels
for "accuracy" and "GPS" nodes, suggesting the
frequency of use in the analysed documents. This
analysis is also highlighted in Table 2, where the
keywords "GPS" and "accuracy" appear only 197 and
126 times, respectively. Figure 4 Illustrates the
connection between the "GPS" node and the
concurrent "sensor fusion," "navigation," "localization,"
and "GNSS" nodes, highlighting the use of GPS sensors
as one of the employed sensors in research areas
related to sensor fusion, navigation, and localization
systems. Figure 5 further indicates stronger usage of
GPS sensors in navigation compared to localization, as
visually depicted by the thicker label for GPS in the
navigation network versus the localization network
(Figure 6).

GPS

acuracy

it 1S

algorithi
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computer vision

o

Figure 4 GPS network

Figure 6 Localization network
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Figure 8 Current trend in GPS research (retrieved August 20,
2024)
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Figure 7 highlights the association between "accuracy"
and ‘"sensor fusion" nodes, suggesting sfrong
correlations between sensor fusion research and the
accuracy of the employed sensors. Nevertheless, the
lack of a direct connection between "accuracy" and
the "GPS" indicates that investigations related to GPS
rarely encompass an assessment of the accuracy of
GPS sensors. This finding identifies a significant research
aap, emphasizing opportfunities for future
investigations into "GPS accuracy improvement.”

Figure 8 presents a stafistical pattern from
academic publications related to the aforementioned
keywords, specifically focusing on the enhancement
of GPS accuracy. The observed trend has exhibited a
consistent upward trend over the years, suggesting
that further investigation into enhancing GPS
accuracy remains highly promising. The data analysis
reveals that 63% of the publications are academic
journals, while 37% are conference proceedings.
Moreover, most of the research comprises 98%
technical publications, whereas review articles
constitute a mere 2% of the total.

2.2 Lliterature Study

The following outline clearly describes the steps
undertaken to ensure a comprehensive and focused
literature review, as well as highlighting the key
confributions of the study:

A. Literature Search and Collection

The first step involves an extensive literature search to
collect relevant research papers. This process

included:
1. Keywords ldentification: The keywords used for
the search were "GPS accuracy improvement,”

"autonomous mobile  robot," “"autonomous
navigation,” "autonomous vehicle," "enhanced
GPS" "localization algorithm," "outdoor
localization,” ‘"sensor  fusion,” and "sensor

infegration." These keywords were specifically
selected to cover a broad spectrum of research
areas within the scope of GPS accuracy in
autonomous systems.

2. Databases and Sources: The search used multiple
academic databases, including IEEE Xplore,
Google Scholar, Scopus, and Web of Science.
These databases provided access to a wide
range of peer-reviewed journals and conference
proceedings.

3. Initial Search Results: The initial search yielded a
large number of papers. These documents were
then further screened based on titles and
abstracts to assess their relevance to the topic of
GPS accuracy improvement.

B. Filtering and Selection

A refined selection process was then applied to the
initial pool of papers to specifically identify research

addressing methods for improving GPS accuracy. The
steps included:

1. Relevance Screening: Abstracts and conclusions
were carefully examined to eliminate papers that
did not directly address GPS accuracy
enhancement within the targeted contexts.

2. Full-Text Review: The remaining papers underwent
a full-text review to assess their contributions to
the field. Only those that provide significant
insights, methodologies, or experimental results
related to GPS accuracy enhancement were
included in the final selection.

C. Data Categorization and Analysis

The selected papers were categorized and analysed
to provide a structured overview of the current
research landscape:

1. Publication Type:

o Academic Journals: 58% of the collected
papers are from academic journals. These
papers undergo rigorous peer-review
processes, ensuring high-quality and reliable
confributions.

o Conference Proceedings: 42% of the papers
are from conference proceedings.
Conferences often present the latest research
findings and emerging trends, making them a
valuable source of current information.

2. Research Type:

o Development: 8% of the papers focus on
developing new technologies, algorithms, or
systems to improve GPS accuracy. These
confributions  often  include  innovative
approaches and theoretical advancements.

o Simulation: 27% of the papers use simulation
methods to model and test various hypotheses
or systems related to GPS accuracy.
Simulations provide a confrolled environment
for evaluating the effectiveness of different
approaches.

o Experiment: 65% of the papers are based on
experimental research. These studies provide
empirical data and practical insights by
festing GPS accuracy improvements in real-
world conditions or controlled experiments.

D. Temporal Analysis

Following initial keyword-based filtering, additional
filtering was performed to specifically analyse research
papers focused on GPS enhancement in mobile
robots using sensor fusion, as shown in Table 3. This
temporal analysis helps to identify research frends,
advancements, and changes in research focus over
time. Understanding the temporal distribution of
research can highlight periods of increased interest or
significant breakthroughs in the field of GPS accuracy
for autonomous systems.
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Table 3 Publications across the year

Number
Year References
of Papers

2018 13 [71. 18], [19]. [20], [21], [22], [23]. [24].
[25], [26], [27]. [28], [29].

2019 12 [91. [30], [31]. [32]. [33], [34], [35], [34].
[37], [38], [39]. [40], [41].

2020 14 [6], [42], [43], [44]. [45], [46], [47], [48].
[49], [50], [51], [52], [53], [54], [16].

2021 13 [55], [56], [57], [58]. [59]. [60], [61]. [62].
[63], [64], [16], [65], [66].

2022 16 [67], [68], [69], [70]. [71]. [72], [73]. [74].
[75], [76]. [77]. [78], [79]. [80]. [81], [82].

2023 19 [8]. [83]. [84]. [85]. [86]. [87]. [88]. [89].
[90], [21]. [92]. [93]. [94]. [95]. [926]. [97].
[98], [99]. [100].

2024 20 [13], [101], [102], [103], [104], [105], [106],
[107], [108], [109], [110], [111], [112],
[113], [114], [115], [116], [117], [118],
[119].

3.0 CURRENT GPS LOCALIZATION

TECHNOLOGIES FOR AUTONOMOUS MOBILE
ROBOTS

Localization refers to the process of accurately
determining the position of an object within a
predefined coordinate reference system utilyzing
specialized technologies and methodologies, such as
sensors, signal processing or sensor fusion. This
capability is essential for tasks involving navigation,
identification, or mapping in autonomous system.
Localization is frequently employed in advance
vehicle and mobile robot systems to precisely
determine the whereabouts of vehicles or mobile
robofts.

Localization algorithms typically leverage sensor-
derived measurements, including distance and
bearing relative to known reference points (commonly
referred to as anchors or beacons), to estimate the
robot's or vehicle's position [120]. These anchors or
beacons possess globally established coordinates and
serve as fixed reference points for localization process.

Localization techniques can be broadly classified
info two categories [121]: geomefric and non-
geometric approaches. Geometric approaches rely
on spatial measurements such as distance, angles, or
positional relationships  with reference points fo
determine an object's relative position. Conversely,
non-geometric methods use non-geometric data fo
determine position or location, such as radio signals,
sensor data, image processing, fiducial markers, or
advanced data analysis techniques.

GPS-based localization is a technique that uses
data from the Global Positioning System (GPS) fo
accurately determine an object's location [122]. GPS
offers notable benefits for robots [6]. [7], [8]. [83]. [67].
allowing them to navigate precisely even with limited
knowledge of their surroundings. The location data
provided by GPS is also vital for tracking vehicle or
mobile robot movements in real-time. Additionally, the

ability of robots to transmit their location through
wireless signals facilitates effective remote monitoring
and control. Although GPS has various advantages, it
also has major limitations, including the possibility of
losing GPS signals in heavily populated regions with talll
structures and inherent positional inaccuracies.
Consequently, integrating supplementary sensors is
often necessary to refine GPS localization accuracy
and mitigate these limitations.

This section reviews the state-of-the-art GPS-aided
localization technologies and methodologies utilized in
autonomous mobile robots.

Standard GPS: Geographical coordinates and time
information are transmitted via satellites via the Global
Positioning System (GPS), which operates regardless of
the weather and in close proximity to any location on
Earth. Standard GPS operates using a constellation of
at least 24 satellites that orbit the Earth, transmitting
signals to GPS receivers on the ground [123]. These
receivers use the time delay between when a signal is
sent and received to calculate the distance from
multiple satellites and determine the precise location.
Figure 9 illustrates the diagram of GPS constellation
and signal fransmission.

2 To triangulate, GPS
measures distance using

radio signal travel times. 3 Each satellite sends

its location and the
precise time of its

\ transmission.
t 4 GPS user equipment

1 GPS operation is
based on triangulation of
satellite signals. J”
]
receives the signals from
each satellite and records

its position and the
arrival time.

‘ 5 The GPS receiver
computes position from

’ the calculated distances.

User's 3-dimentional
coordinates and precise
time are calculated using
signals from four
satellites

Figure 9 Standard GPS works (adopted from [124])

The accuracy of standard GPS is often limited to 10-
15 meters due to various sources of error [6].
Atmospheric disturbances, such as ionospheric and
fropospheric delays, can affect the speed of the GPS
signals as they fravel through the Earth's atmosphere.
Multipath effects occur when GPS signals bounce off
buildings or other structures before reaching the
receiver, causing inaccuracies. In urban environments,
non-line-of-sight (NLOS) signals caused by reflections
from tall buildings remain a major source of positioning
errors. A GPS receiver requires signals from at least four
satellites to determine for accurate location
determination. However, signals from NLOS satellites
reflected by tall buildings can increase the pseudo-
range, the estimated distance between the satellite
and the GPS receiver, leading to errors in positioning
[104]. Additionally, satellite clock inaccuracies and
orbital errors contribute to the overall error margin.
Despite these limitations, GPS remains a foundational
technology for many localization systems, providing a
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global frame of reference and supporting a wide
range of applications from navigation to timing
services.

Differential GPS (DGPS): DGPS enhances the
accuracy of standard GPS by using a network of fixed
ground-based reference stations [125]. These stations
are located at known positions and the difference
between their frue location and the location indicated
by the GPS satellites is calculated. The reference
stations then broadcast this correction data to DGPS
receivers, which use the information to correct their
GPS signals. This process significantly reduces errors,
achieving an accuracy of 1-3 meters. Figure 10
illustrates the DGPS system that can give positional
correction and better accuracy than standard GPS.

DGPS is particularly useful in applications where
higher precision is required. Agriculture benefits from
DGPS for precision farming techniques, such as
planting and harvesting crops with minimal overlap or
gaps [126]. Marine navigation uses DGPS for safe and
efficient vessel navigation in crowded or hazardous
waters [127]. Additionally, DGPS is used in surveying,
where precise measurements are crucial for mapping
and construction projects. By improving GPS data
accuracy, DGPS helps autonomous mobile robots
navigate more reliably and perform tasks with greater
precision.

) Refference
receiver

Correction .

Moving ) ——signal

receiver

Figure 10 DGPS illustration (adopted from [128])

Real-Time Kinematic (RTK) GPS: RTK GPS provides
centimetre-level accuracy by using carrier-based
ranging and correction signals from a fixed base
station [129], [130]. The RTK system comprises a base
station and one or more rover units. The base stafion
remains at a known, fixed position and broadcasts the
carrier wave phase that the GPS safellites use. The
mobile rover unit receives these signals from the base
station and the satellites. By comparing the phase of
the carrier wave from the base station with the phase
received directly from the satellites, the rover can
determine its position with high precision. Figure 11
illustrates the RTK-GPS system.

Same Satellite Constellation

Carrier Phase Radio Link
(Base station - Rover or .

Rovers)  (Track 5 satellite minimum)
o

& &

Transmission

T
Antenna 1010 20 km
+ I‘ Base Station

(Known Position)

Rover
(Project Point)
\\ &, GPS Receiver

Figure 11 The idea behind RTK GPS surveying (adopted from
[131])

Transmitter

RTK GPS is widely used in applications requiring high
precision. Construction projects benefit from RTK GPS
for tasks such as grading and excavation, where
accurate positioning is critical. Surveying uses RTK GPS
to create highly detailed and accurate maps and fo
lay out property boundaries. Precision agriculture
employs RTK GPS for automated steering systems on
tractors and other equipment, enabling precise
planting, fertilizing, and harvesting.

Despite its high-level accuracy in localization

systems, RTK systems also come with several
disadvantages, including:
e Infrastructure Requirements: RTK requires a

network of base stations to provide correction
signals, which can be costly and complex to set
up and maintain, especially in large or remote
areas.

e Line-of-Sight Dependency: RTK performance relies
on a clear line of sight between the base station
and the rover receiver. Obstructions such as
buildings, frees, or ferrain can interrupt the
correction signal, reducing accuracy.

e High Cost: RTK systems are generally more
expensive than standard GPS receivers, which
can be a barrier to widespread adoption,
particularly in cost-sensitive applications.

e Data Transmission: RTK systems require a reliable
data link between the base stafion and the rover
receiver fo fransmit correction data. This
requirement can be challenging in areas with
poor coverage or during network outages.

o Susceptibility to Interference: RTK signals can be
affected by radio frequency interference and
atmospheric conditions, which can degrade
performance and reliability.

Integrating these advanced GPS-aided localization
technologies—standard GPS, DGPS, and RTK GPS—into
autonomous mobile robots significantly enhances their
navigation and operational capabilities.  Each
technology addresses specific limitations of standard
GPS, providing varying levels of accuracy suitable for
different applications.




173 Vita Susanti et al. / Jurnal Teknologi (Sciences & Engineering) 88:1 (2026) 165-189

In the next section, a comprehensive evaluation of
various sensor combinations commonly used to aid
GPS localization and their effectiveness in enhancing
GPS accuracy will be presented. This includes an
analysis of how these sensor combinations work
together to overcome GPS's inherent limitatfions,
thereby ensuring more reliable and precise localization
for autonomous mobile robots in diverse environments.

4.0 AUXILIARY SENSORS FOR
GPS ACCURACY

IMPROVING

Various sensors can be infegrated with GPS
technology to enhance the accuracy of GPS-based
localization for autonomous mobile robots. These
sensors provide additional data that can be fused with
GPS signals to correct errors and improve overall
positioning accuracy. This secfion explores the
commonly used sensors and their roles in enhancing
GPS accuracy.

LIDAR, RADAR, ulfrasonic sensors, and cameras are
the primary sensors employed in autonomous mobile
robots to enhance object recognition accuracy and
localization. However, the detection, localization, and
positioning capabilities of these individual systems are
inadequate when used alone [132]. As a result, if is
necessary to integrate these sensors with navigation
and motion measurement sensors to improve the
accuracy of position estimates and provide essential
data for navigation purposes.

LIDAR (Light Detection and Ranging) [133]: LIDAR
sensors use laser pulses to measure distances to
surrounding objects, creating detailed 3D maps of the
environment. A LIDAR system initiates the sensing
process by generating laser pulses towards a specified
location. When these pulses encounter barriers, they
reflect a fraction of their emitted light to the LIDAR
sensor. By calculating the duration of each laser pulse
and leveraging the constant speed of light, LIDAR
determines the distance to the target [134]. This
technology is highly accurate, reaching centimetre-
level accuracy [135] and can operate in various
lighting conditions, making it an excellent sensor to be
fused with GPS for both outdoor and indoor
navigation. LIDAR provides high-resolution data that is
critical for detecting and avoiding obstacles, mapping
the environment, and performing precise localization.
In addition, using LIDAR is also strongly recommended
for precision measurements over long distances.
However, LIDAR systems can be expensive and
computationally intensive [136] and high-power
consumption [137], requiring efficient processing
algorithms to handle the large volumes of data
generated.

RADAR [138]: RADAR sensors emit radio waves and
measure the fime it takes for the waves to bounce
back from objects, providing information about the
object's distance and relative speed. RADAR is
particularly useful in adverse weather conditions, such
as fog, rain, or snow, where opftical sensors like

cameras and LIDAR might struggle. RADAR's ability to
penefrate certain obstacles and ifs robustness fo
environmental condifions make it a valuable addition
to GPS for enhancing localization accuracy. However,
RADAR typically offers lower resolution than LIDAR,
necessitating the infegrafion of multiple sensors for
comprehensive environmental perception.

Ulirasonic _Sensors: Ultrasonic sensors use sound
waves fo detect objects and measure distances,
making them ideal for short-range obstacle detection
and avoidance. They are commonly used in
applications such as parking assistance and low-speed
manoeuvring. Ultrasonic sensors are relatively low-cost
and can operate in various lighting conditions [139].
However, their range and resolution are limited, and
they are primarily effective for detecting large, solid
objects rather than fine details in the environment.

Cameras [140]: Cameras capture visual information
about the environment and are widely used for object
recognition,  tracking, and navigation. When
combined with GPS, camera data can enhance
localization by providing visual cues and landmarks
that help correct GPS errors. Visual SLAM (Simultaneous
Localization and Mapping) algorithms use camera
data to build and update maps of the environment in
real-time, offering precise localization even in GPS-
denied areas. Cameras are relatively low-cost and
provide rich environmental information, but their
performance can be affected by lighting conditions
and require significant computational resources for
image processing.

Inertial Measurement Units (IMUs) [141]: IMUs consist
of accelerometers and gyroscopes that measure
linear acceleration and angular velocity, respectively.
Another type of IMU is the Micro-Electro-Mechanical
Systems Inertial Measurement Unit (MEMS-IMU), which
uses MEMS technology to produce miniature sensors.
The MEMS-IMU is extensively utilized in military and
civiian applications due to its compact size,
affordability, robust autonomy, and comprehensive
navigation data [35]. The Inerfial Navigation System
(INS) integrates data from an IMU with sophisticated
algorithms to deliver uninterrupted location and
velocity estimates. These systems are beneficial in GPS-
denied environments, such as funnels or indoor areas.
IMUs provide high-frequency data that can help
bridge the gaps between GPS updates, particularly
useful in environments where GPS signals are weak or
infermittent. However, IMUs suffer from drift over time,
leading to cumulative errors if not corrected by other
sensors, such as GPS or magnetometers. INS can
correct long-term drift in  IMU measurements by
integrating GPS data, offering a more stable and
accurate localization solution. Advanced inertial
navigation system (INS) implementations frequently
include Kalman filters to effectively merge data from
many sources, hence improving the overall precision
and dependability of the navigation system [142].

Odometry: Odometry uses data from wheel
encoders to estimate the distance mobile robots
travel. It is a valuable short-term position estimation
tool and particularly useful in structured environments
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like warehouses or factories. Odometry is essential for
robot navigation. It provides relative movement data
that can complement GPS by filing in the gaps
between GPS updates [134]. However, it is susceptible
to errors due to wheel slippage, uneven terrain, and
other factors affecting wheel-ground contact [143].
Integrating odometry with GPS helps mitigate these
errors and improves overall localization accuracy.

5.0 IMPROVEMENT OF GPS
LOCALIZATION USING SENSOR FUSION

BASED

Even though GPS provides significant benefits for
autonomous robot localization—especially in terms of
global coverage and ease of integration—its reliability
can be compromised by signal loss, mulfipath effects,
and inaccuracies in dense urban areas. To address
these limitations and improve GPS accuracy,
intfegration with additional sensors becomes essential.

corrects errors, and provides more robust positioning
across diverse environments.

5.1 Sensor Combinations Used in Autonomous
Navigation

Table 4 summarizes various sensor combinations
commonly used in aufonomous  navigation,

emphasizing their respective benefits and drawbacks.
In the following discussion, these methods are
compared more directly, with illustrative real-world
applications explicitly mentioning their limitatfions,
computational  considerations, and deployment
requirements.

The integration of GPS with various sensors—such as
IMU, MEMS-IMU, odometry, INS, ultrasonic, and LIDAR—
enables the development of advanced navigation
capabilities with exceptional precision in localization.
Nevertheless, each sensor combination is associated
with its own set of challenges, such as disruptions in
GPS signals, inaccuracy of sensors in specific scenarios,

Sensor fusion, which combines data from various exorbitant  expenses, and complex installation
sensors, has potential to improves overall precision, procedures.
Table 4 Sensor combinations in autonomous navigation: advantages and disadvantages
Sensors used Advantage Disadvantage Ref

GPS, IMU GPS provides precise position accuracy that is  Building reflections and electronic noise can [18],
critical for autonomous navigation, while IMU  disrupt GPS accuracy, while IMU errors due to  [56],
provides weather-resistant motion data that is temperature and vibration can compound over  [77],
essential for speed estimation and navigation in  time unless corrected by external data like GPS.  [144],
GPS signal-limited areas. [145]

GPS, MEMS-IMU, The combination of GPS with MEMS navigation  GPS inaccuracies due to multipath effects and  [25],

odometry systems helps reduce position and velocity limitations in MEMS-IMU sensors contribute fo  [33],
errors in navigation by improving inertial sensors,  navigation errors in position and orientation.  [35]
while odometry through wheel monitoring Temperature changes and road conditions
supports position estimation in environments further affect odometry performance and
with GPS signal disturbances. position estimation accuracy.

GPS, IMU, Visual The combination of GPS, IMU, and visual VO is sensitive to environmental changes (e.g., [41]

Odometry odometry (VO) help maintain localization when  poor lighting, texture less surfaces) and can lose
GPS data is unreliable. IMU and VO suffer from  frack of features, leading to errors. Sensor fusion
cumulative drift over fime, but GPS corrects requires precise  calibration and  fime
these errors, keeping the robot’s position stable.  synchronization among GPS, IMU, and VO,

which can be challenging in dynamic
environments.

GPS, INS GPS and INS integration enhances navigation GPS accuracy can suffer from slow updates [7],
accuracy by using GPS as a reference to and signal disruptions, while INS may have [9],
correct INS errors, particularly in challenging errors, particularly in estimating yaw rotation  [19],
environments with limited GPS signals. angles. [23],
Its integration features small size, low cost, high  Impulsive non-Gaussian sounds can disrupt GPS  [31],
precision, and strong autonomy. signals, reducing navigation system reliability.  [54],
GPS enhances multi sensor navigation precision  Strong filtering techniques are needed, as [101]
with reliable position data, while gyroscopes traditional GPS algorithms may not suffice.
and accelerometers monitor orientation and  Gyroscopes, which are prone to drift, require
motion when GPS is unavailable. calibration to maintain accuracy.

GPS, INS, The combination of INS and odometry improve Odometry can cause significant errors if the [16]

Odometry the limitations of GPS, which can lose signal or  wheels move or slip on uneven surfaces.
experience multipath errors. While GPS assists
INS  and odometry in mitigating the
accumulation of error (drift) that arises from
prolonged use of INS or odometry.

GPS, ultrasonic/  GPS aids in determining the robot's position and ~ GPS devices with high energy consumption can  [20],

detection destination; ultrasonic sensors prevent collisions decrease a robot's battery life, and adverse [57],

sensors by measuring distances, while detection sensors  weather conditions can disrupt GPS signals,  [65].
ensure safe and efficient movement by leading to difficulties in determining the robot's  [69],
avoiding obstacles. location.

GPS, LIDAR GPS provides accurate outdoor positioning Indoor GPS accuracy can  vary, often  [30],
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Sensors used Advantage

Disadvantage Ref

before entering indoor spaces, while LIDAR
helps the robot achieve precise movement.
Together, they ensure reliable navigation in  and

necessitating additional sensors like LIDAR for [55]
precise positioning. However, LIDAR's high cost
complex installation are  notable

open and enclosed environments, enabling drawbacks.
robots to operate effectively and safely in

various scenarios.

Simple pairings of GPS with an IMU provide a
balance of precise position data and additional,
continuous motion readings, making them particularly
useful in scenarios where GPS signals intermittently
degrade [18], [56], [77]. [144], [145]. Nevertheless,
building reflections and temperature-induced drift in
the IMU can compound errors if external GPS
corrections are not applied consistently. Some
deployments extend this sefup by including GPS, a
MEMS-IMU, and odometry, where the lower-cost
MEMS-IMU contributes compact inertial sensing and
odometry bolsters position estimates in environments
prone to GPS signal disturbances [24], [32], [34].
However, road condition changes, multipath effects,
and inherent sensor limitations can degrade
orientation accuracy unless robust calibration and
error-filtering procedures are in place.

Other approaches merge GPS, IMU, and Visual
Odometry (VO) to stabilize localization when GPS
signals are unreliable [41]. GPS aids in correcting drift
that accumulates from VO and IMU measurements,
though effective time synchronization, precise
calibration, and adequate environmental features are
essential to avoid fracking failures—particularly in
poorly lit or low-texture settings. A more integrated
solution uses GPS and INS—where the IMU feeds into
an onboard navigation system that tracks position,
velocity, and orientation. This method helps correct INS
errors via GPS signals in challenging or partially
obstructed areas [7], [?], [19]. [23]. [31]. [54], [101].
However, updating rates and signal disruptions can still
pose accuracy challenges if gyroscopic drift or non-
Gaussian noise is not properly handled through
advanced filtering.

Some implementations add odometry fo the INS-
based setup to form a GPS, INS, and odometry
combination, where INS drift is partially mitigated by
odometry inputs when GPS quality declines [54]. If
wheels slip or ground conditions vary, though,
odometry errors can grow rapidly, highlighting the
need for continuous calibration and appropriate
filtering. Meanwhile, simpler obstacle-avoidance
scenarios may only require GPS teamed with ultrasonic
or detection sensors, ensuring fundamental collision
warnings at low speeds or short ranges [20], [57], [65].
[69]. Although this setup is relatively cost-effective and
power-efficient, it offers limited mapping capacity and
depends heavily on stable GPS power and signal
availability.

At the higher end, GPS and LIDAR can be fused for
accurate outdoor positioning and 3D mapping—an
approach that proves valuable when robots move
between open fields and enclosed areas [30], [55].

LIDAR captures high-resolution distance
measurements, compensating for GPS reliability issues
and enabling more precise indoor navigation. The
associated cost, installation complexity, and data-
processing overhead are notable disadvantages,
requiring specialized hardware acceleration or
efficient point-cloud algorithms to maintain real-time
performance.

Overall, each of these sensor-fusion strategies aims
to address the inherent weaknesses of standalone
GPS, yet they differ in terms of cost, calibration
requirements, computational overhead, and suitability
for particular environments. Choice depends on
operational constraints—whether indoor or outdoor
navigation is prioritized, tolerance for drift, available
processing resources, and the target level of
localization accuracy.

By examining these sensor-fusion combinatfions—
GPS + LIDAR, GPS + INS/IMU + odometry, GPS +
camera, and GPS + detection systems—developers
can select the most effective strategy based on cost,
computational capacity, environment, and the
required level of accuracy. Each combination
addresses specific weaknesses in standalone GPS and
delivers more reliable localization under variable
conditions. Nevertheless, every additional sensor
infroduces new requirements for power, calibration,
and data throughput, underscoring the need to
balance hardware constraints with  performance
objectives.

5.2.3 Frequently Used Techniques for Sensor Fusion

Various methods and sensor fusion techniques have
been developed for effective data integration. The
primary goal of sensor fusion is to combine the data
from multiple sensors in a way that minimizes the
overall error and provides a more accurate estimate
of the robot's position. This involves the use of
sophisticated algorithms that can handle the
uncertainties and noise associated with individual
sensor measurements.

Table 5 illustrates the frequently used techniques for
combining several sensor data with GPS to improve
localization accuracy, with the Kalman filter-based
method and its variations being the most utilized This
section discusses various methods developed to
enhance the accuracy of GPS-aided localization,
highlighting algorithms extensively utilized in recent
decades. Kalman filters are employed in various forms,
often combined with other methodologies that
infegrate fuzzy logic, neural networks, and Bayesian
algorithms. These integrated approaches aim to tackle
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issues such as measurement inaccuracies and rapid reliance on specific navigation scenarios. Thus, this

environmental changes. review offers a comprehensive perspective on the
While several of these systems provide significant progress made in navigation technology and the

performance improvements, they often have continuous endeavours to improve the precision and

limitations such as high computational costs or reliability of autonomous navigation systems.

Table 5 Methods to solve GPS accuracy

Kalman Filter
Approach

Kalman filter [21], [23], [24], [26], [31], [34], [37], [38], [44], [16], [74], [80], [82], [86], [88], [91], [92], [110], [113],
[118]

Extended Kalman filter (EKF) [7], [91, [13], [23], [29], [33], [38], [37], [39], [401.[41], [49], [53], [71], [75], [81], [85],
1891, [93], [98], [99], [100], [103], [110], [114], [115]

Adaptive Kalman filter (AKF) [18]

Adaptive Extended Kalman filter (AEKF) [114]

Adaptive and Robust Maximum Correntropy Extended Kalman filter (MCEKF) [119]

Unscented Kalman filter (UKF) [28], [47]. [53]. [61], [64]. [85]. [95], [107]

Augmented Quaternion Unscented Kalman filter (AQUKF) [112]

Adaptive Robust UKF (ARUKF) [53]

Mahalanobis Distance based Adaptive Unscented Kalman filter (MDAUKF) [35]

Maximum Likelihood based Adaptive UKF (MLAUKF) [53]

Federal Kalman filter (FKF) [23], [87]

Cubature Kalman filter [81]

MHeo-5"CKF [102]

Multiple Fading Factor Square Root Cubature Kalman filter (MSCKF) [60], [94]

Distributed Kalman filter Data Fusion with Feedback (DKFDFWF) [29]

Weighted Kalman filter [51]

Interactive Multi-Model Kalman filter (IMMKEF) [29]

Correntropy Kalman filter [82], [78]

Kalman and Complimentary filter-based Fusion Schemes [16]

Adaptive Students T-based Kalman filter (STKF) [59]

Minimum Error Entropy-Gauss Quadrature Kalman filter (MEE-GQKF) [54]

Artificial
Intelligence
Approach

Naive Bayes Prediction [57]

Adam Optimizer [48]

Backpropagation algorithm [48], [74]

Back Propagation Neural Network (BPNN) [102]

Gradient Boosting Decision Tree [31]

Decision Tree Regressor [109]

Random Forest Regressor [109]

Automated ARIMA model [52]

Neural Network [16], [73]

Nonlinear Autoregressive Neural Networks with External Inputs (NARX) [47], [61]

Extreme Learning Machine (ELM) Optimized by Minimum Learning Parameter (MLP) [101]
Deep Neural Network (DNN) [104]

CNN-LSTM model [56]

Artificial Neural Network (ANN) [49], [16]

Fully Convolutional Neural Network (FCNN) [106]

ALSTM-GCN Networks [117]

Fuzzy Inference System (FIS) [40], [68]

Fuzzy Logic And Fuzzy Wall-Following Controllers [43]

Inteligent Adaptive Kalman Filter Based on Deep Neural Network and Fuzzy Logic [48]

Adaptive Fuzzy Neural Network-Aided Progressive Gaussian filter [73]

Fuzzy Neural Network (FNN) model [60], [96]

Fuzzy Logic System (FLS) [16]

Adaptive Neuro Fuzzy Inference System (ANFIS) [68], [69]
Adaptive Fuzzy Neural Network [74]

Hybrid GPS-ANFIS method [42]

Statistical
Approach

Gaussian Mixtures [27], [71]

Mixture Of Gaussian and Cauchy Distribution [27]
Gaussian Sum filtering [54]

Progressive Gaussian Approximate filter (PGAF) [46], [74]

Robust Bayesian filtering algorithm [27]

Variational Bayesian approach [46], [66]. [73]

The Variance Accounted For (VAF) [22]

Root Mean Square (RMS) [22], [92]. [97]. [100],

Root Mean Square Error (RMSE) [107], [110]
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Mean Square Error (MSE) [109], [111]

Kullback_Leibler Divergence [27]

Least Square (LS) [34]

Recursive Least Square (RLS) [34]

Linear Interpolation [49]

Linear Regression [109]

Nonlinear Autoregressive (NAR) model [49]

The Adaptive Factor Graph (AFG) [101]

Hidden Markov model (HMM) [116]

Particle Weighting Monte Carlo Localization (MCL) [45]

Adaptive Monte Carlo Localization algorithm [45]

Particle Generation approach [45]

Lidar-based SLAM method [30]

Fiducial Augmented Global Positioning System (FAGPS) [6]

Fusion Calculation of Angles and Vectors [19]

Gauss-Kruger Projection Plane Rectangular Coordinate System [19]

Fusion method combining RTK-GPS [30]

Fusion Navigation algorithm [19]

Dead Reckoning (DR) [7], [33], [44], [75]

Non-Holonomic Constraint (NHC) model [33], [84]

Dijkstra algorithm [43], [57]

the B-spline method [43]

Other Approach Chord Secant method [35]

Adaptive Decision-Making algorithm [108]

FDE (Fault Detection and Exclusion) based on K-Means Clustering [110]

RANSAC (Random Sample Consensus) algorithm [111]

Simultaneous Localization and Mapping (SLAM) [1146]

Factor Graph Optimization (FGO) [118]

Particle Swarm Optimization (PSO) [31]

A* algorithm [13]

Dynamic Window approach (DWA) [106]

Pure Pursuit algorithm [104]

5.2.1 Kalman Filter based Fusion Approach

Kalman filters are widely used in sensor fusion due to
their ability to provide optimal estimates by minimizing
the mean squared error. Various forms of Kalman filters
exist, including the Extended Kalman Filter (EKF) and
Unscented Kalman Filter (UKF), each suited fo different
types of measurement inaccuracies and
environmental  condifions.  Kalman  filters are
particularly effective in combining GPS data with
inputs from IMUs and other sensors, significantly
reducing drift and improving overall localization
accuracy.

Kalman filter offer several advantages, including
the ability to increase navigation accuracy in areas
with  restricted GPS  visibility.  Furthermore, by
incorporating new constraints on vehicle position, this
method can be integrated info existing localization
methods to improve vehicle localization outcomes [21]
[80]. However, Kalman filters also have limitations,
particularly related to inaccuracies in computing the
Kalman gain. Initially, the Kalman gain is calculated
correctly, but inaccuracies can arise when gains from
previous sensor measurements are incorrectly
accumulated or integrated into their original positions
within the gain matrix, leading to potential errors in the
estimation process. [146].

According to prior research in [21] and [80],
infegrating Kalman filter methods with other sensors
data and HD maps can minimize localization

inaccuracy to less than half or even one-third of the
original GPS position errors. In areas with low GPS
visibility, the data integratfion strategy can greatly
improve localization results and navigation accuracy.
Despite their benefits, Kalman filter remains vulnerable
to model flaws, incorrect starting estimates, and
significant computational load.

The Correntropy Kalman Filter (CKF) is being
compared to the Kalman filter in the study presented
in [78] and [82]. The CKF demonstrates a substantial
improvement in the accuracy of the GPS position
estimate, exhibiting an improvement of up fo 34%
when compared to the conventional Kalman Filter.
Nevertheless, it is crucial to acknowledge that this
study exclusively assesses low-latitude regions, so the
findings may not accurately represent the broader
environmental circumstances.

Implementing the weighted Kalman filter [34], [51].
can considerably improve the accuracy of GPS
positioning through improved estimation of variance.
This improvement is consistently observed in numerous
motion scenarios, including straight and circular
movements at varying speeds. This method performs
better than compared to traditional recursive least
squares (RLS) and standard Kalman filter algorithms.
Nevertheless, it is important to acknowledge that this
study has a restricted number of comparisons with
alternative advanced filtering algorithms.

The fast indirect in-motion coarse alignment method,
in conjunction with the adaptive Student's t-based
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Kalman filter (STKF) method [59], provides a solufion to
minimize the computational load of current methods.
This combination method performs more efficiently for
real-fime applications. The STKF method effectively
handles non-Gaussian measurement noise and
incorrect covariance matrices, enhancing navigation
robustness. However, this study does not compare the
proposed method to similar approaches or alternative
state estimation methods, making it difficult to assess
the superiority or advantages of the proposed
methodology.

The implementation of the adaptively robust
Kalman filter approach [26] greatly enhances the
accuracy of GPS positioning. Furthermore,
experimental results confirm their efficiency in
managing measurement errors. Nevertheless, this study
is flawed as it fails to perform a comparative analysis
with other sophisticated filtering techniques and
neglects to address the method's resilience against
different forms of noise and interference.

The Federal Kalman Filter (FKF) outperforms the
GPS-KF by utilizing the Kalman filter, extended Kalman
filter, and Federal Kalman filter [23]. It achieves stability
rapidly and provides a more accurate estimation of
real values. The FKF algorithm is capable of accurately
estimating the condition of vehicles even in situations
where GPS signals are not available. Nevertheless, this
study fails to investigate the constraints of the Federal
Kalman Filter across different circumstances.

Using the extended Kalman filter (EKF) method [?].
[36]. [71]. [75], integrating GPS with the EKF filter can
enhance accuracy by around 10 % compared to GPS
alone, resulting in more accurate location and velocity
estimations and better long-ferm  navigation
accuracy. Nevertheless, employing low-cost sensors
can compromise the precision and reliability of the
measurements, particularly in sifuations where GPS
signals are not accessible or lost, resulting in a
reduction in horizontal accuracy by as much as 3
meters.

The Distributed Kalman Filter with Feedback
(DKFDFWF), the Interactive Multi-Model Kalman Filter
(IMMKF), the extended Kalman filter, and Differential
GPS (DGPS) techniques [29] have effectively
decreased maximum position errors by 22.96 % when
compared to a single-point GPS Kalman filter.
Additionally, these techniques have enhanced
position accuracy by 48.59 % compared to the
averaging method, which utilizes data from three GPS
receivers. The feedback mechanism of DKFDFWF is
essential for correcting significant estimation mistakes
from GPS receivers, thereby improving the overall
accuracy of location determination. Nevertheless, this
approach has a disadvantage in that it raises
computing complexity as a result of iterative
computations, and its use may be restricted by the
requirement for several GPS receivers, particularly in
certain situations.

The system improves the unscented Kalman filter's
(UKF) resilience by modifying the process noise
covariance online. This is achieved by implementing
the extended Kalman filter, unscented Kalman filter

(UKF), adaptive robust UKF (ARUKF), maximum
likelihood (ML), and maximum likelihood-based
adaptive UKF (MLAUKF) [53]. This approach utilizes
maximum likelihood estimation to handle the
uncertainty in process noise for integrating the vehicle
inerfial navigation system (INS) and global positioning
system (GPS). Empirical evidence shows that it
outperforms conventional unscented Kalman filter
(UKF) and augmented unscented Kalman filter
(ARUKF) methods. Nevertheless, this approach also
suffers from the disadvantage of imposing a
substantial computing load due to the need to
calculate partial derivatives.

The augmented quaternion unscented Kalman
filter (AQUKF) approach [112] was created to improve
the integration of loosely connected GPS/INS. This
method specifically addresses the non-Euclidean unit
quaternion mathematics, resulting in  enhanced
attitude estimation. The results derived from this
approach successfully tackle the direct nonlinear
estimate of vehicle states for the purpose of outdoor
vehicle localization. During GPS outages, AQUKF can
greatly decrease INS errors in comparison to indirect
EKF and conventional UKF measurements. The intensity
of this effect increases with a longer outage duration.
This demonstrated the need to obtain highly precise
estimations between GPS measurements to rectify bias
in IMU sensors and minimize divergence in INS.
Nevertheless, the existence of nonlinear INS state
equations and the representation using unit
quaternions can complicate the implementation and
comprehension. Furthermore, the emphasis on
locating vehicles outside may restrict the utility of the
approach in certain situations or settings.

The integration of GPS with gyro uses a two-stage
cascaded EKF method, where the first stage employs
an adaptive extended Kalman filter (AEKF) [114] to
process position, velocity, and aftitude data from
magnetometer, accelerometer, and gyroscope
sensors. The second filter is an EKF that uses GPS data
to update the INS velocity and position states. Due to
drift, an INS with a low-grade IMU cannot serve as a
precise position reference. The proposed two-stage
EKF algorithm has a total execution time of 11.697 ms,
which is faster than the standard EKF's execution fime
of 19.812 ms, which includes all attitude, velocity, and
position states. Therefore, unmanned vehicles can
implement the two-stage cascaded EKF in real-time,
providing an optimal navigation solution. However, the
discussion in this paper does not explore alternative
navigation methods or technologies beyond GPS.

5.2.2 Artificial Intelligence based Approach

The KGP approach, which combines the Kalman filter,
Gradient Boosting Decision Tree (GBDT), and Particle
Swarm Optimization (PSO) methods [31], significantly
improves positioning accuracy. It outperforms
methods that ufilize mulfi-layer perceptfron neural
networks and random forest regression by 28.20 % to
59.89 %. In addition, this technology effectively resolves
the problem of nonlinearity between vehicle attributes
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and location data. It also corrects errors in the Inertfial
Navigation System (INS) caused by unstable GPS
signals, resulfing in a substantfial improvement in
positioning continuity and accuracy. Nevertheless, a
disadvantage of this approach is the very high
computing load resulting from the incorporation of
numerous intricate techniques.

The AFNPGA-VS algorithm utilizes a Kalman filter, a
progressive Gaussian approximate filter with variable
step size (PGAFVS), and an adaptive fuzzy neural
network controller with backpropagation based on
PGAFVS [74]. This algorithm significantly enhances the
reliability and accuracy of the system, particularly in
sifuations where there has been uncertainty in the
past. Simulations suggest that this approach surpasses
existing methods, showcasing significant potential for
enhancing overall system performance. Nevertheless,
the practical efficiency of AFNPGA-VS has not been
confirmed purely through simulations, and the
algorithm's ~ complexity  necessitates  significant
processing resources.

By infegrafing the Kalman approach with a
complementary filter-based fusion scheme, a neural
network, and an expert fuzzy logic system [16], the
neural network effectively represents GPS data and
can make precise estimations of the robot's location
in the absence of a GPS signal indoors. In outdoor
environments, the Kalman fusion technique and
complementary filter are effective at integrating data
from proprioceptive sensors and GPS. In addition, the
expert fuzzy logic system corrects positional
inaccuracies caused by wheel slippage. Nevertheless,
the disadvantage of this approach lies in its substantial
dependence on GPS for outdoor positioning, which
may not be reliable in all conditions or locations.

The integration of the multiple fading factor square
root cubature Kalman filter (MSCKF) method and fuzzy
neural network (FNN) model [60] significantly
enhances the accuracy and speed of the navigation
system by substantially reducing position and velocity
errors, surpassing the performance of the pure inertial
navigation approach. Furthermore, this approach can
prevent issues with excessive training and overfitting in
the network, as well as improve the speed at which
the network reaches convergence. However, the
performance in terms of training time relative to other
models is not clearly defined.

The proposed methodology [47], [61] infroduces a
novel technique for selecting inputs from NARX
networks based on mutual information (MlI) criteria and
lag-space estimation (LSE). The experimental findings
clearly establish the superiority of this method over
other approaches, such as UKF. This method has the
ability to significantly improve the overall accuracy
and performance of the system. Nevertheless, it is
crucial to acknowledge that employing sophisticated
methods like Unscented Kalman Filter (UKF) and
Nonlinear AutoRegressive with External Inputs (NARX)
networks can result in a rise in the intricacy of the
system, requiring meticulous deliberation during
practical execution.

When fuzzy logic is compared to the unscented
Kalman filter (UKF) method [64], this system performs
69.2 % beftter than the unscented Kalman filter. The
main benefit of this system is its superior capacity to
handle fluctuations and uncertainties in GPS data.
Logical operations enable the design of non-linear
functions using the 'if else' structure. However, the
quality and aftributes of the datasets used might
influence the system's performance, and it only
compares with the unscented Kalman filter without
evaluating its performance against alternative options.
The opfimization of exireme learning machines
(ELM) with minimal learning parameters (MLP) and the
use of factor graph technology [101] for robust
information fusion greatly enhance the navigation of
the INS/GPS system during GPS outages. Empirical
investigations conducted on ground vehicles
demonstrated the approach's effectiveness in real-
time applications by minimizing computational burden
and improving system performance, particularly in
difficult conditions without GPS signals. Nevertheless,
the execution of this approach is more complex
because it necessitates the use of several optimization
methods. Furthermore, the system's success still
depends on the quality of the sensors it implements.

5.3 Statistical based Approach

The Gaussian-based approach employs various
advanced filtering techniques to enhance the
performance and resiience of navigation systems,
particularly in the presence of extreme noise and
disturbances. This section elaborates on these methods
and their contributions to improving localization
accuracy and robustness.

Linear and Nonlinear Kalman Filters: These filters are
foundational in sensor fusion and are used to provide
optimal estimates by minimizing the mean squared
error. Linear Kalman filters are suitable for systems with
linear dynamics, while nonlinear Kalman filters, such as
the Extended Kalman Filter (EKF) and Unscented
Kalman Filter (UKF), are designed fo handle
nonlinearities in the system. These filters are effective in
combining data from various sensors to improve the
overall localization accuracy.

Minimum Error Entropy-Gauss Quadrature Kalman
Filters (MEE-GQKF): The MEE-GQKF method is a
significant advancement in dealing with non-Gaussian
noise. It combines the principles of minimum error
entropy and Gauss quadrature to improve the
accuracy and robustness of state estimation in
multisensory navigation systems. This approach is
particularly effective in scenarios with heavy-tailed
noise distributions, which are common in real-world
applications.

Gaussian Sum Filtering: This tfechnique
approximates the probability distribution of the
system's state using a sum of Gaussian components.
Gaussian sum filtering is beneficial in managing non-
linear and non-Gaussian processes, providing a more
accurate representation of the state distribution than
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a single Gaussian assumption. This method enhances
the system's ability to handle complex noise patterns
and improves the overall accuracy of the state
estimates.

Huber-Based Estimators: These estimators are
designed to be robust to outliers and extreme noise by
using Huber's criterion, which combines the best
features of least squares and absolute value
estimations. Huber-based estimators adjust the
influence of outliers on the estimation process, making
the system more resilient to unexpected and abnormal
disturbances.

Maximum Correntropy Criterion (MCC): The MCC is
an advanced approach used fo handle non-Gaussian
noise and outliers. It maximizes correntropy, a measure
of similarity between two random variables, to improve
the robustness of the estimation process. MCC-based
methods are particularly effective in environments with
impulsive noise, providing a higher level of resilience
compared to fraditional mean squared error
minimization techniques.

Using various methods such as linear and nonlinear
Kalman  filters,  Minimum  Error  Entropy-Gauss
Quadrature Kalman Filters (MEE-GQKF), Gaussian sum
filtering, Huber-based estimators, Maximum
Correntropy  Criterion  (MCC), and Extended,
Unscented, Cubature Kalman Filters [54], the system
demonstrates  superior performance in  handling
extreme noise, enhancing the system's resilience to
unexpected and abnormal disturbances. The
development of MEE-GQKF is a crucial step in
strengthening multisensory navigation systems against
non-Gaussian noise. Nevertheless, a disadvantage of
this method is the increased computing complexity of
direct filtering alternatives.

Combining the adaptive fuzzy neural network-
aided progressive Gaussian filter method, Bayesian
variational approach, and neural network model [73],
the system outperforms existing advanced filters in
terms of accuracy and reliability, as demonstrated by
experimentation. This filter demonstrates exceptional
precision and consistency in  estimatfing values,
particularly in the northern, eastern, and downward
orientations. Nevertheless, its specialized design for
GPS/INS integrated navigation makes it inappropriate
for other navigation systems.

Technology enhances the precision of GPS by
discerning multipath errors, particularly in urban areas.
This is achieved by the utilization of a strong Bayesian
filtering technique, multiple hypothesis tracking (MHT),
Gaussian mixture reduction based on Kullback-Leibler
divergence, and a combination of Gaussian and
Cauchy distributions [27]. This method is more resilient
than extended Kalman filters and other optimization
algorithms, and it decreases computational
complexity by employing Gaussian mixture reduction,
although at a higher expense.

Robust Kalman filtering and ANN [49] are used to

maintain  location accuracy during GPS data
inferruptions  in  the extended Kalman filter,
nonlinearauto-regressive (NAR) model, linear
inferpolation, and artificial neural network

approaches. During these disruptions, the technique
effectively improved the integrated GPS/INS system's
accuracy by 67% on each axis. However, because this
method was only evaluated in an outdoor area with a
specified path and for a limited time, these constraints
must be considered when assessing the system's
accuracy and applicability.

5.24  Other Approach

Using the extended Kalman filter, Dead Reckoning
(DR), and Non-Holonomic  Constfraint  (NHC)
approaches [33], the suggested system effectively
reduces navigation errors on uneven terrain, such as
slopes that go up and down. The proposed approach
exhibits  consistent  performance in  accurately
determining horizontal locations, even in situatfions
where GPS data is deliberately obstructed for a brief
duration. Nevertheless, the performance of the system
may differ among vehicles because of alterations in
the odometer scale factor, and its effectiveness has
not been evaluated across all varieties of terrain and
driving circumstances.

Combining Unscented Kalman Filtering (UKF) with |-
Q values [28] produces extremely precise carrier
phase and frequency readings, particularly in rapidly
changing settings. Its strengths are fast convergence
and durable performance achieved through the
implementation of the innovative I-Q combination
approach. Moreover, the UKF loop effectively monitors
and adjusts for fluctuations in carrier frequency,
showcasing its capability to manage substantial
alterations in the signal. Nevertheless, its disadvantage
lies in the increased computing burden in comparison
to conventional tracking techniques.

The integration of GPS and visual navigation result
[106] indicate that combining navigation techniques
can enhance the performance of autonomous robots
in agricultural fields. The Pure Pursuit algorithm with GPS
had a lateral deviation of 8.3 cm, while the deep
learning model with Dynamic Window Approach
(DWA) achieved a deviation of 4.8 cm. The intfegration
of GPS with the deep learning model and DWA
resulted in a lateral error of 9.5 cm, offering a more
practical and effective navigafion method. However,
reliance on GPS can be problematic in areas with
poor signal, and the complexity of infegrating multiple
navigation methods can complicate system design
and require precise calibration. These points highlight
both the advantages and potential limitations of
navigation solutions in agricultural robotfics.

5.3 Methods Summary and Discussion

The sensor fusion techniques discussed in the previous
sections highlight a number of approaches widely
used to enhance GPS-based localization techniques.
Each approach is characterized by pros and cons,
which are summarized in Table é and Table 7. This
section briefly discusses and compares the four main
approaches—Kalman filter-based, artificial inteligence
(Al)--based, statistical-based, and other specialized
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methods—emphasizing their practicality,
computational challenges, real-fime feasibility, and
implementation consfraints.

It can be found in Table 6 that fusion approaches
based on the Kalman filter technique offer strong real-
time performance and efficient integration of sensor
data (e.g.. GPS and IMU). Widely used methods such
as EKF and UKF effectively address sensor inaccuracies
and nonlinear dynamics, significantly  reducing
localization errors across various scenarios. The work
presented in [41], for example, demonstrates that
utilizing EKF-based sensor fusion—which combines GPS,
IMU, and odometry on autonomous vehicles—can
significantly minimize localization errors from several
meters down to just a few centimetres during urban
navigation. While there is potential for enhancement,
Kalman filters may exhibit inaccuracies due to model
limitations and require rigorous initial calibration along
with reliable sensor quality to maintain their accuracy.
In addition, adaptive or complex variants like AQUKF
also pose significant  computational challenges,
potentially straining the capabiliies of real-time
embedded systems [112].

Al-based techniques, such as neural networks and
fuzzy logic, show significant promise in addressing
complex nonlinear sensor data to outperform
fraditional techniques in terms of accuracy. For
example, the work in [54] presents a combination of
neural networks and fuzzy logic for a localization
approach that could improve indoor robot localization
accuracy, particularly when GPS signals are lost.
Nevertheless, these approaches are constrained by
notable limitations, including the requirement for
extensive fraining data, substantial computational
demands, and reliance on consistent sensor quality.
These limitafions constrain the methods from being
deployed only to the systems with sfrong
computational capabilities [31].

Statistical approaches—including Gaussian  sum
filtering and Bayesian techniques—are known for their
adaptability  in handling  non-Gaussian  and
unpredictable noise. This noise is common in densely
populated urban environments. These statistical
approaches can enhance adaptability toward
multipath errors affecting standard GPS performance.
The work presented in [27] demonstrates that
implementing the Gaussian mixture reduction method
could enhance the accuracy of urban localization.
While statistical methods are generally reliable, they
demand significant computational resources and
parameter tuning. Hence, they are not always the best
choice, especially when dealing with situations that
demand quick real-time updates or have limited
hardware resources.

The other speciadlized techniques, including dead
reckoning, LiDAR-based SLAM, and other tailored
algorithms, have been effectively deployed in several

confrolled environments [30] [55]. For example, LIDAR-
based SLAM methods enable highly accurate indoor
localization for autonomous warehouse robots
transitioning from GPS-based outdoor navigation [30].
Despite their precision, these approaches have
significant limitations related to their environmental
specificity, substantial calibration efforts, and high
computational overhead due to real-time processing
demands of dense sensor data.

A comparative analysis clearly indicates trade-offs
between accuracy, computational complexity, and
implementation constraints. The artificial inteligence
approach and the stafistical approach exhibit
significantly higher than the Kalman filter approach.
Statistical approaches like Gaussian mixture reduction
techniques are particularly computationally intensive.
On the other hand, the Kalman filter approach
generally demonstrates lower computational
demands but occasionally experiences inaccuracies
related to calculating the Kalman gain. In ferms of the
improvements in  GPS accuracy, the artificial
infeligence approach has substantially  higher
accuracy than the other methods, but present greater
implementation challenges in real world scenarios.
Specialized techniques (e.g., LIDAR-based SLAM) offer
exceptional accuracy in specific environments but
lack generalizability and carry high implementation

complexity.
Real-world case studies effectively illustrate these
tfrade-offs  between  accuracy, computational

complexity, and implementation constraints. For
instance, research employing GPS, IMU, and visual
odometry fusion processed with the EKF has
demonstrated significant improvements in localization
accuracy, reducing error from 79 meters down to 3.7
meters in urban autonomous vehicle applications [41].
This notable improvement is achieved through mutual
sensor supports; if GPS signals are lost, the IMU and
visual odometry data compensate for the positioning
errors. Conversely, when visual odometry struggles due
to lighting conditions or environmental obstacles, GPS
provides reliable positional information. Additionally,
the computational load associated with EKF-based
sensor fusion is substantially lower than that of artificial
infeligence methods, making it a more practical
choice for real-world implementations. In addition,
data processing using the EKF method is less
computationally  expensive  than the  artificial
infeligence method, making it a more practical
choice for real-world implementations.

In summary, sensor fusion methods need to
balance accuracy, computational complexity, and
practicality. Future research should optimize algorithms
to decrease computational requirements, provide
adaptive real-time sensor variance, and simplify sensor
calibration. These improvements should make GPS-
based localization better for autonomous systems.
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Table 6 The summary of methods

Methods Advantage Disadvantage

Kalman Filter The Kalman filter has many advantages, including its  The Kalman filter is susceptible to model weaknesses,

Approach ability to provide optimal estimates by improving such as incorrect initial estimates or inaccuracies in
navigation accuracy, especially in areas with limited  calculating the Kalman gain, which can lead to
GPS visibility. This filter, available in various forms such  suboptimal results. Some algorithms require intensive
as EKF and UKF, is flexible in handling sensor computations, especially when using adaptive
inaccuracies and dynamic environments.  variants or methods like AQUKF, which can slow down
Additionally, the Kalman filter is effective in system performance. Although it improves accuracy,
combining data from GPS, IMU, and other sensors, the Kalman filter sfill relies on GPS signals, and in
significantly reducing localization errors.  Some  situations where GPS signal loss occurs, its accuracy
variants, like the two-stage EKF, are also efficient for decreases over time.
real-time applications.

Artificial The artificial inteligence approach significantly  This approach has a very high computational burden

Intelligence improves the accuracy and speed of navigation due fo the integration of various complex techniques.

Approach systems by substantially reducing position and Additionally, it relies heavily on GPS signals for
velocity errors, surpassing the performance of outdoor positioning, which may be less reliable under
fraditional navigation systems. Neural networks can  certain conditions, and it also depends on the quality
effectively represent GPS data and accurately of the sensors used.
estimate the robot's location even without GPS
signals. Additionally, the expert fuzzy logic system
corrects positional inaccuracies caused by wheel
sippage. The fuzzy neural network (FNN) prevents
overtraining and overfitting in the network while also
increasing the speed at which it reaches
convergence.

Stafistical The statistical approach offers several advantages, These methods have several drawbacks, including

Approach including  significantly  enhancing  multisensor  high computational complexity due to the use of
navigation systems against non-Gaussian noise. This advanced techniques such as Kalman filters and
filter demonstrates exceptional accuracy and Huber-based estimators. Specific design for GPS/INS
consistency, particularly in estimating north, east, and  navigation systems renders variational Bayesian and
down orientations. Furthermore, this method is more fuzzy neural network approaches less suitable for
robust than extended Kalman filters and other other applications. Although techniques like Gaussian
opfimization  algorithms, while  also  reducing mixture reduction improve GPS accuracy, their
computational complexity by using Gaussian mixture  computational costs remain high. Additionally, the
reduction techniques. limited evaluation of specific areas reduces the

broader applicability of these methods.
Other Approach  This approach effectively reduces errors in uneven The integration of GPS and visual navigation show

terrain, consistently achieving accurate horizontal
location determination, even when GPS data is
temporarily obstfructed. Additionally, the
combination with signal processing methods provides
highly precise phase and carrier frequency readings,
particularly in rapidly changing conditions, and
achieves fast convergence. The integration of GPS
and visual navigation also demonstrates improved
performance for autonomous robofts in agriculture,
resulting in smaller lateral deviations.

potential for performance improvement; however,
reliance on GPS signals poses challenges in areas with
poor signal quality. The complexity of integrating
multiple navigation methods can complicate system
design and necessitate precise calibration, thereby
hindering broader implementation. Additionally,
there is an increased computational burden
compared to conventional tracking techniques.

Table 7 Method comparison summary

Algorithm / Computational o Real-Worl
Methods Complexity | Accvracy | Adaptability | 0 ot Ability
Kalman Filter Moderate Modgrofe Moderate Moderate
Approach to High
Al-based Training: High . . e
Approach Inference: Low High High Difficult
Statistical . . -
Approach High High Moderate Difficult
Other /
Specialized Modgrofe fo High Low Moderate to Difficult
High

Approach
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6.0 FUTURE DIRECTIONS IN GPS-AIDED
LOCALIZATION FOR AUTONOMOUS MOBILE
ROBOTS

Despite significant advancements in integrating GPS
with other sensors like IMUs, LIDAR, and cameras, there
remains a need for more advanced sensor fusion
techniques. Future research should focus on
developing robust algorithms that seamlessly combine
data from multiple sources to enhance localization
accuracy. These algorithms must effectively handle
the uncertainties and inaccuracies inherent in each
sensor type. For instance, while IMUs provide good
short-term accuracy, they suffer from drift over time,
which can be corrected using GPS data. Conversely,
GPS inaccuracies can be mitigated using precise IMU
data in short bursts, creating a balanced, reliable
localization system.

Visual Sensors and Fiducial Markers: The visual
sensor is another sensor with significant potential for
use in autonomous mobile robofts. This sensor has the
ability to record more complex environmental data,
such as the textures on walls that make perception
easier [147]. Researchers have developed several
approaches to improve mobile robot localization
accuracy by integrating visual sensors with other
Sensors.

Another technique uses fiducial markers as a
reference point for determining position and
orientation. There are fiducial markers that have been
installed along the route of the autonomous mobile
robot, and the vision sensor is able to identify and
extract them. A fiducial marker is a mechanism for
identifying objects or locations in navigation systems or
computer visual recognition. This approach is often
used for augmented reality (AR), robot navigation,
and object detection. Fiducial markers make use of
specifically designed markers or things that computer
systems can quickly detect and identify. These markers
usually possess distinct visual patterns or attributes that
are exclusive, such as checkerboard patterns, QR
codes, or other symbols.

Fiducial markers offer several key benefits, including
their user-friendly nature, the minimal expense
associated with the markers themselves, and the
affordability of cameras and computing equipment.
Nevertheless, markers have other drawbacks, such as
potential issues with camera resolution, limitations in
marker size, and the dependence on favorable
lighting conditions for reliable detection, identification,
and localization of markers [148], [149]. To detect
markers in low-light conditions, an IR camera can be
used. Opftimizing the size and contrast of the marker
can overcome the problem of limited marker size.

Advanced Filtering Algorithms: Existing filtering
methods, such as the Kalman filter, have shown
promise in improving GPS accuracy but still face
limitations, particularly in managing non-Gaussian
noise and model uncertainties. Therefore, developing
more sophisticated filtering algorithms that provide
befter accuracy and reliability under varying

environmental conditions is crucial. Advanced
variations of Kalman filters, such as the Unscented
Kalman Filter (UKF) and Particle Filters, have been
proposed. However, these methods often come with
increased computational complexity and require
further optimization for real-time applications.

Real-Time Adaptable Systems: Another potential
research area is developing real-time adaptable
systems. Many current approaches lack the ability to
adjust  dynamically to changing environmental
conditions and sensor errors. Research should aim to
create adaptive systems that can modify their
parameters in real-time to improve localization
accuracy. For instance, adaptive Kalman filters that
adjust their noise parameters based on observed data
can provide better performance in varying conditions,
ensuring more reliable navigation.

Cost-Effective and Scalable Solutions: There is also
a need for low-cost, scalable solutions that can be
easily implemented in various autonomous mobile
robots. This includes developing cost-effective sensor
fusion techniques and algorithms that do not require
extensive computational resources. Research should
focus on opfimizing existing algorithms fo reduce
computational load without compromising accuracy,
making advanced localization techniques accessible
for a broader range of applications, from small
consumer robots to large industrial machines.

Comprehensive Testing and Validation: Many
proposed methods and algorithms have not been
extensively tested across different environments and
scenarios. Comprehensive testing and validation of
these techniques in diverse real-world conditions are
essential to ensure their robustness and reliability. For
instance, testing should cover a wide range of
environments, including urban canyons, dense forests,
and indoor settings, to evaluate the performance and
limitations of the proposed solutions. Additionally, long-
term field studies are necessary to assess the durability
and consistency of these methods over extended
periods.

By addressing these challenges and research gaps,
the field of GPS-aided localization for autonomous
mobile robots can make significant strides. Improved
localization systems will lead to more accurate,
reliable, and efficient navigation, enhancing the
capabilities of autonomous robots in  various
applications, from urban delivery systems to
agricultural automation and beyond. This progress will
not only advance the state-of-the-art in robotics but
also contribute to broader technological innovations
in autonomous systems and smart environments.

In the localization of autonomous mobile robots,
the main challenges include heavy computing (such
as Al processing and deep learning), realtime
processing, and implementation constraints. Therefore,
to overcome high computing challenges, the
algorithm used must be an optimizing algorithm, such
as using EKF, particle filter, or graph-based SLAM. In
addition, use hardware that has specific requirements
(e.g., when processing data from Lidar or images),
such as GPU or FPGA devices. To lighten the
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computational load, selection techniques can be
employed to exiract the relevant features from sensor
data.

In real-time processing, the challenge is often high
latency in sensor fusion processing; for that,
hierarchical Kalman filters can be employed to
accelerate data processing from sensor fusion.
Furthermore, it can employ the factor graph
opfimization method to accelerate convergence in
mulfi-sensor data  processing. Machine learning
algorithms can employ motion prediction models to
reduce the necessity for excessive data processing.

To address the challenges in  real-world
implementation, it can use GPS, IMU, and Lidar sensors
to ensure high accuracy in the event of GPS signal loss.
Marker-aided localization techniques, such as AprilTag
and ArUco, can enhance accuracy in environments
with limited GPS visibility. Furthermore, the integration
of robots and control systems is essential for facilitating
communication between sensors and robot modules.
This can utilize ROS (Robot Operating System) or RTOS
(Real-Time Operating System). Before implementing it
in the real world, simulate it in Gazebo or CARLA to
detect potential field difficulties. In  addition,
implementation can be started from a small scale or
limited areq; if successful, then it can be applied to
more complex areas.

7.0 CONCLUSION

Autonomous vehicles and mobile robots commonly
rely on GPS as for determining their location, benefiting
from its global positioning capabilities while facing
inherent drawbacks such as signal disruptions and
positional inaccuracies. To enhance GPS precision and
mitigate its limitations, a number of works employ
sensor fusion techniques to complement GPS system.
This comprehensive survey has highlighted the
strengths and limitations of current GPS-aided
localization methods and the importance of sensor
fusion techniques in overcoming these challenges.

This study has found that the integration of GPS with
various sensors, such as IMUs, Odometry, LIDAR,
cameras, and other advanced technologies, has
significantly enhanced the localization capabilities of
autfonomous mobile robots, providing more robust
positioning solutions.  Advanced filtering methods,
particularly the Kalman Filter and its variants, have
proven its effectiveness in managing noises and
uncertainties, further enhancing the reliability of GPS-
aided systems.

This study provides a comprehensive evaluation of
GPS-aided localization tfechnologies and emphasizes
the role of sensor fusion in addressing GPS limitations. It
analyzes the effectiveness of sensor combinations in
improving localization accuracy, assesses the
performance of filtering algorithms, and identfifies
research gaps that require further exploration. In
particular, the study highlights the need for more
efficient algorithms, real-time adaptable systems, and

cost-effective, scalable solutions for  wider
applications.

Future research should build on the findings of this
study by developing more robust algorithms that can
combine data from multiple sources to further
enhance localization accuracy by effectively handling
the uncertainties and inherent limitations in each
sensor type. Based on the demonstrated potential of
visual sensors and fiducial markers in reducing
positional errors further exploration of these sensors,
particularly in urban environments, is recommended.
Additionally, = advancements adaptive filtering
methods like hierarchical Kalman filters are necessary
to  manage non-Gaussian noise and model
uncertainties, improving the overall reliability of GPS-
aided localization systems.

Developing cost-effective and scalable solutions
using affordable sensors will require innovative sensor
fusion algorithms that minimize reliance on expensive
sensors while maximizing localization accuracy. Low-
cost sensors combined with optimized algorithms can
achieve reliable results for various applications,
particularly in resource-constrained environments.

Given the computational challenges identified,
future work should also focus on optimizing algorithms
for real-fime processing without sacrificing accuracy.
Furthermore, to ensure practical applicability, testing
these systems in realistic simulation environments such
as CARLA or Gazebo, can effectively identify potential
issues before the system is deployed in real-world
environment.

By addressing these challenges, the development
of more accurate, reliable, and efficient navigation
systems will be possible, thereby significantly
enhancing the capabilities of autonomous robots
across various applications. Advancements in sensor
fusion and algorithms development will not only
contribute to broader fechnological innovations in
autonomous systems but also support the growth of
smart environments and intelligent mobility solutfions.
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