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Abstract 

 
Biogas has a great potential to be applied for heat and power generation throughout the world due to its 

availability from various resources. However, one of the most important barriers of biogas utilization 

development is its low calorific value. In order to increase the performance of biogas in industrial 
application, hydrogen enriched biogas could be substituted. In this paper a set of numerical simulations 

were conducted to estimate the variation of entropy generation in hydrogen enriched biogas flames due to 

hydrogen addition to the fuel. Reynolds Averaged Navier Stokes with a second order turbulence closure 
and laminar flamelet combustion model was applied to compute energy fields and flow in the flame. It 

was found that hydrogen enrichment resulted in an augmentation in the entropy generation rate of the 

biogas conventional flame. Such increase could be attributed to the increase in irreversibilities due to 
biogas flame temperature rise. 
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1.0  INTRODUCTION 

 

Energy crisis and the increasing rate of pollutant generation have 

encouraged scientists to find alternative fuels to guarantee the 

secure energy generation and peoplehealth.1-5 Experimental 

studies illustrate that biogas shows its compatibility with current 

combustion systems and biogas could be applied as an alternative 

fuel to solve a part of the future fossil fuel shortage. Therefore, a 

comprehensive knowledge of the available technologies is needed 

for biogas users.6 Moreover, general knowledge of the chemical 

characteristics and combustion properties of the biogas is needed 

for efficient combustion process. Generally, the selection of the 

best system for biogas conversion into thermal energy for 

lighting, transportation, heating and power generation is the main 

goal of biogas production.7 It was pointed out that by biogas 

utilization the net emission of greenhouse gases such as CO2, CH4 

and N2O reduced drastically compared to methane.8 The most 

important advantages of biogas production is collecting the 

organic waste materials and generating irrigation water and 

fertilizer concomitantly. Unlike other biomass sources, biogas 

does not have any geographical limitations.9 Landfills and old 

waste deposits, municipal solid waste (MSW), rising main sewers, 

coal mining, rice paddies, anaerobic digestions, cattle ranching 

and agricultural products are the main sources of biogas in the 

world.10-18 Furthermore, since food industries are developed due to 

the increasing rate of world population, animal husbandry has 

become one of the most important sources of biogas in the 

world.19 More than 15% of global methane generation is attributed 

to biogas emission from ruminants, thus biogas capturing from 

livestock dung and energy generation from biogas have become 

important.20 The sustainable strategies in the managing of waste 

water sources can intensify the possibility of biogas generation 

from waste materials.21 Compared to natural gas by 90–95% 

methane, depends on feedstock the rate of methane in biogas is 

40-65%. Therefore, biogas is a low calorific value (LCV) gaseous 

fuel. Generally, the collected biogas is cleaned and its impurities 

like water and sulfuric gases are eliminated. The biogas cleaning 

and upgrading methods and combustion improvement 

technologies are designed based on biogas composition. In 

general 55-65% of biogas is constituted by methane. The lower 

heating value of methane is 34,300 kJ/m3and the lower heating 

value of biogas is about 13,720–27,440 kJ/m3. In biogas heating 

value calculation, the heating value of the whole specious is 

considered. The heating value of non-combustible components 

like CO2 is taken into consideration. Also, the impacts of water 

vapour on lower heating value, air–fuel ratio, biogas flammability 

limits and flame temperature should be taken into account. In 

biogas modelling, usually CO2 and CH4are considered because 
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more than 98% of biogas is a combination of them and other 

specious like water vapour and hydrogen sulphide (H2S) are 

eliminated. Practically removal of these corrosive gases is 

necessary due to their negative impact on equipment especially 

burner and boiler in furnace.  

 

 

2.0  HYDROGEN ADDITION TO BIOGAS 

 

Hydrogen which is considered as a clean fuel due to low emission 

formation has a great potential to be applied as a major fuel in the 

future.23, 24 However, due to high diffusivity and flammability of 

hydrogen, safety in storage and transport of hydrogen is 

encountered some problems.25 The effects of hydrogen addition 

on the combustion of gaseous fuel are radical because the 

combustion properties of these flames depend heavily on the 

characteristics of the gaseous fuel and flame circumstances. 

Hydrogen enrichment of various gaseous fuels such as CH4, 

propane (C3H8) and natural gas was investigated during the last 

decade. Ignition of hydrogen-enriched fuel mixtures under the 

lean flammability limits causes the fuel saving goals. In 

hydrogen-enriched fuel the Arrhenius reaction rate is intensifies 

due to augmentation of the flame temperature, therefore high 

reaction rate of hydrogen is recorded and the rate of required 

oxygen in the lean mixture rises. Due to the low computational 

cost fast chemistry models are superior in the simulation of 

hydrogen-enriched fuel combustion.26 The conserved scalar model 

was applied to model a non-premixed turbulent combustion of 

mixture of methane and hydrogen by Ilbas.27 An unacceptable 

accuracy was reported by Mardani when similar flame with eddy 

dissipation concept (EDC) was modeled.28 It was reported that for 

simulation of hydrogen-enriched methane combustion, the steady 

laminar flamelet model has better prediction in terms of minor 

species.29,30 Yilmaz compared the results of flamelet method with 

equilibrium model when Probability Density Function (PDF) was 

calculated for mass fraction of species.31 It was reported that 

mixture fraction and temperature illustrate better results within the 

reaction zone could be achieved. Hossain pointed out that just 

major species could be predictable by flame sheet model.29 

Although accurate results for water vapor mass fraction and flame 

temperature could be obtained by flame sheet model, unaccepted 

prediction of CO2 is one of the weak points of this method. 

Various chemical reaction mechanisms were applied by different 

researchers in their modeling method and it was reported that 

chemical reaction mechanism modeling method is very important 

in laminar flamelet model. For example in simulation was done by 

Ilbas only seven species were used.27 Yilmaz applied GRI 

mechanism with 18 species.31 Ravikanti used GRI2.11 and 

reported that the results are in good agreement with the reduced 

DRM-22 mechanism results.30 In the combustion modeling was 

done by Frassoldati, 600 reactions were applied and 48 species 

were taken into account.32 

 

 

3.0  ENTROPY GENERATION 

 

Hydrogen enrichment is one of the potential methods which were 

introduced for improving biogas combustion for heat and power 

generation. Hydrogen addition to the biogas enables the 

combustion system to work at very lean circumstances which 

improves the efficiency of combustion system.33-35However, the 

temperature of hydrogen-enriched biogas flame increases 

significantly in some regions.36This condition causes a mitigation 

in the reversibility work of combustion system which could 

expunge the fuel economy achievements. For a given 

thermodynamic system, the lost work can be calculated by 

formula (1). 

 

�̇�𝑟𝑒𝑣 − �̇� = 𝑇0�̇�𝑔𝑒𝑛
̇                                                                              (1) 

�̇�𝑟𝑒𝑣is the reversible work, �̇�is the actual work and �̇�𝑔𝑒𝑛 is 

the total entropygenerated in the combustion system. Generally, 

entropy is produced due to various factors depending on the 

characteristics of combustion system such as chemical reactions, 

heat transfer and viscous dissipation. In formula (2) illustrates the 

local entropy generation in a two dimensional radial axisymmetric 

domain when the heat and mass irreversibilities is considered in 

the thermodynamic system.37,38 
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  The first and second terms on the right side of formula refer 

to heat transfer entropy generation (�̇�ℎ𝑡)and viscous dissipation 

entropy generation (�̇�𝑣) respectively and 𝛹 is viscous dissipation 

parameter defined by formula (3). 
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  The axial, radial and swirl velocity of various components is 

demonstrated by u, v and w respectively. 

 

 

4.0  SIMULATION 

 

In this simulation, pure biogas is considered as a combination of 

40% CO2 and 60% methane and the effects of 5% and 10% 

hydrogen addition to this combination when the rate of CO2 is 

constant are investigated. Based on Shih investigation, 39realizable 

k–ε simulation yields more acceptable results for shear flows. 

Therefore, the standard k–ε model is applied to model combustion 

with the laminar flamelet combustion model in present study. 

Furthermore, the main reason for this decision is that the 

turbulence kinetic energy dissipation is computed differently in 

realizable and standard k–ε model and the flamelet model 

employs dissipation to count for deviation from equilibrium this 

difference in dissipation formulation affects the modeling of 

combustion differently. Therefore, performance of realizable k–ε 

model with flamelet model could be investigated biogas-enriched 

conventional flames. Following transportation equations are 

modeled k and ε in the standard k–ε model. For turbulent kinetic 

energy k: 
 
𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑖) =

𝜕
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[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝑃𝑘 + 𝑃𝑏 − 𝜌𝜀 − 𝑌𝑀 + 𝑆𝑘    (4) 

 

For dissipation 𝜀: 
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𝑆𝜀                                                                                                               (5) 

 

  The laminar flamelet turbulent combustion is applied to 

model the interaction turbulence and chemical reaction. The 

GRI3.0 chemical reaction mechanisms were employed to 

calculate the chemical species.40 In this study attention is given to 

the variations of the local entropy generation rates due to 

hydrogen enrichment of biogas conventional flame. ANSYS 

Fluent 14 is applied to carry on the simulation and computational 
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work.42 CFD model of the chamber for this numerical study is 

based on the geometry of the experimental flameless combustion 

carried out by SE Hosseini.6 The inside diameter and the length of 

the chamber are 150 mm and 600 mm respectively. The 5 mm 

central inlet of the burner is considered for the inlet of the 

hydrogen enriched biogas mixture and the other inlets are 

considered for the oxidizer entrances. The emissions are 

exhausted through a central hole with 50 mm diameter. 

Convergence rate and scalar properties can be modified by mesh 

refinement and grid resolution. The chamber geometry is not very 

complicated, therefore calculations speed increase due to lower 

meshing nodes and elements. The quantity of mesh grids directly 

impacts on the solution duration. Since the chamber model is 

symmetrical, just an eighth part of the model is solved. Figure 1 

shows the schematic of the furnace and a part of the furnace 

which has been meshed.  

 

 

 

 
 

Figure 1  Schematic of the furnace and its mesh 

 
 

  For validation, comparisons between this numerical solution 

of the reacting flow and experimental measurements presented by 

Hosseini are compared.6 Figure 2 demonstrates numerical and 

experimental results of the temperature distribution along the 

furnace. This figure confirms that the numerical results are in 

good agreement whit experimental records and the simulation 

settings are reliable. Indeed Figure 3 depicts the radial distribution 

of temperature in four various sections of the chamber. 

 

 

Figure 2  Numerical and experimental results of the temperature 

distribution along the furnace 

 

 

5.0  ENTROPY GENERATION 

 

Figure 4 demonstrates the entropy generation in the chamber in 

biogas conventional combustion and hydrogen-enriched biogas 

traditional combustion when 5% and 10% hydrogen is added 

respectively. Since high entropy generation intensifies 

irreversibility, exergy loss is higher in traditional combustion of 

hydrogen-enriched biogas when 10% hydrogen is added.  SK Som 

stipulated that the most irreversibility in a conventional 

combustion system is related to the internal heat transfer within 

the combustor between the products and reactants.43 Entropy 

generation in hydrogen-enriched biogas with 10% could be 

attributed to higher temperature inside the chamber. 

 

5.1  Entropy Augmentation Number 

 

The entropy augmentation number Ns,a is the dimensionless ratio 

of local entropy generation in two specific cases (
�̇�𝑔𝑒𝑛,𝑖

�̇�𝑔𝑒𝑛,1
) which 

�̇�𝑔𝑒𝑛,1 and �̇�𝑔𝑒𝑛,𝑖  are the local entropy generation in biogas 

conventional flame (without hydrogen enrichment) and in 

hydrogen-enriched biogas flame (with hydrogen enrichment), 

respectively. When Ns,a is less than unity, it can be concluded  that 

the addition of hydrogen resulted in a reduction of entropy, hence 

an enhancement of the system exergy. Figure 5 displays axial 

profiles of Ns,a for various biogas hydrogen concentrations. From 

this figure it can be seen that the hydrogen addition causes 

substantial increase of Ns,a in some whole of the chamber. 
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(a) Radial distribution of temperature x=25 mm 

 

 

(b) Radial distribution of temperature x=50 mm 

 

 

(c) Radial distribution of temperature x=75 mm 

 

 

(d) Radial distribution of temperature x=100 mm 

 

Figure 3  Radial temperature distribution along the furnace in various 

sections 

 

 
 

Figure 4  Entropy generation in the chamber in hydrogen-enriched biogas 

traditional combustion 

 

 
 

Figure 5  Axial profiles of Ns,a for various biogas hydrogen concentrations 

 
 

 

 
 

10% Hydrogen 

5% Hydrogen 

0% Hydrogen 



101                                                  Seyed Ehsan, Ghobad & Mazlan / Jurnal Teknologi (Sciences & Engineering) 66:2 (2014), 97–102 

 

 

6.0  CONCLUSION 

 

Numerical simulations of the entropy generation in turbulent 

hydrogen-enriched biogas flame have been conducted. Pure 

biogas and biogas consist of 5% and 10% hydrogen were 

modeled. It was found that the entropy generation rate increases 

due to hydrogen enrichment. Such increase was attributed as rises 

in the entropy augmentation number. Future investigations should 

prepare more detailed insights on the characteristics of entropy 

generation patterns and extend the analysis to cover a wider range 

of hydrogen concentration. 
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