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Abstract 

 
Computational Fluid Dynamics (CFD) technique for ship hydrodynamics has been well developed with 

advanced capabilities for resistance and propulsion, seakeeping, and maneuvering. The Authors’ 

laboratory (Laboratory 3 of Department of Naval Architecture and Ocean Engineering in Osaka 
University) specializes in resistance and propulsion field and has carried out several simulations based on 

the CFD code in non-inertial ship-fixed coordinates system. The purpose of this research is to transform 

the present computation code to the one in inertial coordinate and to investigate the flow field around the 
Wigley hull for several motions up to three degrees of freedom (3 DOF). The transformed code is 

simulated on the flat plate initially and the nature of the flow field is investigated and confirmed with the 

hydrodynamics theory. Then, the wigley hull motions are simulated in several ways such as; uniform 
motion, pure yaw and circular motion test. The features of the flow field and hydrodynamic forces acting 

on the hull are discussed based on the computed results. Finally, the propeller effect is implemented 

behind the wigley hull using the body-force concept by the quasi-steady infinite bladed Blade Element 
Theory and a propulsion characteristic is observed. The transformed computation code in inertial 

coordinate is found to be much easier to simulate the different kinds of maneuvering motions compared to 

the code in non-inertial system and this paper covers the detailed transformation steps and the discussions 

on the computation results of different motions. 

 
Keywords: Inertial coordinate; flat plate; wigley; uniform flow; pure yaw; circular motion test; body- 

force; blade element theory 

 
© 2014 Penerbit UTM Press. All rights reserved. 

 

 
 
 
 
1.0  INTRODUCTION 

 

The advent of computer technology becomes a great tool for ship 

designing field and Computational Fluid Dynamics (CFD) is one 

of the branches. CFD method offers an alternative to the 

traditional build and test design approach, i.e., simulation based 

design (SBD). As the ship hull form geometry is complex and the 

fluid flow around the ship is in a very difficult mode to cope with, 

many approaches might be needed in the design of a ship. It has 

been conjectured that SBD will offer innovative approaches to 

design an out-of-box concepts with improved performance.5 

  Consequently, it becomes a must to develop computation 

code on the other side of experimental works. The purpose of this 

research, the transformation of the original code into an 

alternative solution methodology, might be a corner for preceding 

more steps forward in the research activity of the authors’ 

laboratory. The governing equations, Navier-Stokes Equations in 

inertial coordinate system, are transformed into the body-fitted 

grid in the moving coordinate system and the velocity components 

are defined at earth-fixed coordinate. A single block domain grid 

is generated around the flat plate and Wigley model. The 12 

points Finite Analytic Method (FAM) for space discretization and 

Euler Implicit Scheme for time discretization are used along with 

the PISO algorithm for velocity-pressure coupling.4 The 

transformed code is simulated with the Wigley hull up to three 

degrees of freedom by implementing any desired motion of the 

ship that will be much easier than that of the computation in non-

inertial frame. 

  At the same time, the transformed code in inertial frame is 

very convenient for the computation of the ship with the propeller 

effect. In this research, the propeller grid is not used and the 

propeller effect is computed by the body-force concept with the 

infinite bladed Blade Element Theory.8 The computed body-force 

components are solved in the source terms of the Navier-Stokes 

equations and the thrust and torque forces are computed within 

the RANS code.8 The concept works well in this case and the 

methodology can be fully applied in other propulsion 

computations for further research activities.  

 

 

2.0  METHOD OF COMPUTATION 

 

2.1  Grid Generation 

 

The H-type grid is generated around the zero thickness flat plate 

as well as the Wigley Hull with the same domain size and number 
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of grids. The computational domain covers from -1 to +4 in x-

direction, from 0 to +3 in y-direction and from -3 to +3 in z-

direction. The total grid size is )514191(   and the Wigley hull 

geometry is simply developed by Equation 1 with the non-

dimensional length 1. The breadth to length ratio used was 0.1 and 

depth to length ratio was 0.125 which is the standard Wigley Hull. 

The generated grid domains are shown in Figure 1.  
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  L, B and D referred to length, breadth and depth of the hull 

and bz  is the half breadth. The grid domains are generated by the 

grid generation code of the Authors’ laboratory by setting small 

meshes near the body surface for capturing of the detailed flow 

field near the surface. The body part is covered by 41 and 21 grid 

points in x and y direction respectively. The minimum grid 

spacing was 0.0015 in non-dimensional lengths in y and z-

direction. The grids generation is checked to be more orthogonal 

by solving the Poisson’s equation. 

 

 

 

 

 

 

 

 

 

Figure 1  Grids and domain size of flat plate and Wigley model 
 

 

2.2  Coordinate Transformation 

 

As the purpose of this research is to develop the computation code 

in inertial frame, the relation between the non-inertial and inertial 

frames is shown in Figure 2. In non-inertial coordinate ),,( zyx

which is fixed on the body (red oval in Figure 2), every single 

point on its wet surface will have corresponding relative velocity 

to the surrounding fluid denoted by rV . Therefore, the momentum 

equation in this frame is shown in Equation 2 with body force 

term 
rel

a  (Equation 3) and the continuity equation is as in 

Equation 4.  
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Figure 2  Relation between non-inertial and inertial frames 

 
 

  In inertial coordinate ),,( ZYX , the momentum and 

continuity equations are written in Equation 5-6 with the grid 

velocity (Equation 7) in inertial frame which is corresponded to 

the translating velocity R  and rotational term r . The absolute 

velocity V  in inertial frame is the resultant of the relative 

velocity rV  and grid velocity GV . 
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  The governing equation in the new computation code is 

Equation 5 and it is modified for free movement in 3 DOF of the 

grid, leaving the velocity components in inertial frame. For the 

purpose of ease, the transformation is performed in components 

form. The moving grid position which is a combination of the 

translational and rotational motion as a function of time are as 

shown Equation 8-11 where ),,( 000 ZYX  is the arbitrary grid 

position in inertial frame with the geometry shown in Figure 3 and 

't  is the time represented in non-inertial frame. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3  Moving grid geometry 
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  Using these relations, the momentum equation (Equation 5) 

is operated differentially by each term and then transformed from 

the physical domain to the computational domain in non-

orthogonal curvilinear coordinate ),,,(  . A partial 

transformation is used in which only the independent variables are 

transformed, leaving the velocity components in physical domain. 

But, all the velocities and geometrical coefficients in the 

transformed equations still belong to the moving coordinate. 

According to the purpose of this computation, the velocity 

components ),,( wvu  are defined in the absolute inertial earth-

fixed coordinates ),,( ZYX so the velocity components with 

corresponding geometrical coefficients must be transformed back 

into inertial coordinates. Finally, the momentum equations with 

the velocity components in inertial coordinates in the moving non-

inertial grids are obtained and written in Equation 12 in general 

form. The terms GGG wvu ,,  are the grid velocities in ),,( ZYX  

which are dependable on translational and rotational movements 

as a function of time (Equation 17-19). The corresponding 

coefficients are shown in Equation 20-24. 
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  In Equation 24, 
ibf is the body force and the body forces will 

be implemented in this term when the propeller effect is included. 

 

 

 

2.3  Computational Outline 

 

The transformed equation (Equation 12) is discretized by the 12- 

point Finite-Analytic method in space and Euler implicit scheme 

for time along with the PISO algorithm for velocity-pressure 

coupling. For one time step, sufficient iterations are repeated to 

get a time-accurate solution. The finite analytic coefficients are 

updated for retaining the non-linear nature of the Navier-Stokes 

equations for each internal-iteration. The laminar flow 

computation is carried out at Rn = 10,000 with zero Fraud’s 

number (Fn). In the case of the grid domain inclined with some 

angles, all the geometrical coefficients must need to be calculated, 

updated and transformed back into inertial frame at each time step 

and the velocity-pressure field satisfying Navier-Stokes equations 

and continuity equation is obtained. 
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  The hydrodynamics force on the body surface is obtained by 

integration of the normal and tangential stresses over the wetted 

surface area. The fluid stress tensor is composed of the 

components due to pressure and viscous stress. The pressure and 

shear forces are calculated by Equation 25-26. The combination 

of the axial component of the forces is the resistance. ijs  is the 

shear stress component, in is the unit-vector normal to the body 

surface and  dS is the local surface area element. 

 

2.4  Boundary Condition 

 

The boundary condition of the computation is shown in Equation 

27-30. In the inertial frame, the velocity components and pressure 

value in the far field could be almost zero. This condition can 

make the computation much easier to get the converged solution 

compared to the computation in non-inertial frame. 
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Far field                    :  0),,,( pwvugradient        (28) 

Free surface (i.e., y=0)  : 0v                                         (29) 

On the body surface               :  GGG wwvvuu  ,,           (30) 

 

 

3.0  COMPUTATION IN MANEUVERING MOTIONS  

 

3.1  Computation in Uniform Flow 

 

The flat plate with non-dimensionalized length 1, breadth 0.2 and 

zero thickness is simulated by the transformed code with the body 

speed gradually accelerating from 0 to 1 towards the negative X-

direction and then keeping at steady state with advanced speed, 

1Gu . The computational frictional force of flat plate is checked 

by the well-known Blasius solution (B/L × 0.01328) and the 

accelerated condition is checked by the infinite plate theory 

(Equation 31). Good agreement is observed and shown in Figure 

4. Velocity distributions on the Wigley hull is shown in Figure 5. 
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Figure 4  Checking of frictional force on the flat plate 
 

 

 

 

 

 

 

 
 

 

 

Figure 5  Velocity distributions on the Wigley hull 
 

 

  The pressure force distribution in X-direction is represented 

by Figure 6. The added mass effect is well observed during the 

acceleration between t= 0 to 1 and as the steady state approaches, 

the force becomes constant. The shear force distribution on the 

hull surface is shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6  Pressure force distribution on the Wigley hull 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7  Shear force distribution on the Wigley hull 
 

 

3.2  Computation in Pure Drift 

 

In nature, the ocean going vessels might probably meet Beam Sea 

and Oblique Sea that can be a great impact on the hull as well as a 

disturbance on the maneuvering behavior. After the Wigley hull 

has been tested in uniform flow, it is then computed with some 

drift angle to see how the hull surface pressure is distributed. 

 

 

 

 

 

 

 

 
 

 

Figure 8  Motion algorithm of pure drift 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9  Pressure (left) and velocity (Right) layout in pure drift test. 

 
 

  The ship is given by a motion with drift angle of 4 degree 

(Figure 8). The resultant velocity is accelerated first and then kept 

at constant at 1 for the remaining. The grid velocities Gu  and  

Gw  can be calculated as in Equation 32 where  is drift angle 

and implemented into the motion program of the code. The 

pressure field and the velocity layout along the hull are shown in 

Figure 9.  
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3.3  Computation in Rotational Motion 

 

When the ship has lateral movement, there might be vorticity 

generated along the hull and the pressure will be distributed in 

high difference. In the PMM test like pure yaw, there will be 

similar phenomenon so that the ship is simply tested rotationally 

as any movement of the ship can easily be carried out in inertial 

frame computation code. The ship is fixed at the center point in 

),( zx  plane at (0.5, 0) and simply given the motion as in 

Equation 33 with the angular acceleration   with the time t. The 

vorticity generated along the hull while rotating is investigated by 

Equation 34 and shown in Figure 10.  
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Figure 10  Vorticity distributions along the hull 
 

 

3.4  Computation in Pure Yaw 

 

In the steady movement with 1Gu , the hull is given the sway 

velocity Gw . The sway distance is a sinusoidal sine with a 

function of frequency as shown in Equation 35 where A is the 

amplitude of the motion,  is the frequency, t is the time. In this 

case, amplitude is taken as 0.05; frequency is 2.094 with the 

period (T) of 3 non-dimensionally. The sway velocity is the 

differentiation of the sway distance with respect to time and 

shown in Equation 36. The value of Gw  is imposed by zero as 

there is no movement in y-direction. Additional to sway motion, 

the yaw angle and the corresponding yaw rate are imposed as in 

Equation 38 and Equation 39.  
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  For the yaw rotation, the referenced point is taken at the 

center of gravity of the plate at )0,5.0( in ),( zx plane. Centered 

at this point, the ship is rotated in a sinusoidal cosine with a 

function of frequency (Equation 38). The sway and yaw 

movements are ninety-degree phase different. The computation 

for this case is carried out at zero drift angles. To get rid of the 

non-uniform disturbance, the simulation is carried out up to three 

periods of motion. The pressure force distribution and the shear 

force distribution over a period of motion are shown in Figure 11. 

The pressure contours on the hull surface in four quarters of 

period is shown in Figure 12. The vorticity distributions along the 

hull from the bow to the stern could be well observed in Figure 

13. Each figure represents quarterly layout in one period of pure 

yaw movement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Figure 11  Shear and pressure force distributions on the hull 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 12  Pressure contours on hull surface 
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Figure 13  Vorticity distributions on the hull 

 
 

3.5  Computation in Circular Motion Test 

 

Circular Motion Test (CMT) is an important test in maneuvering 

field to check the ability of the rudder. This could be easily 

simulated in inertial frame compared to the non-inertial 

computation that is one of the reasons the code has been 

transformed. In this study, CMT is carried out for checking the 

hydrodynamics forces along the hull and the scope capability of 

the new computation code. The motion algorithm is shown in 

Figure 14 with the variables definitions (Equation 40-43) where 

the translating velocity is transV .  
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Figure 14  Motion algorithms for circular motion test 
 

 

  The whole domain with the ship has to move in the circular 

path centered at O. In this study, the center of rotation is taken 

reference at (0.5, 3) in ),( zx  plane with the turning radius in 

inertial frame. The rate of rotation or frequency   (Equation 40) 

is kept at constant at 0.2. In order to achieve the circular motion 

with the centripetal force towards the center O, some drift angle 

  is imposed by 4 degree to the inside of the circle. The 

simulation is carried out for two full circles of motion and the 

surge force (x-direction) and sway force (z-direction) on the ship 

hull in non-inertial coordinate is shown in Figure 15.   

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15  Hydrodynamics forces on the hull in CMT 

 

 

4.0  COMPUTATION WITH PROPELLER BODY-

FORCE  

 

The grid generated is without propeller grid inside the domain and 

the propeller effect is implemented by the body-force concept. 

The MAU five-bladed propeller which is right handed with a boss 

ratio of 0.2 is used. The non-dimensional propeller radius is 0.04 

with a constant pitch 2.062 and is placed behind the ship at 

021.1/ Lx  centered at (0.08594, 0) on ),( zy  plane. The ship is 

moving with 1Gu  steadily and the velocity components in 

domain grid at propeller section are transferred into the polar 

coordinate of the propeller plane which had 51 grids radially with 

13 sections tangentially (Figure 16) and, the number of grids is 

well enough to compute the body force by the blade element 

theory as shown in Figure 17. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 16  Grids on virtual propeller plane 
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The computation procedures are as shown in Equation 44-47. 

When the propeller is rotating clockwise with tangential velocity

v , the relative velocity of the fluid anticlockwise will be nr2

where n is the number of revolution.  So the resultant velocity 

with induced velocity effect is computed by Equation 44 and the 

corresponding hydrodynamic pitch angle i  is computed by 

Equation 45. The lift coefficient lC  is based on the zero lift line 

(dashed line in Figure 17) with k , a correction for the finite width 

of the propeller blade, and angle of attack )( 1g   and 

computed as in Equation 46 and drag coefficient DC  is assumed 

as 0.01. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 17  Concept of blade element theory 
 

 

  The thrust and torque forces are computed by Equation 48 

and the corresponding body-forces are calculated by Equation 49 

which are transmitted back into the main domain grids and 

implemented into the source terms of the Navier-stokes equation 

(Equation 24). 
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  In nomenclature, c is the chord length at each radius which 

is imported from the propeller chord length data file, dr is the 

radial increment, N  is the number of blade,   is the non-

dimensional density (=1) and x  is the grid spacing respectively. 

The velocity distribution on the propeller plane is shown in Figure 

18 and the axial velocity is seen to be higher on the right side due 

to the effect of right-handed propeller and flow field of the ship. 

The cross-flow vector on the propeller is as in Figure 19. The 

pressure jump on the propeller plane could be well observed in 

Figure 20. The propeller is given the number of rotation based on 

the ship advanced coefficient Js and the result of the torque and 

thrust coefficient is presented in Figure 21.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) Without Propeller                       (b) With Propeller 

 

Figure 18  Axial velocity contours at x/L=1.021 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 19  Cross-flow vectors on the propeller plane at x/L=1.021 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 20  Pressure jump at the propeller plane 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 21  Thrust and torque coefficient with respect to Js 
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5.0  CONCLUSION 

 

In conclusion, the previous version of the computation code 

which is based on non-inertial reference frame is transformed 

successfully into the one in inertial frame. It is obvious that 

specification of boundary conditions in the new code is 

comparatively easier and several ship motion tests can be 

computed well. The new code is firstly simulated using the flat 

plate and the results are validated with the hydrodynamics theory 

as well as with the results in non-inertial frame and well 

agreements are observed. Using the wigley model, important 

maneuvering motions like pure yaw and circular motion test can 

be simulated well and hydrodynamics behavior around the hull is 

well observed. Moreover, the propeller effect by the body-force 

concept can be implemented behind the ship and the propulsion 

quantities are computed and observed well. The concept of the 

transformation technique, the advantage of the computation in 

inertial frame and the introducing of the new propeller body-force 

concept that are all covered in this paper is the important step 

which will strongly support the future research projects. 
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