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Abstract 

 
Precise control of an electro-hydraulic actuator (EHA) system has been an interesting subject due to its 

nonlinearities and uncertainties characteristics. Suitable controller can be designed when the precise 

model of the system is available. Adaptive Neuro-Fuzzy Inference System (ANFIS) modeling technique 
has proven can model various nonlinear systems at high accuracy. The objective of this paper is to obtain 

an ANFIS model from EHA system stimulus-response data with less complicated model structure and 

fewer system parameters. The validation of ANFIS model is done using various data sets which contain 
different operating region and limited data set, where data set is reduced to small operating region. 

Results show that ANFIS model can estimate the response nonlinear EHA system with more than 97% 

high best-fitting accuracy, with simple structure, under different operating region condition.   
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Abstrak 

 
Kawalan tepat penggerak sistem elektro-hidraulik (EHA) telah menjadi subjek yang menarik kerana ciri-

ciri tak lelurus dan tidak menentu. Pengawal yang sesuai boleh direka apabila model sistem yang tepat 

disediakan. Teknik pemodelan Adaptive Neuro-Fuzzy Inference System (ANFIS) telah terbukti dapat 
memodelkan pelbagai sistem tak-linear pada ketepatan yang tinggi. Objektif kertas ini adalah untuk 

mendapatkan model ANFIS daripada data rangsangan-tindak balas EHA sistem dengan struktur model 

yang kurang rumit dan kurang parameter sistem. Pengesahan model ANFIS dilakukan dengan 
menggunakan pelbagai set data yang mengandungi kawasan operasi yang berbeza dan set data yang 

terhad, di mana set data dikurangkan ke kawasan operasi yang kecil. Hasil kajian menunjukkan model 

ANFIS boleh menganggarkan tindak balas sistem EHA tak-linear dengan ketepatan terbaik sesuai yang 
melebihi 97% dengan struktur yang ringkas, di bawah keadaan kawasan operasi yang berbeza.   

 

Kata kunci: EHA; ANFIS; model yang tepat; struktur ringkas; kawasan operasi  
 

© 2014 Penerbit UTM Press. All rights reserved. 

 

 
 
 
 
1.0  INTRODUCTION 

 

Electro-hydraulic actuator (EHA) system is one of the most 

important drive systems in industrial sector and engineering 

practice due to its high power to weight ratio, fast and smooth 

response, high stiffness and good positioning capability [1]. 

EHA system’s ability to generate high forces in conjunction 

with fast response time and have good durability puts the 

system in high interest among heavy engineering, such as 

active suspension control and industrial hydraulic machine  

[2]. EHA system’s position tracking accuracy has been one of 

the most interesting researches in last decades due to the merit 

in positioning. Most of the electro-hydraulic applications 

require precise and accurate control, however the system’s 

nature behavior of highly nonlinearities, uncertainties [3] and 

time varying characteristics [4] make the research challenging 

and the controlling process a tough task [5]. In order to design 

a precise controller for the system, accurate model 

representing the real system have to be obtained at the first 

place. 

  Modeling is the process to obtain the model of a system, 

which is the first step of any system analysis [6]. Modeling 

can be done either by physical law based modeling or system 

identification. Physical law based modeling method such as 

performed in [1, 7-11] is hard to perform as it requires 

knowledge and understanding of the system. System 

identification, on the other hand, is the process of formulating 

the mathematical model of system using measurement data 

without need of prior knowledge about the system [12]. The 

term identification was introduced by Zadeh [13], referring to 

the problem of determining the input-output relationships of a 

black box based on experimental data sets. 

  There are a number of researches apply system 

identification technique to construct a linear model for EHA 

system. A linear model is popular as it is the simplest 

approach and discrete time model which can represent the 

relationship between input and output of the system. Among 
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the linear model used, ARX (autoregressive with exogenous) 

model is widely used to represent EHA system [14-18]. 

Research has shown that ARX model can approximate the 

EHA system with high precision. 

  Fuzzy modeling is another alternative to model a system. 

ANFIS (Adaptive Neuro-Fuzzy Inference System) is the 

major training routine of Takagi-Sugeno fuzzy model. ANFIS 

has shown the ability to estimate various nonlinear systems of 

different applications [19-23]. However, despite the ability of 

the technique in modeling; it is not being widely used on an 

EHA system. Research in [24, 25] applies Mamdani fuzzy 

model to an EHA system, and the result is satisfactory. 

However, data captured from the system is only used to 

generate the rules for fuzzy model instead of parameters 

training purpose. 

  The first objective of this paper is to obtain an accurate 

EHA system model with less complicated model structure, 

rules and fewer parameters using ANFIS training approach. 

Simpler model which contains fewer numbers of rules and 

number of parameters is more preferred than a more complex 

model when the accuracies of both models are similar based 

on Parsinomy Principle [26, 27]. The second objective is to 

investigate the estimation ability of ANFIS model in different 

condition, which is at different amplitude of input, different 

operating region from different data set and limited training 

data set. 

 

 

2.0  EXPERIMENTAL SETUP 

 

The experiment setup of the EHA system consists of a few 

main parts: hydraulic pump, piston, position sensor, servo 

valve, and hydraulic motor, as depicted in Figure 1. 

  Stimulus signal is generated using MATLAB platform, 

and sent to the servo valve through NI-PCI-6221 card. The 

servo valve controls the flow of hydraulic fluid and moves the 

piston accordingly. The position of the piston, which is 

connected to a load, is measured by wire sensor, WDS 300 

p60. The wire sensor can measure up to 300 mm, 

corresponding to the piston length, which is 300mm as well. 

Experiment is started by setting the piston to the middle 

position to perform response when stimulus signal is 

provided. 

 

 
 

Figure 1  Experiment setup 

 

 

3.0  ANFIS MODEL GENERATION 

 

The first step in system identification of an ANFIS model for 

EHA system is to obtain a set of stimulus response data from 

the system. Stimulus signal is used to excite the system, and 

the characteristic of the system is captured. Stimulus signal 

which is rich in amplitude and frequency can excite more 

operating region of the system and realize its characteristic. 

The signal expressed in (1) is used as the stimulus signal to 

EHA system. Figure 2 shows the stimulus and response signal 

of EHA system being excited by signal in equation (1). 

 
𝑢(𝑡)  =  15(1.5𝑐𝑜𝑠(2𝜋0.05𝑡)  +  1.5𝑐𝑜𝑠(2𝜋0.2𝑡) +  2.5𝑐𝑜𝑠(2𝜋𝑡))  
 

                  (1) 

 

  As shown in Figure 2, the stimulus signal’s (reference 

position) limit is ranging from -72.9 mm to 82.5 mm, while 

the EHA system has the operating range limit of -150 mm to 

150 mm. Thus, another two sets of data with different limit 

range are obtained, which is from -126 mm to 137 mm and -

136 mm to 148 mm. The purpose of these data sets taking is 

to test the ability of the model to estimate the response of 

EHA system when the system is operating near its limit. The 

operating region of the data set is a plot by stimulus signal 

versus response signal. The operating region of each data set 

is shown in Figure 3. 

 

 
Figure 2  Stimulus-response of EHA system 

 

 
Figure 3  Operating region of different data set 

 

 

  Figure 3 shows the different operating region of each 

data set. Figure 3(a) is the EHA system’s response when 

excited using stimulus data 1 which is limited from -72.9 mm 

to 82.5 mm. Figures 3(b) and 3(c) are the system’s response 

excited by stimulus data 2 and 3 and the limits are from -126 

mm to 137 mm and -136 mm to 148 mm. Even though all 

three sets of data having a different operating region, the 

patterns of the responses are similar. For system identification 

process, the total data set is divided into two parts, one is for 

the parameter estimation and another is for model validation. 

The data set used for parameter estimation is known as 

training data. Training data covers all the operating region of 
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the system and can ensure a better model with higher 

accuracy. Normally, training data contains 50% of total data 

set. Limited training data set is provided to test the ability of 

modeling.  

  Figure 4 shows the operating region of data 1 with 50%, 

30% and 10% training data. As shown in Figures 4(a) and 

4(b), the operating region of data sets are approximately the 

same. Thus, both data sets contain similar information 

regarding the characteristic of the system. Training data with 

10% data as shown in Figure 4(c) shows a smaller operating 

region, indicates loss in system information comparing to 

Figures 4(a) and 4(b). 

  Second step is the generation of the ANFIS model 

structure. ANFIS modeling technique was first developed by 

Jang [28]. ANFIS is the integration of the interpretability of a 

fuzzy inference system with adaptability of a neural network. 

ANFIS architecture as shown in Figure 5 contains five layers 

in the inference system. Each layer involves several nodes, 

which is described by node functions. Nodes are having 

similar function among layers and different function between 

layers. Output of the nodes of present layers will be served as 

input for the next layers. Details of the nodes’ function can be 

found in [28]. 

 

 
Figure 4  Operating region with different training data 

 

 
Figure 5  ANFIS architecture [28] 

 

 

  To perform ANFIS modeling, preliminary system model 

such as the choice of inputs, number of inputs, number of 

membership function (MF) has to be provided. The structure 

can be determined using Parsinomy Principle [26, 27]. 

Parsinomy Principle states that, out of two identifiable model 

structure that fit certain data, the model with simpler form 

will be chosen. Thus, model with simpler structure and less 

parameters, while accuracy is similar to a more complex 

model, is selected as the model of the system. The accuracy of 

the model is validated by the best fitting percentage and Root 

Means Squared Error (RMSE) between model simulated and 

actual response of the response. Higher best fitting percentage 

and lower RMSE indicate better and more accurate system 

model. The preliminary model obtained is then trained with 

the training data using ANFIS algorithm. 

 

 

4.0  RESULTS AND DISCUSSIONS 

 

The first objective of this paper is to obtain a system model of 

EHA system, which is accurate with less complicated model 

structure, fewer rules and model parameters. Model 

identification process to achieve first objective is discussed in 

part 1 and part 2, which the model input selection and number 

of Membership Function (MF) decision. Second objective is 

to investigate the ability of ANFIS modeling in different 

conditions, such as in different operating region as in part 3 

and limited training data set in part 4. All the tests are 

conducted using three different sets of data as discussed in 

previous section. 

 

4.1  Selecting the Inputs for ANFIS Model 
 

Firstly, number of input arguments to the ANFIS model is 

determined. Number of input variables is directly related to 

the structure of the system model. Larger number of inputs 

will result in more complicated structure. In this case, ANFIS 

model of two inputs and three inputs structure are obtained 

using following training criteria: 

 

a. 50 % of data set 1 is used for model’s parameter 

training 

b. The number of MF for each input is 2, with type of 

generalized bell shape MF 

c. Initial inference system is generated using grid 

partitioning on given data set 

d. Number of rules is the product of the total number of 

MF in each input 

e. ANFIS training option of parameters is set to 1 epoch 

of training, 0.01 initial step size, 0.5 step decreasing 

rate and 1.5 step increasing rate. These values are the 

default parameters for ANFIS training algorithm. 

 

  The input is selected throughout several candidates: u(k) 

which is input and also stimulus signal to the system and 

delayed sample output y(k-1), y(k-2), y(k-3), and y(k-4). The 

output of the system model is always y(k), which is the 

response of the system. For selecting two inputs, first input is 

u(k) and another one selected from delayed output. For three 

inputs structure, first input is u(k) and another two inputs is 

selected from delayed output. Both models are run through 

the variable selection process by obtaining a model for each 

possible combination of all the input candidates, and the 

model which has the highest best fitting accuracy and lowest 

Root Means Squared Error (RMSE) is selected as the model. 

Best fitting accuracy and RMSE are obtained by comparing 

the simulated response and actual response of the system. The 

models of two inputs structure and three input structure are 

compared. 
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Figure 6  2 Inputs model simulation 

Figure 7  2 Inputs model structure 

 

Figure 8  3 Inputs model simulation 

 
Figure 9  3 Inputs model structure 

From Figure 6, it is shown that the estimation result of the 

model fits the real response of the EHA system by 97.82% 

with RMSE 0.31. This indicates the model is very accurate in 

simulating the response of the system being modeled. Error 

plot in Figure 6 shows that the estimation error is in between 

±0.5mm. Figure 7 displays the structure of the model, with 

two inputs, y(k-1) and u(k) which has two MFs respectively, 

and total of four rules. Every rule is corresponding to one rule 

output. The final output, y(k) is the weighted average of all 

rule outputs. 

  Figure 8 shows the best fitting and RMSE result of the 

system model with three input structure. The best fitting 

accuracy is higher than two input model structure, which is 

98.86%. The RMSE is also smaller, which is 0.16. Figure 9 

shows the structure of the model. The model has three inputs, 

which are y(k-1), y(k-2) and u(k) with eight rules. Error plot 

also shows that the estimation error is smaller, less than 

±0.5mm. 

  Increase in the number of inputs will results in more 

rules. Having more rules will cover more operating region of 

the system, thus will result in higher accuracy. This is shown 

by comparing Figure 6 and Figure 8. However, the increase in 

the number of inputs also means that the number of system 

parameters is increasing, and the structure of the system 

becomes more complex. From Figure 7 and Figure 9, it is 

shown that model with two inputs having four rules and four 

rule outputs, while the model with three inputs doubles in the 

number of rules and rule outputs. Three input structure model 

also has more parameters. Even though the model with three 

inputs is more accurate than the model with two inputs, the 

increase in accuracy is not significant, which is approximately 

one percent. According to Parsinomy principle, the model 

with two inputs which contains four rules is chosen as model 

rather than model with three inputs. 

 

4.2  Number of Membership Functions 
 

In part 1, the effect of the number of inputs to system model 

has been explored. Model structure identified is having two 

inputs. In this section, the influence of the number of 

membership function to model’s accuracy is investigated. 

According to [29], when the number of MF increases, the 

accuracy of the model increases as well. This test is 

conducted by generating different model which contains a 

different number of MF for the input. The data partitioning 

method in this paper is grid partitioning, where the 

membership function is distributed equally throughout the 

input limit. The training criterion is remain the same with part 

1, only the number of membership functions now varies from 

two MFs to four MFs. 

  The performance and structure of the model with two 

inputs and has two MF for each of the inputs is shown in 

Figure 6 and Figure 7. The accuracy of the model is 97.82% 

best fitting and low RMSE of 0.31. The accuracy of this 

model is being compared to other models which have three 

MF and four MF structure. 

  Figure 10 and Figure 11 display the model response 

accuracy and structure of the model with three MF in each 

input. Comparing to model with two inputs, the accuracy of 

the new model has increased from 97.82% to 97.91%. This 

indicates that the new model is better than first model in terms 

of best fitting accuracy. However, the increase of accuracy is 

not significant, and the structure is more complex with a total 

of nine rules, which is shown in Figure 11. Thus, the model 

with two MF per input is a better model according to 

Parsinomy principle in terms of simplicity of the model 

 



45                                    T. G. Ling, M. F. Rahmat & A. R. Husain / Jurnal Teknologi (Sciences & Engineering) 67:5 (2014), 41–47 

 

 

Figure 10  2 Inputs 3 membership function model simulation 

Figure 11  2 Inputs 3 membership function model structure 
 

 

  Figure 12 and Figure 13 have proven the theory in [29] 

that increasing the number of MF will have a better accuracy 

model. Four MF model structure has better accuracy of 

97.98% comparing to previous two models, and have a total 

of 16 rules. However, the improvement of model accuracy is 

still not significant with slightly 0.16% increase, thus the 

model structure determined for EHA system is having two 

inputs with two membership functions per input. 

 

Figure 12  2 Inputs 4 membership function model simulation 

Figure 13  2 Inputs 4 membership function model structure 

 

 

4.3  Different Stimulus Response Data Set 
 

Part 3 and part 4 examine the estimation ability of the ANFIS 

model obtained. There are three sets of data from EHA 

system which have similar data response, but with different 

operating region, as shown in Figure 3. The investigation of 

the estimation ability is done by obtaining model using one of 

the data set and test on the other two sets of data. In this part, 

training criterion is same as in part 1, with structure of two 

inputs and two membership functions each. The accuracy of 

the model in estimating each pair of data set is shown in Table 

1. 
 

Table 1  System model best fitting percentage 

 
 

 

  From Table 1, it is shown that at most conditions, model 

estimation accuracy is the best during condition where the 

data set is used to train the model. For example, model which 

is trained using data set 1 is having best accuracy when 

simulating the response with data set 1, comparing to another 

two set of data. Same situation goes to model which is trained 

with data set 3. The model simulation response of data set 2 

have a slightly better response when simulating the response 

of data set 3, but the difference is not significance and is 

approximately the same. From the table, even though the best 

fitting accuracy varies when the model is estimating the 

response at which it is not being trained with, the difference is 

very small, and can be assumed that the ability of modeling is 

approximately identical. The ANFIS modeling ability of EHA 

system for this part has shown that the model can estimate the 

response of the system at the different operating region with 

high precision. 

 

4.4  Limitation of Training Data Set 
 

In previous part, ANFIS modeling ability has been tested on 

similar data set but with a different operating region. In this 

part, testing of ANFIS modeling ability is extended to limited 

data set. In previous part, the model is obtained by using 50% 

of total data set for training purpose. In this part, the data set 

is limited to 30% and 10% of total data set. Data set 1 is used 

for this part. The best fitting percentage and RMSE are 

compared with model which is trained with 50% data, which 

has best fitting 97.82% and RMSE 0.31, as shown in Figure 5. 
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Training criterion is same with part 1, with structure of two 

inputs with two MF for each input. 

  As shown in operating region figure in Figure 4(a) and 

4(b), both data sets’ operating region are very similar. This 

means the 30% training data contains similar information as 

50% training data. The simulation result shown in Figure 14 

indicates very high similarity comparing to result of 50% 

training data. Both model having best fitting accuracy of 

97.82% and 97.81%, with equal RMSE, 0.31. This states that 

even though less training data is provided in model generation 

process, ANFIS model still can produce a same high accuracy 

estimation result, given that the training data set covers all the 

operating region of the system.  

  Figure 15 shows simulation result at condition where not 

complete data set is provided for model generation. From 

Figure 4(c), 10% of total data shows empty region in some 

operating region when compared to 30% and 50% of data. 

Result from this is that the model will lose some system 

characteristic during the model identification process. The 

loss can be seen in Figure 15, which displayed the response of 

the model with 10% training data. The best fitting accuracy is 

decrease to 96.98% and higher RMSE, 0.42 compared to 

previous two models. From the error plot, it is observed that 

higher error occurred starting from sample data 200 until 500.  

  Figure 16 shows the operating region plot which 

combines the data operating region from data sample 1 until 

200, and data sample 200 until 500. It is shown that the 

combined operating region of both data sets cover the total 

operating region for total data set, which is shown in Figure 

4(a) and 4(b). High error occurs in model estimation at the 

region where no training data is provided.  

  The model validation tests in this section show the 

effects of the training data set in the accuracy of the system 

model. When system model is trained using less data set 

which does not covers all the system’s operating region, the 

accuracy of the model is slightly lower than model which is 

trained with more training data. Even though the model which 

is trained with limited data set still can provide high accuracy 

in response estimation, a sufficient amount of training data 

which covers all the operating region of the system is 

recommended to ensure a more accurate system model. 

Figure 14  30% training model simulation 

 

Figure 15  10% training model simulation 

 

Figure 16  Combined operating region of limited data set with 

complete data set 
 

 

5.0  CONCLUSIONS 
 

The selection of inputs and number of membership functions 

are the two main keys in determining the structure of ANFIS 

model of a system. The increase of the number of inputs and 

membership functions will increase the accuracy of the 

model, but also result in more complicated model structure 

with more rules and parameters. The aim of the system 

identification process of the EHA system is to obtain a model 

which can represent the system at high accuracy, with less 

complicated structure and fewer system parameters. The 

ANFIS model obtained for EHA system is having two inputs, 

and each of the inputs have two membership functions. Total 

rules of the model is four, corresponding to four outputs. 

Final output is the average weight of the four outputs. The 

increase in the number of inputs and rules does not 

significantly increase the accuracy of the model. 

  ANFIS modeling has shown to have the ability to 

estimate the response of the system in different situations. 

Provided with three sets of data with different operating 

region, ANFIS model provides an estimation result with 

similar accuracy with model generated from either set of data. 

ANFIS modeling also showed the ability in estimation when 

provided with limited data set. Higher error occurs at the 

region where no training data is available.  Although the error 

appears to be bigger, the model is able to estimate the overall 

system with high precision with 96.98% best fit accuracy. 

However, sufficient training data which covers the entire 

operating region is recommended to ensure a more accurate 

system model. 

  Due to capability of ANFIS model in precisely estimate 

the response of EHA system, there are some 
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recommendations in obtaining model for EHA system using a 

more statistical approach for future study. Firstly, input 

selections of the model can be determined from mathematical 

modeling of the EHA system. Secondly, number of 

membership functions can be determined using statistical 

approach, such as gap statistic. Both of the recommendations 

can help in modeling by less heuristic approach. 
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