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A SIMULATION STUDY ON RIDGE REGRESSION
ESTIMATORS IN THE PRESENCE OF OUTLIERS AND

MULTICOLLINEARITY

HABSHAH MIDI1 1 1 1 1 & MARINA ZAHARI22222

Abstract. A simulation study is used to examine the robustness of six estimators on a multiple
linear regression model with combined problems of multicollinearity and non-normal errors. The
performance of the six estimators, namely the Ordinary Least Squares (LS), Ridge Regression
(RIDGE), Ridge Least Absolute Value (RLAV), Weighted Ridge (WRID), MM and a robust ridge
regression estimator based on MM estimator (RMM) are compared. The RMM is a modification
of the Ridge Regression (RIDGE) by incorporating robust MM estimator. The empirical evidence
shows that RMM is the best among the six estimators for many combinations of disturbance
distribution and degree of multicollinearity.
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Abstrak. Satu kajian simulasi telah dijalankan untuk memeriksa keteguhan beberapa
penganggar ke atas model linear regresi berganda dengan gabungan masalah multikolinearan dan
ralat tak normal. Prestasi keenam-enam penganggar tersebut, seperti penganggar Kuasadua Terkecil
Biasa (LS), Regresi ‘Ridge’ (RIDGE), Nilai Mutlak Terkecil ‘Ridge’ (RLAV), ‘Ridge’ Berpemberat
(WRID), MM dan Regresi Teguh ‘Ridge’ berasaskan penganggar MM (RMM) dibandingkan.
Penganggar RMM adalah pengubahsuaian penganggar Regresi ‘Ridge’ dengan menggabungkan
penganggar teguh MM. Bukti empirik menunjukkan RMM adalah penganggar terbaik di kalangan
enam penganggar yang dikaji bagi gabungan taburan ganguan dan paras multikolinearan.

Kata kunci: Multikolinearan; titik terpencil; regresi ‘ridge’; regresi teguh

1.0 INTRODUCTION

For generation, statisticians have been relying on the Classical Ordinary Least Squares
(LS) method in the multiple linear regression. It has been the most popular technique
due to its optimal properties and ease of computation. The estimator β  is determined
by minimizing the function
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and the estimator of the parameter β is given by

l ( ) 1
LS

T TB X X X Y
−

= (2)

This method gives unbiased and minimum variance among all unbiased linear
estimators provided that the errors are independent and identically, normally
distributed. However, in the presence of multicollinearity, the LS can result in very
poor estimates. Even though LS estimates are unbiased in the presence of
multicollinearity, its estimates will be imprecise with inflated standard errors. Inflated
variances induced by multicollinearity are quite harmful to the use of regression as
a basis for hypothesis testing, estimation and forecasting. An important test of
significance based on degraded estimates would have been concluded inconclusive
through a high error variance, or that a confidence interval or forecast interval is
found to be large.

As an alternative to the OLS, we may turn to ridge regression estimator which
may improved the precision of the regression coefficients. The ridge regression
(RIDGE) technique     was first proposed by Hoerl [1] and was extended further by
Hoerl and Kennard [2 – 3]. Several other works on ridge regression have been
proposed. Among them are Hoerl, Kennard and Baldwin [4] and Marquardt and
Snee [5]. However, these techniques are not immune to the deviation from the
normal assumption, that is a heavy-tailed distribution which may arise as a result of
outliers. Outliers which arise from bad data points may have unduly effect on the LS
and the Ridge estimates. The problem is further complicated when both outliers
and multicollinearity are present in the data. In recent years, major efforts have been
made to obtain reliable estimates especially in the presence of heavy-tailed error
distribution and also multicollinearity. A robust method which is less influenced by
the outliers and a ridge regression technique which improved the multicollinearity
problem, had been given substantial consideration. Nevertheless, these methods
alone cannot rectify the problem of outliers and multicollinearity. To remedy these
two problems simultaneously, several robust ridge regression estimators have been
put forward that are much less influenced by outliers and multicollinearity. Askin
and Montgomery [7] proposed using the Weighted Ridge (WRID) and Pfaffenberger
and Dielman [7 – 8] suggested combining the ridge and the Least Absolute Value
(LAV) robust regression techniques. In this paper, we take the initiative to develop
a more robust technique to rectify these two problems. We proposed combining the
ridge regression with the highly efficient and high breakdown point estimator, namely
the MM estimator. We call this modified method, the Robust Ridge Regression
based on MM estimator (RMM). We expect that the modified method would be
less sensitive to the presence of outliers and possess a high breakdown point since
we have removed the influence of outliers by the highly robust and efficient MM
estimator and also the problem of multicollinearity by ridge regression.
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2.0 RIDGE REGRESSION ESTIMATORS

In cases where multicollinearity exists, the singularities present in XTX matrix and
this ill-conditioned X matrix can result in very poor estimates. The degree of
multicollinearity is often indicated by conditioned number (CN) of the matrix X (or
XTX ). CN is defined as the ratio of the largest singular values of X to the smallest,

( ) max

min
CN 1X

λ
λ

= ≥  (3)

where λ are the eigenvalues of the matrix XTX.
Belsley et al. [9] have empirically shown that weak dependencies are linked to

CN around 5 to 10, whereas moderate to strong relations are linked to CN of 30 to
100. Hoerl and Kennard [2 – 3] pointed out that by adding a small constant to the
diagonal of a matrix, will improve the conditioning of a matrix as this would
dramatically reduced its CN. The ridge regression estimator is defined as follows

( )β
−

= +T TX X kI X Y
1

RID (4)

where I is the ( p × p) identity matrix and k is the biasing constant.
In practice, the optimal value of k is unknown. Various methods in determining

k have appeared in the literature such as described by Hoerl and Kennard [3] and
Gibbons [10]. The estimator of k proposed by Hoerl et al. [11] is given by

β β
=
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When 0k = , β=RID LSB , when 0k > , βRID  is biased but more stable and precise

than LS estimator and when k → ∞ , β →RID 0 . Hoerl and Kennard [2] have shown

that there always exist a value 0k >  such that βRIDMSE  is less than βLSMSE .

3.0 ROBUST REGRESSION ESTIMATORS

Robust regression estimators have been proven to be more reliable and efficient
than least squares estimator especially when disturbances are nonnormal. “Nonnormal
disturbances” are disturbance distributions that have heavy or fatter tails than the
normal distribution and are prone to produce outliers. Since outliers greatly influence
the estimated coefficients, standard errors and test statistics, the usual statistical
procedure may be most inefficient as the precision of the estimator has been affected.
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A better approach is to consider the robust procedure. This procedure fit a regression
by using estimators that dampen the impact of influential points and then to detect
outliers; those points lying far away from the pattern formed by the good points and
have large residuals from the robust fit. Several works on robust estimation have
been proposed in the literature. Among them are Edgeworth [12] who proposed the
Least Absolute Values (LAV) estimator and Huber [13] who introduced M-estimators.
However, none of these estimators achieves high breakdown point. Rousseeuw and
Leroy [14] introduced the most robust estimator having the highest possible
breakdown point, that is 50% which is known as Least Median Squares (LMS) and
Least Trimmed Squares (LTS). Yohai [15] improved further the efficiency of the
high breakdown estimators by introducing MM-estimators. The MM estimators are
defined in three stages where the first and second stage is to achieve high breakdown
point and the third stage is to aim for a high efficiency.

(i) In stage one, to compute an initial regression estimate T0 of θ0 which is
consistent robust (but not necessarily efficient) with high breakdown point,
possibly 50%.

(ii) In the second stage, compute the residuals of the initial estimate,

( ) = − ≤ ≤, , , 1 ,T
i o n i o n ir T y T x i n  (7)

then, compute an M-estimate of errors scale ( )( )= ,n o ns s r T  (8)

(using a function ρ0, satisfying Huber [16] M-estimation assumptions and
using a constant b such that

0.5
b
a

=  (9)

where a = max ρ0(u)
(iii) The third stage is to compute an M-estimate of the regression parameters

based on a proper redescending psi-function.
Let ρ1 be another function satisfying Huber [16] M-estimation assumptions
such that

( ) ( )0 ,i u uρ ρ≤  (10)

( ) ( )0sup supi u u aρ ρ= =  (11)

The influence function denoted as ψ(t) is obtained by differentiating the
objective function ρ(t), that is ψ(t) = ρ'(t). There are several functions of
ρ(t) and thus ψ(t) to choose from, and in this study, the Huber influence
function will be employed.
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Then, the MM-estimator T1,n is defined as any solution of
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and ( )1 0 / 0ρ  is defined as 0.

4.0 ROBUST RIDGE REGRESSION ESTIMATORS

Although βRIB  works best in the presence of multicollinearity, however, it is not
robust when there are departures from normality for the disturbances. Hence, we
need to combine this technique with some robust estimation techniques to produce
robust ridge regression estimators.

Since robust and ridge regression methods are unable to deal with the outliers
and multicollinearity problems simultaneously, it seems worthwhile to combine both
methods. There have been some studies concerning the estimation using the robust
ridge regression estimators in the literature such as Vinod and Ullah [17], Askin and
Montgomery [6] who introduced Weighted Ridge (WRID) estimator, and
Pfaffenberger and Dielman [7] who introduced Ridge Least Absolute Value (RLAV)
estimator. A slight modification of the ridge regression technique based on MM
estimator is proposed. We would expect the modified method to be more robust
than the Weighted Ridge (WRID) and the Ridge Least Absolute Value (RLAV).

4.1 Weighted Ridge (WRID)

The robust ridge regressions estimator proposed by Askin and Montgomery [6] first
introduced a weighted least squares estimator, written as

( )β
−

=
1

WLS
T TX WX X WY  (15)

where W is a diagonal matrix with diagonal elements Wii, the weights intended to

downweight extreme observations. βWLS  can be estimated by applying OLS to the
transformed observations ii iW y  and ii iW x . The weights can be determined using
any M-estimate W function and are given by
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The WRID estimator is computed using the formula

( )β −′ ′= + 1
WRID X WX kI X WY  (17)

where k is the biasing parameter determined as in Equation (5).

2.2 Ridge Least Absolute Value (RLAV)

Pfaffenberger and Dielman [7] and Lawrence and Arthur [18] suggested robust
ridge regression by combining the properties of the LAV and the ridge regression
estimator referred to as RLAV. The RLAV estimator can be written by

( )β
−

= +
1

RLAV *T TX X k I X Y (18)

The value of k* is determined similar to that of Hoerl et al. [11] in Equation (5)
and (6) by replacing k with k* as in Equation (19) and (20), respectively.

β β
=

2
LAV

LAV LAV

*
T

ps
k (19)

where,
( ) ( )β β− −

=
−

LAV LAV2
LAV

T
Y X Y X

s
n p

 (20)

p is the number of parameters and n is the sample size.

βLAV  is the LAV estimator defined as the solution to 
1

min
N

T
i i

i

y x
β

β
=

−∑ . (21)

2.3 Ridge MM (RMM)

In this article, we proposed a slight modification of the RLAV which is defined in
Equation (18). In doing so, we replaced the values of the LAV estimator in (19) with
the MM estimator to determine the biasing parameter k

β β
=

2
MM

MM MM
T

ps
k (22)

Likewise, the MM estimator of β is used rather than LS estimator in computing
the k and s2 values in order to reduce the effect of outliers on the value chosen for k.

( ) ( )β β− −
=

−
MM MM2

MM

T
Y X Y X

s
n p

(23)
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The RMM estimator of the parameter β is given by

( )β
−

= +
1

RMM
T TX X kI X Y  (24)

where k is given in Equation (22).

5.0 SIMULATION STUDY

A simulation study similar to that of Lawrence and Arthur (1990) has been carried
out to demonstrate the efficiency of the proposed estimator, RMM in comparison
with several existing estimators. Varying degrees of multicollinearity and non-normal
disturbance distributions were allowed to be present simultaneously in the simulation.

There are six estimators in the study,

(i) Ordinary Least Squares (LS)
(ii) Ridge Regression (RIDGE)
(iii) Ridge Least Absolute Value (RLAV)
(iv) Weighted Ridge (WRID)
(v) MM
(vi) Ridge MM (RMM)

The following model was used in this simulation studies;

1 21i i i iy x x ε= + + +  (25)
where

0 1 2 1β β β= = =
The explanatory variables xi1 and xi2 were generated as below,

( )ρ ρ= − + = =…21 , 1, ; 1,2ij ij ijx z z i n j  (26)

where zij are independent standard normal random numbers. These values were
held fixed throughout the experiment once generated for a given sample size n. The
sample sizes used were 25 and 50. The value of ρ2 represents the correlation between
the two explanatory variables. The chosen values were 0.0, 0.5, 0.8, 0.9, 0.95 and
0.99. The final factor was the disturbance distribution. Three disturbance distributions
were examined,

(i) Standard normal distribution.
(ii) Cauchy distribution with median zero and scale parameter one.
(iii)  t-Student distribution with degrees of freedom three.

The non-normal distribution, such as the Cauchy and Student-t with 3 degrees of
freedom having a heavy tailed distribution which prone to produce outliers, were

^
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generated to see the effect of combined problems of multicollinearity and outliers
on different estimators. The Normal, Cauchy and Student-t variates were generated
from S-Plus program. All computations were written in S language and executed on
Acer Pentium III 866 Mhz. The performance of the RMM is assessed by looking at
some summary statistics based on 1000 Monte Carlo trials. The statistics computed
are the bias, root of mean squared error (RMSE), standard error (SE), and 5 pairwise
MSE ratios of the estimators. The bias and MSE are given by:

( )β β β β= − = −Bias j jE  (27)

where 

β
β == =

∑
1 , 1000

m

j
i

j m
m

( ) [ ] ( ) ( )β β β β β β β
=

= − = − + −∑
222 ( )

1

1
MSE

n
k

j j j jj
j

E
m  (28)

where j = 0, 1, 2
Therefore, the RMSE is given by [MSE ( )β j ]1/2 or is given by [VAR ( )β j  +

Bias2] 1/2. The measure of closeness was calculated as the number of times estimator
A was closer than estimator B to the true parameter β.

The result for the parameter β0 were quite similar to β1 and β2. Similarly, the
results for ρ2 = 0.8, 0.9 and 0.99 are consistent for all methods and therefore are not
included in the results to save spaces. The values in all tables are for sample size 25
except for sample size 50 were written in bold. Tables 1, 3 and 5 show the summary
statistics such as bias, root of mean squared error (RMSE) and standard error (SE) of
the estimators. Tables 2, 4 and 6 show the efficiency of the estimators by looking at
the MSE ratios of the estimators. Values less than one indicate that the first estimator
is more efficient, while values more than one indicate that the other estimator is
more efficient.

From Table 1, we can see that the RMSE of the LS is relatively smaller than the
other estimators when the errors are normally distributed and multicollinearity is
not present. As was to be expected, the LS give the best results in the normal
situation. Likewise, the result in Table 2 is in favour of LS. We see that the Mean
Squared Error (MSE) ratios of RMM to OLS is greater than 1.00 indicating that the
LS is more efficient than the RMM.

However, for normal error distribution and when correlation is present in the
data, RMM is better than LS, WRID and MM and it’s performance is almost as
good as RIDGE and RLAV. Otherwise, LS is superior. The MSE ratios in Table 2
supported the results obtained from Table 1. These ratios denote the efficiency of
RMM relative to other estimators. Values less than one indicate that RMM is more

^
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Table 1 Bias, RMSE and SE of β1  and β2 with disturbance distribution Normal (0,1)

( β1 )

Values of ρρρρρ2

0.0 0.5 0.95

Method Bias RMSE S.E. Bias RMSE S.E. Bias RMSE S.E.

LS -0.0157 0.2174 0.2169 -0.0088 0.3327 0.3326 0.0446 3.0013 3.0009
0.0017 0.1451 0.1451 -0.0026 0.2284 0.2284 -0.0507 2.0939 2.0933

RIDGE -0.0584 0.2216 0.2137 -0.0412 0.2959 0.2930 -0.0134 1.5378 1.5377
-0.0191 0.1452 0.1439 -0.0185 0.2153 0.2145 -0.0121 1.0704 1.0704

RLAV -0.0617 0.2229 0.2142 -0.0426 0.2950 0.2919 -0.0261 1.5524 1.5521
-0.0199 0.1455 0.1441 -0.0189 0.2147 0.2139 -0.0255 1.0707 1.0704

WRID -0.0151 0.2743 0.2739 -0.0128 0.4111 0.4109 0.0607 3.5277 3.5272
-0.0022 0.1879 0.1879 -0.0086 0.2795 0.2794 -0.0563 2.3338 2.3331

MM -0.0146 0.2710 0.2706 -0.0107 0.4063 0.4061 0.0424 3.6993 3.6991
-0.0028 0.1728 0.1728 -0.0009 0.2728 0.2728 -0.0445 2.4974 2.4970

RMM -0.0607 0.2231 0.2147 -0.0422 0.2953 0.2923 0.0190 1.5057 1.5055
-0.0198 0.1454 0.1441 -0.0186 0.2152 0.2144 -0.0102 1.0729 1.0729

( β1 )

Values of ρρρρρ2

0.0 0.5 0.95

Method Bias RMSE S.E. Bias RMSE S.E. Bias RMSE S.E.

LS -0.0051 0.2258 0.2258 0.0091 0.3496 0.3495 -0.0574 3.0116 3.0110
0.0069 0.1484 0.1482 0.0094 0.2303 0.2301 0.0555 2.0927 2.0920

RIDGE -0.0476 0.2266 0.2215 -0.0250 0.3103 0.3093 0.0038 1.5543 1.5543
-0.0140 0.1477 0.1471 -0.0076 0.2152 0.2151 0.0057 1.0686 1.0686

RLAV -0.0511 0.2276 0.2217 -0.0266 0.3087 0.3076 0.0187 1.5638 1.5636
-0.0149 0.1477 0.1469 -0.0081 0.2147 0.2146 0.0200 1.0710 1.0708

WRID -0.0122 0.2679 0.2676 0.0151 0.4236 0.4233 -0.0805 3.5364 3.5355
0.0039 0.1822 0.1822 0.0139 0.2795 0.2792 0.0642 2.3399 2.3390

MM -0.0042 0.2630 0.2629 0.0098 0.4143 0.4142 -0.0583 3.7101 3.7096
0.0018 0.1710 0.1710 0.0123 0.2699 0.2696 0.0542 2.4976 2.4970

RMM -0.0503 0.2266 0.2210 -0.0261 0.3094 0.3083 -0.0479 1.5210 1.5202
-0.0148 0.1477 0.1469 -0.0079 0.2150 0.2149 0.0041 1.0701 1.0701

^ ^

^

^
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efficient while values greater than one indicate that the other estimators are more
efficient than RMM. From Table 2, it clearly shows that RMM is almost as efficient
as RIDGE and RLAV but certainly more efficient than LS, MM and WRID when
outliers do not exist and when multicollinearity is present.

Table 2 MSE ratios of 15 pairwise estimators of β1  and β2 with disturbance distribution Normal

(0,1)

                                                            ( β1 )                                   ( β2 )

Values of ρρρρρ2

  Estimator 1 vs Estimator 2 0.0 0.5 0.95 0.0 0.5 0.95

RMM LS 1.05 0.79 0.25 1.01 0.78 0.26
1.00 0.89 0.26 0.99 0.87 0.26

RID 1.01 1.00 0.96 1.00 0.99 0.96
1.00 1.00 1.00 1.00 1.00 1.00

WRID 0.66 0.52 0.18 0.72 0.53 0.18
0.60 0.59 0.21 0.66 0.59 0.21

RLAV 1.00 1.00 0.94 0.99 1.00 0.95
1.00 1.00 1.00 1.00 1.00 1.00

MM 0.68 0.53 0.17 0.74 0.56 0.17
0.71 0.62 0.18 0.75 0.63 0.18

MM LS 1.55 1.49 1.52 1.36 1.40 1.52
1.42 1.43 1.42 1.33 1.37 1.42

RID 1.50 1.89 5.79 1.35 1.78 5.70
1.42 1.61 5.44 1.34 1.57 5.46

WRID 0.98 0.98 1.10 0.96 0.96 1.10
0.85 0.95 1.15 0.88 0.93 1.14

RLAV 1.48 1.90 5.68 1.34 1.80 5.63
1.41 1.61 5.44 1.34 1.58 5.44

RLAV LS 1.05 0.79 0.27 1.02 0.78 0.27
1.01 0.88 0.26 0.99 0.87 0.26

RID 1.01 0.99 1.02 1.01 0.99 1.01
1.00 0.99 1.00 1.00 1.00 1.00

WRID 0.66 0.51 0.19 0.72 0.53 0.20
0.60 0.59 0.21 0.66 0.59 0.21

WRID LS 1.59 1.53 1.38 1.41 1.47 1.38
1.68 1.50 1.24 1.51 1.47 1.25

RID 1.53 1.93 5.26 1.40 1.86 5.18
1.67 1.69 4.75 1.52 1.69 4.79

RID LS 1.04 0.79 0.26 1.01 0.79 0.27
1.00 0.89 0.26 0.99 0.87 0.26

*Values less than one indicate that the first estimator (first column) is more efficient than the second estimator
(second column); values greater than one indicate that the second estimator (second column) is more efficient
than the first estimator (first column)

^ ^

^^
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From Tables 3 and 4 (Cauchy distribution), for skewed distribution and
multicollinearity is not present, MM outperforms all the other estimators. However,
when both multicollinearity and outliers are present, all three robust ridge estimators,
WRID, RLAV and RMM perform better, in which RMM is superior, followed

Table 3 Bias, RMSE and SE of β1  and β2 with disturbance distribution Cauchy

( β1 )

Values of ρρρρρ2

0.0 0.5 0.95

Method Bias RMSE S.E. Bias RMSE S.E. Bias RMSE S.E.

LS 2.948 126.361 126.327 2.778 60.726 60.662 6.272 263.854 263.779
0.195 18.565 18.564 0.322 32.098 32.096 5.177 340.413 340.374

RIDGE 0.662 43.493 43.488 0.779 27.448 27.437 -1.028 50.754 50.743
-0.256 7.316 7.311 -0.243 8.663 8.659 0.473 73.983 73.982

RLAV -0.563 0.767 0.520 -0.500 0.784 0.604 -0.265 1.879 1.861
-0.566 0.775 0.529 -0.528 0.744 0.524 -0.330 1.061 1.009

WRID -0.209 0.509 0.464 -0.178 0.610 0.584 0.102 3.373 3.371
-0.284 0.473 0.379 -0.251 0.478 0.407 -0.124 1.459 1.453

MM 0.025 0.432 0.432 0.009 0.670 0.670 0.598 6.195 6.166
-0.001 0.279 0.279 -0.022 0.432 0.431 -0.241 3.954 3.947

RMM -0.575 0.767 0.507 -0.515 0.760 0.559 -0.207 1.539 1.525
-0.573 0.776 0.524 -0.532 0.745 0.521 -0.309 1.008 0.960

β2

Values of ρρρρρ2

0.0 0.5 0.95

Method Bias RMSE S.E. Bias RMSE S.E. Bias RMSE S.E.

LS 3.936 144.025 143.972 1.289 78.861 78.851 -5.348 245.959 245.901
-0.208 17.346 17.345 -0.619 36.886 36.881 -5.510 344.521 344.477

RIDGE 0.717 41.931 41.925 -0.148 21.884 21.883 1.841 46.745 46.709
-0.398 6.632 6.620 -0.397 9.743 9.735 -0.864 74.819 74.814

RLAV -0.571 0.793 0.550 -0.511 0.781 0.591 -0.245 1.897 1.881
-0.579 0.775 0.514 -0.536 0.748 0.521 -0.310 1.077 1.032

WRID -0.248 0.528 0.467 -0.222 0.597 0.555 -0.241 3.391 3.382
-0.282 0.469 0.375 -0.248 0.472 0.402 -0.111 1.458 1.453

MM -0.016 0.455 0.455 -0.029 0.683 0.682 -0.597 6.214 6.185
0.011 0.288 0.288 0.022 0.443 0.443 0.238 3.973 3.966

RMM -0.583 0.791 0.535 -0.531 0.759 0.543 -0.308 1.563 1.532
-0.586 0.775 0.508 -0.545 0.746 0.509 -0.293 1.013 0.970

^

^^

^
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Table 4 MSE ratios of 15 pairwise estimators of β1  and β2 with disturbance distribution Cauchy

                                                           ( β1 )                                  ( β2 )

Values of ρρρρρ2

  Estimator 1 vs Estimator 2 0.0 0.5 0.95 0.0 0.5 0.95

RMM LS 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

RID 0.000 0.001 0.001 0.000 0.001 0.001
0.011 0.007 0.000 0.014 0.006 0.000

RLAV 1.00 0.94 0.67 1.00 0.94 0.68
1.00 1.00 0.90 1.00 0.99 0.88

WRID 2.27 1.55 0.21 2.24 1.62 0.21
2.69 2.43 0.48 2.73 2.50 0.48

MM 3.15 1.29 0.06 3.02 1.24 0.06
7.76 2.97 0.07 7.26 2.83 0.07

MM LS 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

RID 0.000 0.001 0.015 0.000 0.001 0.018
0.001 0.002 0.003 0.002 0.002 0.003

RLAV 0.32 0.73 10.87 0.33 0.76 10.73
0.13 0.34 13.87 0.14 0.35 13.60

WRID 0.72 1.21 3.37 0.74 1.31 3.36
0.35 0.82 7.35 0.38 0.88 7.43

RLAV LS 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

RID 0.000 0.001 0.001 0.000 0.001 0.002
0.011 0.007 0.000 0.014 0.006 0.000

WRID 2.27 1.65 0.31 2.25 1.71 0.31
2.68 2.42 0.53 2.72 2.51 0.55

WRID LS 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

RID 0.00 0.00 0.00 0.000 0.001 0.005
0.00 0.00 0.00 0.005 0.002 0.000

RID LS 0.12 0.20 0.04 0.08 0.08 0.04
0.16 0.07 0.05 0.15 0.07 0.055555

*Values less than one indicate that the first estimator (first column) is more efficient than the second estimator
(second column); values greater than one indicate that the second estimator (second column) is more efficient
than the first estimator (first column)

closely by RLAV. A similar conclusion can be made when employing the t-Student
distribution with 3 degrees of freedom. The results obtained from Tables 5 and 6 are
almost parallel to the results obtained from employing the Cauchy distribution.

^

^ ^
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Table 5 Bias, RMSE and SE of β1  and β2 with disturbance distribution t-Student (3)

( β1 )

Values of ρρρρρ2

0.0 0.5 0.95

Method Bias RMSE S.E. Bias RMSE S.E. Bias RMSE S.E.

LS -0.0012 0.3755 0.3755 0.0168 0.5811 0.5808 0.2231 5.1562 5.1514
-0.0096 0.2435 0.2433 -0.0153 0.3815 0.3812 -0.1524 3.4542 3.4508

RIDGE -0.0927 0.3547 0.3423 -0.0646 0.4438 0.4391 0.0909 2.5437 2.5421
-0.0655 0.2465 0.2376 -0.0558 0.3295 0.3248 -0.0480 1.6799 1.6793

RLAV -0.1032 0.3427 0.3268 -0.0794 0.4126 0.4049 0.1088 1.7881 1.7848
-0.0697 0.2426 0.2323 -0.0589 0.3176 0.3121 -0.0203 1.1649 1.1647

WRID -0.0028 0.2983 0.2983 -0.0169 0.4914 0.4911 0.1509 3.8321 3.8291
-0.0136 0.2027 0.2022 -0.0097 0.3045 0.3043 -0.0136 2.3593 2.3593

MM 0.0036 0.2938 0.2937 -0.0069 0.5207 0.5206 0.2453 4.4349 4.4281
-0.0097 0.2089 0.2087 -0.0093 0.3133 0.3132 -0.0898 2.8829 2.8815

RMM -0.1053 0.3410 0.3244 -0.0832 0.4073 0.3987 0.1107 1.7224 1.7189
-0.0701 0.2426 0.2322 -0.0598 0.3161 0.3104 -0.0230 1.1130 1.1128

( β1 )

Values of ρρρρρ2

0.0 0.5 0.95

Method Bias RMSE S.E. Bias RMSE S.E. Bias RMSE S.E.

LS -0.0007 0.3604 0.3604 0.0089 0.5766 0.5765 -0.2139 5.1522 5.1478
0.0014 0.2573 0.2573 0.0154 0.3811 0.3808 0.1560 3.4463 3.4428

RIDGE -0.0934 0.3466 0.3337 -0.0621 0.4548 0.4506 -0.1080 2.5361 2.5338
-0.0541 0.2543 0.2485 -0.0313 0.3252 0.3237 0.0296 1.6753 1.6751

RLAV -0.1038 0.3372 0.3208 -0.0756 0.4261 0.4193 -0.1373 1.7843 1.7790
-0.0584 0.2495 0.2426 -0.0353 0.3131 0.3111 -0.0036 1.1680 1.1680

WRID -0.0134 0.3069 0.3066 -0.0047 0.4864 0.4863 -0.1390 3.8419 3.8394
-0.0096 0.2073 0.2070 0.0002 0.3182 0.3182 0.0178 2.3719 2.3719

MM 0.0037 0.3179 0.3178 0.0078 0.5131 0.5131 -0.2294 4.4443 4.4384
0.0034 0.2031 0.2031 0.0135 0.3114 0.3111 0.0940 2.8804 2.8789

RMM -0.1056 0.3362 0.3192 -0.0768 0.4198 0.4127 -0.1372 1.7123 1.7068
-0.0589 0.2494 0.2424 -0.0353 0.3117 0.3096 -0.0018 1.1137 1.1137

^

^ ^

^
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From Table 5, we can see that the RMM has the smallest SE and RMSE followed
closely by RLAV. In terms of efficiency, again, RMM emerged as the most efficient
estimator of all by having the smallest RMSE ratios as shown in Table 6. Clearly,

Table 6 MSE ratios of 15 pairwise estimators of β1  and β2 with disturbance distribution t-Student

degrees of freedom (3)

                                                          ( β1 )                                   ( β2 )

Values of ρρρρρ2

  Estimator 1 vs Estimator 2 0.0 0.5 0.95 0.0 0.5 0.95

RMM LS 0.82 0.49 0.11 0.87 0.53 0.11
0.99 0.69 0.10 0.94 0.67 0.10

RID 0.92 0.84 0.46 0.94 0.85 0.46
0.97 0.92 0.44 0.96 0.92 0.44

RLAV 0.99 0.97 0.93 0.99 0.97 0.92
1.00 0.99 0.91 1.00 0.99 0.91

WRID 1.31 0.69 0.20 1.20 0.74 0.20
1.43 1.08 0.22 1.45 0.96 0.22

MM 1.35 0.61 0.15 1.12 0.67 0.15
1.35 1.02 0.15 1.51 1.00 0.15

MM LS 0.61 0.80 0.74 0.78 0.79 0.74
0.74 0.67 0.70 0.62 0.67 0.70

RID 0.69 1.38 3.04 0.84 1.27 3.07
0.72 0.90 2.94 0.64 0.92 2.96

RLAV 0.73 1.59 6.15 0.89 1.45 6.20
0.74 0.97 6.12 0.66 0.99 6.08

WRID 0.97 1.12 1.34 1.07 1.11 1.34
1.06 1.06 1.49 0.96 0.96 1.47

RLAV LS 0.83 0.50 0.12 0.88 0.55 0.12
0.99 0.69 0.11 0.94 0.67 0.11

RID 0.93 0.86 0.49 0.95 0.88 0.49
0.97 0.93 0.48 0.96 0.93 0.49

WRID 1.32 0.71 0.22 1.21 0.77 0.22
1.43 1.09 0.24 1.45 0.97 0.24

WRID LS 0.63 0.72 0.55 0.73 0.71 0.56
0.69 0.64 0.47 0.65 0.70 0.47

RID 0.71 1.23 2.27 0.78 1.14 2.29
0.68 0.85 1.97 0.66 0.96 2.00

RID LS 0.89 0.58 0.24 0.92 0.62 0.24
1.03 0.75 0.24 0.98 0.73 0.24

*Values less than one indicate that the first estimator (first column) is more efficient than the second estimator
(second column); values greater than one indicate that the second estimator (second column) is more efficient
than the first estimator (first column)

^ ^

^^
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RMM performs significantly better than MM and other robust ridge estimators over
a wide range of combination of ρ2 and nonnormal error distributions. The simulation
results for larger samples, that is for n = 50 are consistent with the results of smaller
samples. The results also indicate that the estimator for larger samples are more
efficient than those of smaller samples evident by the smaller values of RMSE.

6.0 CONCLUSIONS

For large sample size, when disturbances are normal and the correlation is high,
RID marginally outperforms RMM, otherwise, RMM is superior. LS and MM
outperform RMM in the cases when disturbances are normal and nonnormal with
no multicollinearity. However, when degree of multicollinearity is high, RMM is
superior to them. The comparisons among the robust ridge estimators, RMM, RLAV
and WRID show that RMM is superior to the other two estimators for many
combinations of error distribution type and degree of multicollinearity. The simulation
studies clearly show that RMM estimator offers the most feasible option over other
estimators when both multicollinearity and outliers are present.
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