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Abstract 

 

The existence of a high degree of nonlinearity in Electro-Hydraulic Actuator (EHA) has imposed a 
challenge in development of a representable model for the system such as that significant control 

performance can be proposed. In this work, linear Autoregressive with Exogenous (ARX) model and 

nonlinear Adaptive Neuro-Fuzzy Inference System (ANFIS) model of an EHA system are obtained based 
on the mathematical model of the system. Linear ARX modeling technique has been widely applied on 

EHA system and satisfying result has been obtained. On the other hand, ANFIS modeling technique can 

model nonlinear system at high accuracy. Both models are validated offline using data set obtained and 
using different stimulus signals when doing online validation. Offline validation test shows that ANFIS 

model has 99.37% best fitting accuracy, which is more accurate than 93.75% in ARX model. ARX model 

fails in some online validation tests, while ANFIS model has been consistently accurate in all tests with 
RMSE lower than 0.25.   

 

Keywords: ARX; ANFIS; EHA; mathematical model; model validation  
 

Abstrak 

 
Kewujudan darjah tak-linearan yang tinggi dalam Electro-Hydraulic Actuator (EHA) telah mengenakan 

kerja yang mencabar dalam membangunkan model yang mampu mewakili sistem supaya prestasi kawalan 

yang ketara boleh dicadangkan. Dalam karya ini, model linear Autoregressive with Exogenous (ARX) 
dan model tak-linear Adaptive Neuro-Fuzzy Inference System (ANFIS) untuk satu sistem EHA  

diperolehi berdasarkan model matematik sistem. Teknik model linear ARX telah digunakan secara 

meluas pada sistem EHA dan hasil yang memuaskan telah diperolehi. Sebaliknya, teknik model ANFIS 
boleh model sistem tak-linear pada ketepatan yang tinggi. Kedua-dua model adalah disahkan di luar talian 

dengan menggunakan set data yang diperolehi dan menggunakan isyarat rangsangan yang berbeza apabila 

melakukan pengesahan dalam talian. Ujian pengesahan luar talian menunjukkan bahawa model ANFIS 
mempunyai 99.37% ketepatan terbaik sesuai, yang lebih tepat berbanding 93.75% pada model ARX. 

Model ARX gagal dalam beberapa ujian pengesahan dalam talian, manakala model ANFIS telah secara 

konsisten, tepat dalam semua ujian dengan RMSE lebih rendah daripada 0.25. 
 

Kata kunci: ARX; ANFIS; EHA; model matematik; pengesahan model 
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1.0  INTRODUCTION 

 

Electro-Hydraulic Actuator (EHA) system is one of the 

fundamental drive systems in industrial sector and engineering 

practice. EHA system has more advantage over electric drives in 

certain applications because of its high power density, fast and 

smooth response, high stiffness and good positioning capability 

[1]. Examples of applications of EHA systems are electro-

hydraulic positioning systems [2, 3], active suspension control 

[4], and industrial hydraulic machines [5]. EHA system’s ability 

to generate high forces in conjunction with fast response time 

and have good durability, puts the system in high interest among 

heavy engineering applications [6]. 

  Due to the merit in high power density and positioning 

under high force application, EHA system’s position tracking 

accuracy has been one of the most interesting research areas in 

last decades. The nonlinearities, uncertainties [7] and time 

varying characteristics [8] of the system have made the research 

challenging for precise and accurate control [9]. In order to 

design a good and precise controller for the system, system 

model which can accurately represent the real system has to be 

obtained first. 
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The process to obtain the model is the first step of system 

analysis [10]. Modeling can be done either by physical law 

based modeling or system identification. Physical law based 

modeling method such as performed in [1, 11-15] is hard to 

perform as it requires expert knowledge and thorough 

understanding of the system, and model’s parameters are hard to 

identify. System identification requires only set of stimulus-

response data and no prior knowledge of the system in order to 

construct the model and obtain the parameter. 

  There are a number of researches which apply system 

identification technique to construct a linear model for EHA 

system. A linear model is popular as it is the simplest, discrete 

time model which can represent the relationship between input 

and output. Among the linear model used, Autoregressive with 

exogenous (ARX) model is widely used to represent EHA 

system [16-21]. Those researches have shown that ARX model 

can approximate the EHA system with high precision. However, 

as the model structure is not known, the ARX model structure is 

determined by trying different system order to obtain a model 

with best accuracy and lowest system order based on the 

Parsinomy Principle [22, 23]. The method requires multiple 

tests on different orders of ARX model for accurate model. In 

this paper, ARX model’s order for EHA system is determined 

from mathematical modeling of the system, which eliminates 

the need of different tests. 

  Fuzzy modeling technique is another alternative to 

construct a model for the system under test. Adaptive Neuro-

Fuzzy Inference System (ANFIS) [24] which is the major 

training routine of Takagi-Sugeno fuzzy model, has shown the 

excellent ability to estimate nonlinear systems for different 

applications [25-29]. However, despite the ability of the 

technique in modeling, it is not widely used on modeling an 

EHA system. Fuzzy modeling technique which has been applied 

in [30, 31] uses a Mamdani model to represent an EHA system, 

and the result is satisfactory. The technique used for the research 

is heuristic in determining the number of membership functions 

of the model while the data set from the system is used in 

generating rules of the model. The research can be improved by 

applying ANFIS method in modeling technique, where the 

number of membership functions can be reduced while 

concurrently, maintain the high precision in estimation. An 

accurate fuzzy model for EHA system has been obtained using 

ANFIS approach [21]. The number and the variable of the 

inputs to the model are selected by the trial-and-error method, 

depending on a set of single input single output stimulus-

response data set. This heuristic search returns in input variables 

which consist of different sample delays of the stimulus and 

response variables, and occasionally, the search fails by 

choosing only response variables as model’s input. Thus, 

alternative approach of model’s input variable selection is 

developed by referring to simplified mathematical model of the 

EHA system. This new approach will provide a clear visual on 

which inputs are relevant for the system, and corresponding data 

set can be obtained for parameter identification purpose.  

  The objective of this paper is to obtain a linear ARX model 

and a nonlinear ANFIS model based on EHA system’s 

mathematical modeling. Both ARX and ANFIS models are 

obtained and trained using the same set of stimulus response 

data set. The models are later validated using offline data sets 

and using different stimulus signals when performing online 

model validation.  

 

 

 

 

 

2.0  MATHEMATICAL MODELING OF EHA SYSTEM 

 

Main parts of an EHA system under test consist of servo valve, 

hydraulic cylinder and load attached to the single ended piston 

as shown in Figure 1. In the figure, ps and pr represent hydraulic 

supply and return pressure, xv and xp represent spool valve 

displacement and piston displacements. Q1 and Q2 are the fluid 

flow from and to cylinder while p1 and p2 are the fluid pressure 

in upper and lower cylinder chambers. 

  There are some basic assumptions [24] to be taken into 

considerations for modeling purpose; 1, the friction loss and 

influence from the mass of fluid in conduits can be neglected, 2, 

pressure in one chamber is same everywhere, 3, temperature and 

bulk modules of elasticity are assumed to be constants, and 4, 

the supple pressure is a constant and return pressure is zero. 

  The dynamic of the piston motion can be derived as 

 

   𝑥̇𝑝 = 𝑣𝑝 

   𝑣̇𝑝 = 𝑎𝑝    (1) 

 

 
Figure 1  Electro-hydraulic actuator system 

 

 

  Based on Newton’s second law of motion, 

 

   𝑚𝑎𝑝 = 𝐹𝑎 − 𝐹𝑓 − 𝑓𝑑  (2) 

 

where the variables are: 

𝑥̇𝑝 and 𝑣𝑝  piston velocities 

𝑣̇𝑝 and 𝑎𝑝  piston accelerations 

 𝑚  total mass of the piston and load 

𝐹𝑎  hydraulic actuating force 

𝐹𝑓  hydraulic friction force 

𝑓
𝑑
 lumped uncertain nonlinearities 

due to external disturbance and 

other hard to model linear term 

 

  As shown in assumption 1, the hydraulic friction force is 

neglected, which is assumed to be term that is hard to model and 

parameters are hard to obtain. Thus, Equation (2) is reduced to 

 

𝑚𝑎𝑝 = 𝐹𝑎 − 𝑓𝑑   (3) 

 

  Hydraulic actuating force, 𝐹𝑎 is represented as 

 

𝐹𝑎 = 𝐴1𝑝
1

− 𝐴2𝑝
2
   (4) 

 

  Thus, 

𝑚𝑎𝑝 = (𝐴1𝑝
1

− 𝐴2𝑝
2

) − 𝑓
𝑑
  (5) 
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where 𝐴1 and 𝐴2are the cross section area of chambers of the 

cylinder. 

  Defining the load pressure to be the pressure across the 

actuator piston, the derivative of the load pressure PL, is given 

by total load flow through the actuator cylinder divided by fluid 

capacitance [25]: 
𝑉1

𝛽𝑒
𝑝1̇ = −𝐴1𝑣𝑝 − 𝐶𝑡𝑃𝐿 + 𝑄1    

𝑉2

𝛽𝑒
𝑝2̇ = 𝐴2𝑣𝑝 + 𝐶𝑡𝑃𝐿 − 𝑄2   (6) 

 

where, 

𝑉1  =  𝑉𝑖1  +  𝐴1𝑥𝑝 , 𝑉2  =  𝑉𝑖2  +  𝐴2𝑥𝑝 , 𝑃𝐿  =  𝑃1 − 𝑃2 

𝑉1 and 𝑉2 total volume of first and second 

chambers 

𝑉𝑖1  and 𝑉𝑖2 initial volume of both chambers 

including pipelines volume 

𝛽𝑒  effective bulk modulus of 

hydraulic oil 

𝐶𝑡 coefficient of internal leakage of 

the chamber 

𝑄1 and 𝑄2 supply and return flow rates of 

forward and return chambers 

 

  Valve displacement and the flow rate are governed by the 

orifice law [25, 26]. Neglecting the leakage in valve, then 

 

𝑄1 = 𝐶𝑣1√∆𝑝1  , ∆𝑝1 = {
𝑝𝑠 − 𝑝1

𝑝1
      

𝑓𝑜𝑟  𝑥𝑣 ≥ 0
𝑓𝑜𝑟  𝑥𝑣 < 0

  

𝑄2 = 𝐶𝑣2√∆𝑝2  , ∆𝑝2 = {
𝑝2

𝑝𝑠 − 𝑝2
      

𝑓𝑜𝑟  𝑥𝑣 ≥ 0
𝑓𝑜𝑟  𝑥𝑣 < 0

  (7) 

 

where, 

𝐶𝑣1 = 𝐶𝑑𝑤1𝑥𝑣√
2

𝜌
 , and 𝐶𝑣2 = 𝐶𝑑𝑤2𝑥𝑣√

2

𝜌
  (8) 

𝐶𝑣1 and 𝐶𝑣2  valve orifice coefficients 

𝐶𝑑   discharge coefficient 

𝑝𝑠    supply pressure 

𝑤1 and 𝑤2  spool valve area gradients 

𝜌   oil density 

 

Dynamic of servo valve is given by [27], 

 

𝑥̇𝑣 =
1

𝜏𝑣

(−𝑥𝑣 + 𝑘𝑎𝑢)   (9) 

 

where, 

𝑘𝑎  servo valve gain 

𝜏𝑣  time constant 

 

  The effects of servo valve dynamics are neglected as it 

requires an additional sensor to obtain the spool position and 

only minimal performance improvement is achieved for position 

tracking [28]. Thus, the spool valve displacement is simplified 

as 

 

𝑥𝑣 = 𝑘𝑎𝑢     (10) 

 

  With the state variable, x = [x1, x2, x3]T ≡ [xp, vp, ap]T, from 

equation (1) to (10), the state model of EHA system is obtained 

by replacing servo valve dynamic (9) by (10), which is 

 

𝑥̇1 = 𝑥2 

𝑥̇2 = 𝑥3 

𝑥̇3 = 𝑎̇𝑝 =
1

𝑚
[(𝐴1𝑝̇1 − 𝐴2𝑝̇2) − 𝑓𝑑̇]  (11) 

 

  Substituting PL = P1 – P2 into (5), and (6), (7), (8), (10) 

into (11), then 

𝑥̇3 = 𝑎𝑥2 + 𝑏𝑥3 + 𝑐𝑢 + 𝑑  (12) 

 

where, 

𝑎 = −
𝛽𝑒

𝑚
(

𝐴1
2

𝑉1
+

𝐴2
2

𝑉2
)  

𝑏 = −
𝛽𝑒𝐶𝑡

𝐴1
(

𝐴1

𝑉1
+

𝐴2

𝑉2
)  

𝑐 =
𝛽𝑒𝐶𝑑𝑘𝑎√2 𝜌⁄

𝑚
(

𝐴1𝑤1

𝑉1
√∆𝑝1 +

𝐴2𝑤2

𝑉2
√∆𝑝2)  

𝑑 =
𝛽𝑒𝐶𝑡

𝑚
(

𝐴1

𝑉1
+

𝐴2

𝑉2
) (

𝐴1+𝐴2

𝐴1
) 𝑝2 −

𝑓̇𝑑

𝑚
  

 

  As xp is the position output of EHA system, we denote xp as 

𝑦. Rewriting equation (12) and neglecting term 𝑓𝑑  which is 

lumped uncertain nonlinearities and other hard to model linear 

terms, we obtain 

𝑦 = 𝑎𝑦̇ + 𝑏𝑦̈ + 𝑐𝑢    (13) 

 

  where 𝑦 is the change of acceleration per second, jerk. 

Taking Laplace transform of equation (13), 

 
𝑌(𝑠)

𝑈(𝑠)
=

𝑐

𝑠(𝑠2−𝑏𝑠−𝑎)
 .   (14) 

 

  Equation (14) has shown that the EHA system is a third 

order system. Rewrite equation (14), obtain 

 

𝑌(𝑠) =

𝛽𝑒𝐶𝑑𝑘𝑎√2 𝜌⁄

𝑚
(

𝐴1𝑤1
𝑉1

√∆𝑝1+
𝐴2𝑤2

𝑉2
√∆𝑝2)

𝑠[𝑠2+
𝛽𝑒𝐶𝑡

𝐴1
(

𝐴1
𝑉1

+
𝐴2
𝑉2

)𝑠+
𝛽𝑒
𝑚

(
𝐴1

2

𝑉1
+

𝐴2
2

𝑉2
)]

𝑈(𝑠) (15) 

 

  Corresponding discrete time model is obtained by 

performing zero order hold transformation of continuous time 

model of equation (15). The structure of discrete time model is 

as follow 

 

𝐺(𝑞−1) =
𝑦(𝑞)

𝑢(𝑞)
=

𝑏1𝑞−1+𝑏2𝑞−2+𝑏3𝑞−3

1+𝑎1𝑞−1+𝑎2𝑞−2+𝑎3𝑞−3
   (16) 

 

  Let Y(s) = y, U(s) = u, the electro-hydraulic actuator system 

as in Figure 1 can be represented in a simplified functional 

relation given by 

𝑦 = 𝑓(𝑢, 𝑝1, 𝑝2, 𝑉1, 𝑉2 )   (17) 

 

  As 𝑉1  and 𝑉2  is directly proportional to xp , the functional 

relation (17) is further simplify to 

 

𝑦 = 𝑓(𝑢, 𝑝1, 𝑝2, 𝑦)   (18) 

 

  From Equation (18), it is shown that in order to obtain the 

position of the piston, xp , it requires the input signal 𝑢, pressure 

𝑝1 and 𝑝2, and piston position xp . As it is impossible to obtain 

the signal at the time to calculate the new piston position, the 

signal of 𝑝1, 𝑝2, and xp  are taken to be a previous one sample 

value. Thus, equation (18) are written as 

 

𝑦(𝑘) = 𝑓(𝑢(𝑘), 𝑝1(𝑘 − 1), 𝑝2(𝑘 − 1), 𝑦(𝑘 − 1)) (19) 
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3.0  MODELING PROCESS 

 

Identification of both linear ARX model and nonlinear ANFIS 

model is performed on MATLAB platform. To perform system 

identification on the EHA system, a set of stimulus-response 

signals has to be obtained. Stimulus signal is used to excite the 

system and produce response signal. When the stimulus signal 

can excite more operating region of the system, stimulus-

response data set obtained will contain more system 

characteristics. The variation of stimulus signal is able to excite 

different operating region within the system, thus characteristics 

of the system will be expressed in the system response data 

obtained [13, 17, 20]. Stimulus signal that used to excite the 

EHA system is a multisine signal which consists of different 

amplitudes and frequencies, given by (20). 

 

𝑦 = 1.5𝑐𝑜𝑠2𝜋0.05𝑡 + 1.5𝑐𝑜𝑠2𝜋0.2𝑡 + 2.5𝑐𝑜𝑠2𝜋𝑡  (20) 

 

 
Figure 2  Stimulus response signal 

 

 

  Equation (20) shows that the stimulus signal comprises of 

three different frequencies, which are 0.05Hz, 0.2Hz and 1Hz. 

The highest frequency of stimulus signal is limited to 1Hz, as 

the EHA system performs like a low-pass filter, which only 

response at low frequencies. Figure 2 shows the stimulus and 

the response signal of EHA system.  

  ANFIS modeling is the integration of the interpretability of 

a fuzzy inference system with adaptability of a neural network 

[29].. ANFIS architecture as shown in Figure 3 contains five 

layers in the inference system. Each layer involves several 

nodes, which is described by node functions.  Nodes are having 

similar function among layers and different function between 

layers. Output of the nodes of present layers will be served as 

input for the next layers. Details of the nodes’ function can be 

found in [29]. 

  In this paper, an ARX model and an ANFIS model is 

obtained from data set of EHA system which is excited using 

signal (20) and later the accuracy of both models is compared. 

Figure 4 shows the general ARX model, where u and y represent 

input and output, e indicates the error signal, A and B are 

parameters to be estimated. Takagi-Sugeno fuzzy model is 

chosen as ANFIS model. General form of Takagi-Sugeno fuzzy 

model is shown in Figure 5. Three fuzzy inputs and one 

functional output are determined. Each input contains two 

generalized bell (gbell) membership functions. Functional 

output of Takagi-Sugeno model is a linear model. 

 
Figure 3  ANFIS architecture 

 

 

  Parameters in ARX model are obtained using the least-

squared method as the method is straight forward and fast in 

estimating the parameters. ARX model with the calculated 

parameters fit the system with least error. ANFIS constructs the 

model by performing grid partitioning on data set and the 

parameters are estimated by the hybrid learning algorithm. 

Consequent parameters of ANFIS are estimated by the least 

squared method in forward pass while premise parameters are 

estimated by gradient descent method in backward pass. When 

the models are obtained, validation of the models is done on the 

check data set, which will be discussed later. Accuracy of the 

models is compared. In this paper, RMSE (Root Mean Squared 

Error) and Best Fitting Percentage are used as standard to 

indicate the precision of either ARX or ANFIS model. 

  The data set is captured at sampling time 50ms, which is 

the best sampling interval through observation [20]. The data 

recorded for 100 seconds, which equivalent to 2000 sample 

data. Modeling is performed by firstly divide the sample data 

into train data and check data. Train data is used to train the 

parameters of the model, while check data is used to validate the 

model. ARX model structure is determined based on physical 

modeling of EHA system shown by equation (15). Thus, the 

ARX discrete model is third order with the structure of equation 

(16). ANFIS model structure is described as in Figure 3. Input 

variable of the model is selected based on equation (19). Thus, 

there are four inputs to the nonlinear ANFIS model. 

  In this paper, both linear ARX model and nonlinear ANFIS 

model are obtained using the same set of train data. The models 

obtained are validated using check data set. Accuracy of both 

model is later compared in terms of best fitting percentage and 

RMSE (Root Mean Squared Error). Apart from model 

validation using offline data, both models are also validated 

online using different stimulus signal to verify the accuracy of 

the models.  

 

 
Figure 4  General linear ARX model 
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Figure 5  Takagi-Sugeno fuzzy model 

 

 

4.0  RESULTS AND DISCUSSIONS 

 

Linear ARX model and nonlinear ANFIS model are obtained by 

set of stimulus response data from EHA system. The data set is 

divided into two parts. First part of the data set is used in the 

model identification process while another part is used to 

validate the model. The accuracy of the model is measured in 

best fitting percentage and Root Mean Squared Error (RMSE) 

between simulated response and real response of the system. 

Best fitting percentage and RMSE formula is given as equation 

(21) and (22). 

 

𝑓𝑖𝑡 = 100
(1−𝑛𝑜𝑟𝑚(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒− 𝑟𝑒𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒))

𝑛𝑜𝑟𝑚(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒−𝑚𝑒𝑎𝑛(𝑟𝑒𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒))
 (21) 

 

𝑅𝑀𝑆𝐸 =
𝑛𝑜𝑟𝑚(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒−𝑟𝑒𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒)

√𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎
   (22) 

 

where, 𝑛𝑜𝑟𝑚(𝑥) is the Euclidean length of vector x. 

 

4.1  Model Identification and Validation 
 

The model identification of both ARX and ANFIS model is 

done in MATLAB platform. Linear ARX model with third order 

sturcture based on mathematical modeling of EHA system is 

obtained as in Figure 4. Neglecting the term e, the model is 

expressed as, 

𝐴(𝑞)𝑦(𝑡)  =  𝐵(𝑞)𝑢(𝑡)  (23) 

 

where, 

𝐴(𝑞)  =  1 −  1.781 𝑞−1 + 0.9148 𝑞−2 − 0.1333 𝑞−3   (24) 

𝐵(𝑞)  =  0.02439 𝑞−1 − 0.0276 𝑞−2 + 0.01095 𝑞−3 (25) 

 

  The model validation of the model against the actual 

response is shown in Figure 6, 

  Result in Figure 6 shows that the model obtains high 

accuracy at 93.75% with 1.42 RMSE. This result displayed the 

high accuracy of the model, however, when zoom into the 

figure, it shows that the model is failed to estimate the system 

response at the change of response direction, as shown in 

smaller figure in Figure 6. Later in this paper will show the 

effect of above issue to the performance estimation of the real 

system. Error plot in Figure 6 also shows the ARX model’s 

estimation has error ranging from about -2 mm to 4 mm. 

 

 
Figure 6  Model validation of linear ARX model. 

 

 
Figure 7  Model validation of nonlinear ANFIS model 

 

 

  ANFIS model, having four inputs, u(k),  y(k-1), p1(k-1), 

and p2(k-2), output y(k), with u(k) and y(k) indicate the stimulus 

and response signals, y(k-1) p1(k-1), and p2(k-1) are the delay 

sample of response signal, pressure 1 and 2 corresponding. Input 

selection of the model is based on simplified mathematical 

modeling equation (19). Structure of the model and inputs of the 

ANFIS is shown in Figure 5. Each input variable has two 

membership functions and the model contains 16 rules, with a 

linear output for each rule. The final output is the average of 

total linear outputs. The ability of ANFIS to model nonlinear 

System EHA: 4 inputs, 1 outputs, 16 rules

u(k) (2)

p1(k-1) (2)

p2(k-1) (2)

xp(k-1) (2)

f(u)

xp(k) (16)

EHA

(sugeno)
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system shall be able to model the EHA system in high accuracy. 

Figure 7 shows the result of ANFIS model validation. 

  ANFIS model simulation plot in Figure 7 shows the best 

fitting percentage of 99.37% and RMSE of 0.14. This shows 

that the model is very accurate and almost estimate every EHA 

response accurately. The ANFIS model is able to estimate the 

system response even when the response change direction, as 

shown in smaller figure in Figure 7. The high accuracy of 

ANFIS model also shown in error plot with error ranging less 

than ±0.5mm. 

  The result of model validation of both models clearly 

shows the superior of ANFIS model over ARX model. ARX 

model having the lower best fitting accuracy and higher RMSE 

while ANFIS model having significantly better accuracy and 

lower RMSE. ARX model prediction having large error portion, 

while ANFIS model prediction has much lower error. Zoom in 

figure of both model response show that ANFIS model is more 

capable to estimate EHA’s response, especially during the 

change of response direction. Eventhough ARX model has 

lower best fitting accuracy and larger error, the model is still 

acceptable due to its simplicity. In next section, both the models 

are validated online to check the feasibility of the models in 

different situation 

 

4.2  Online Close Loop Model Validation 
 

Online model validation is done in MATLAB simulink platform 

as shown in Figure 8. Same stimulus signal is supplied to ARX 

model and ANFIS model which was identified early on, as well 

as the real EHA plant. For ANFIS model, there are two 

additional sensors which measure the pressure of chamber 1 and 

chamber 2. The response of the models and EHA system are 

collected and compared. 

 

 
 

Figure 8  Simulink diagram of online model validation 
 

 

  During online close loop model validation, no controller is 

included in the system. Stimulus signal used is identical with the 

signal in the model identification process. This validation test is 

conducted to investigate the ability of the models to predict 

system performance in close loop condition. The validation 

result as shown in Figure 9, ARX model performs better than in 

open loop condition, with lower RMSE, 0.86. This situation 

appears as during close loop system, some nonlinearities which 

exist in system as in open loop condition is eliminated, and the 

close loop configuration act as a controller to the system. Thus, 

ARX model can estimate the system with higher precision.Error 

plot of ARX model estimation also lower than in the 

identification step. Based on observation on Figure 10, ANFIS 

model shows a more significant performance in term of 

accuracy for the model estimation with RMSE = 0.17, with low 

error ranging in ±0.5mm. 
 

 
Figure 9  ARX model online validation in close loop 

 

 
Figure 10  ANFIS model online validation in close loop 

 

 

  In next section, EHA system in close loop condition, is 

excited with different types of signal other than stimulus signal 

as in the system identification process. The purpose of these 

testing is to examine the ability of both models to predict the 

response when given inputs where the model is not been trained 

with. 
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4.3  Other Online Model Validation 
 

In this section, EHA system is excited using different signals, 

which is sine wave, and square wave. All the input reference 

signals are not shown in figures, as this validation test is not for 

the control purpose. The estimation of the models and real EHA 

response is compared. Model validation test of models with sine 

wave and square wave is shown in Figure 11 and Figure 12. 

  From the results shown in both Figure 11 and 12, ANFIS 

model has outperformed ARX model in every online test. ARX 

model estimation has a big error compare to the actual response 

of EHA system. The ARX model, even though having a high 

percentage of accuracy during system identification process, it 

fails to estimate the response of EHA when using stimulus 

signal that is not trained with. Suitable explanation of the 

phenomena is that the ARX model is failed to model the 

nonlinearity and uncertainties which exist within the EHA 

system. Zoomed in plot in Figure 6 and Figure 7 explains the 

above statement. ANFIS model which can model the nonlinear 

characteristic of the system can predict the performance of the 

real EHA plant. From most of the model validation test, ANFIS 

model’s prediction result in very low error, which are indicated 

by low RMSE and high best fitting percentage. 

 

 
Figure 11  ARX and ANFIS model validation using sine wave 

 

 
Figure 12  ARX and ANFIS model validation using square wave 

 

 

 

 

 

5.0  CONCLUSION 

 

A linear ARX and a nonlinear ANFIS model are obtained using 

system identification method based on mathematical modeling 

of EHA system. Mathematical modeling of the system provides 

useful information for system identification process, such as the 

system order for ARX model and relevant input variables for 

ANFIS model. Both models identified from stimulus-response 

data set provides model’s parameters which are hard to be 

obtained through physical modeling. Based on the model 

verification through several different validation conditions, it is 

concluded that ANFIS model is a more accurate model than 

ARX model. ANFIS model has performed better with 

significantly higher accuracy than ARX model because of its 

nonlinear approximation capability. Model validation test also 

has shown that ANFIS model can predict the EHA response 

even though the system is operating in nonlinear condition, or 

being excited with different stimulus signal. The accurate 

ANFIS model can be used for the purpose of designing suitable 

model based controller in the further study. 
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