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Abstract 
 

This paper presents investigations into the applications and performance of command shaping techniques 

for control of payload sway of a boom crane based on filtering and the input shaping technique. The 
mathematical dynamic model describing the motion of the boom crane is developed using the Lagrange-

Euler's equation. The dynamic characteristics of the system are studied and analysed using the Matlab 

Simulink in time and frequency domains. Command shaping techniques based on filtering and the input 
shaping techniques are then developed and used to control the payload sway of the boom crane. The 

performance of the control techniques are studied in terms of the level of sway reduction, time response 

and robustness. Finally, a comparative assessment of the effectiveness of the control schemes for sway 
control of a boom crane is presented and discussed. 
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Abstrak 

 
Kertas kerja ini membentangkan kajian ke atas aplikasi dan prestasi teknik pembentukan arahan untuk 

mengawal goyangan muatan ‘boom crane’ berdasarkan teknik penapisan dan pembentukan input. Model 
dinamik matematik yang menerangkan pergerakan ‘boom crane’ telah diperolehi dengan menggunakan 

persamaan Lagrange-Euler. Ciri-ciri dinamik sistem dikaji dan dianalisis menggunakan Matlab Simulink 

dalam domain masa dan frekuensi. Teknik-teknik pembentukan arahan berdasarkan penapisan dan teknik-
teknik pembentukan input kemudiannya dibangunkan dan digunakan untuk mengawal goyangan muatan 

‘boom crane’. Prestasi teknik kawalan dikaji dari segi tahap pengurangan kuasa, masa tindakbalas dan 

kelasakan. Akhirnya, satu penilaian perbandingan tahap keberkesanan kawalan goyangan ke atas ‘boom 
crane’ dibentang dan dibincangkan. 

 

Kata kunci: Kawalan anti-goyangan; ‘boom crane’; pembentukan arahan; simulasi 

 

© 2014 Penerbit UTM Press. All rights reserved. 

 

 
 
 
 
 
1.0  INTRODUCTION 

 

Cranes are important machinery that has been intensively used 

for container handling in harbour and structural object shifting 

in construction sites. Generally cranes can be categorized into 

two major groups: gantry cranes and boom cranes. Boom cranes 

are common industrial structures that are used in building 

construction, factories, harbours, oil rig/platform and shipyard. 

Besides, they are widely used to transport heavy loads and 

hazardous materials in shipyards, factories, nuclear installations, 

and high building construction. These cranes are usually 

operated manually where operators use a joystick and an 

accelerator pedal to control the movements and direction of the 

cranes. On the shipyard, they are mounted on ships to transfer 

cargo between ships or on the harbour pavements to transfer 

cargo between ships and offshore structures.  

  In general, the movement of cranes has no prescribed path. 

They are used to move a load from one point to another. Boom 

cranes experience payload sway problems when commanded to 

perform fast motions. At very low speeds, the payload’s sways 

are not significant and can be ignored. However, at a higher 

speed, these sway angles become larger and significant, and 

cause the payload hard to settle down when unloading. The 

overall system performance will be affected when significant 

sways angle of the payload occurs during the movement of a 

boom crane. This is a very severe problem especially for the 

applications in the industries that require high productivity and 

efficiency. Moreover, as most payloads are heavy, payload sway 

pose a safety hazard to workers and objects in the workspace. 
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With the size of these cranes becoming larger and higher, and 

the motion expected to be faster, the process of controlling them 

to guarantee fast turn-over and to meet safety requirements is a 

challenging task. The requirement of precise sway control of 

boom cranes implies that residual sway of the payload should be 

zero or near zero [1].  

  Over the years, investigations have been focused on the 

development of efficient controllers for gantry cranes. However, 

only a limited number of investigations have been carried out to 

devise control approaches to reduce the payload sway of boom 

cranes [2]. Feedback and feed-forward control strategies are two 

major sway control schemes that can be utilised. Feedback 

control techniques use measurement and estimations of the 

system states to attenuate the swaying of the system. Feedback 

controllers can be designed to be robust to parameter 

uncertainties. On the other hand, feed-forward techniques for 

sway attenuation involve developing the control input through 

consideration of the physical and swaying properties of the 

system, so that system swaying at dominant response modes is 

reduced. This method does not require additional sensors or 

actuators and does not account for changes in the system once 

the input is developed. For boom cranes, feed-forward and 

feedback control techniques can be used for sway attenuation 

and position control respectively. An acceptable system 

performance without payload sway that accounts for system 

changes can be achieved by developing a hybrid controller 

consisting of both control techniques. Thus, a properly designed 

feed-forward controller is required. Furthermore, the complexity 

of the required feedback controllers can be reduced. 

  A number of techniques have been proposed as feed-

forward control strategies for sway control of boom cranes. A 

strategy to achieve a time-optimal slew motion only while 

minimising the residual sway has also been proposed [3]. In this 

work, a slew angle acceleration profile is shaped to perform the 

slew motion and control the sways. Numerical simulation has 

shown that the strategy provides considerable level of reduction 

of the payload sway. Lewis et al. [4-5] has applied quasi-static 

notch filters to the operator’s input commands to avoid exciting 

the cable-payload assembly at its natural frequency. The notch 

location varies with the length of the cable to filter out 

excitations at the current natural frequency of the cable-payload 

assembly. Simulation results have shown reductions in both the 

in-plane and out-of-plane payload pendulations. However, the 

filtering process imposes delays between the operator input and 

the actual filtered input to the crane. Anti-sway control for boom 

cranes based on an optimal control approach has also been 

proposed [2]. Simulation and experimental results have shown 

that the proposed optimal trajectories are capable in reducing 

payload sway of the system. 

  An approach in command shaping techniques known as 

input shaping has been proposed by Singer and co-workers 

which are currently receiving considerable attention in vibration 

control [6]. The input shaping technique has been proven to be a 

practical and effective method of reducing vibrations especially 

in flexible systems [7]. The main concept of input shaping is to 

alter the input to the system in order to reduce unwanted 

dynamics which contributing to the swaying of the system. Its 

significance of this approach is that the physical of the system 

does not need to be altered.  Using this method, a response 

without sway can be achieved, however, with a slight time delay 

approximately equal to the length of the impulse sequence. With 

more impulses, the system becomes more robust to flexible 

mode parameter changes, but this will result in longer delay in 

the system response.  

  This paper presents investigations into the applications and 

performance of the command shaping techniques for control of 

payload sway of a boom crane based on filtering and the input 

shaping techniques. Moreover, this paper provides a 

comparative assessment of the performance of these control 

schemes. In this work, the dynamic model describing the motion 

of the boom crane is derived using the Lagrange-Euler’s 

equation. For the command shaping with the filtering technique, 

Butterworth low pass and band stop filters are considered. On 

the other hand, with the input shaping technique, input shaper 

with three impulse sequence known as zero-vibration-derivation 

(ZVD) is considered. Simulations of the system are performed 

within the boom crane simulation environment designed using 

Matlab and Simulink. Initially, to obtain the characteristic 

parameters of the system, the boom crane is excited with an 

unshaped bang-bang torque input. In this investigations, slew 

angle, tangential pendulation (in-plane) and radial sway (out-of-

plane) responses of the crane are studied both in time and 

frequency domains. The filters and input shapers are designed 

based on the dynamic behaviour of the system and applied to 

minimise the swaying of the system. Performances of the 

developed controllers are assessed in terms of level of sway 

reduction, time response specifications and robustness to errors 

in the natural frequency. In this case, the robustness of the 

control schemes is assessed with up to 50% error tolerance in 

natural frequencies. Simulation results in time and frequency 

domains of the response of the boom crane to the unshaped 

input and shaped inputs with the filters and input shaper are 

presented. Moreover, a comparative assessment of the 

effectiveness of the controllers in minimising the swaying of the 

boom crane is discussed. The results of this work will be helpful 

in designing efficient algorithms for sway control of boom crane 

systems. 

 

 

2.0  THE BOOM CRANE SYSTEM 

 

The boom crane system considered in this work is shown in 

Figure 1, where XOY represents the base coordinates. The three 

degrees of freedom crane system consists of a fixed vertical 

column, a rigid boom link, a hoisting line and a payload. α, β, 

L1, L2 and L3 represent the slew angle, luff angle, the length of 

the vertical column, the length of the rigid boom link and the 

length of the hoisting line respectively. The slew angle is the 

rotary angle of the hub of the boom crane or slewing pedestal 

controlled by the operator’s slew command whereas the luff 

angle is the elevation or luffing angle of the boom link. Sway 

angles are excited as the system operates, namely the tangential 

pendulation, θ1 and the radial sway, θ2. In this particular case, 

the tangential pendulation and radial sway are in-plane and out-

of-plane pendulations respectively. In this study, the payload is 

regarded as a point mass and the system exhibits the behavior of 

a pendulum. The length of the boom link, L2 of the system is 

considered as 1 m, gravitational force, g = 9.8 m/s2, weight of 

the point mass, m = 0.9 kg and the length of the hoisting line, L3 

= 1m. 
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Figure 1  Description of the boom crane system 

  

 
3.0  MODELLING OF THE BOOM CRANE 

 

This section provides a three dimensional mathematical 

modelling of the boom crane system, as a basis of a simulation 

environment for development and assessment of the command 

shaping control techniques. In this work, the dynamic equations 

of motion of the system are derived based on Lagrange-Euler 

equation. With the payload trajectory defined by the vector sum 

of the three kinematics links, L1, L2 and L3, each position 

vector is determined by transforming each link motion from a 

local coordinate frame to a fixed inertial coordinate frame 

attached to the base of the crane.  

  Analysing the schematic model in Figure 1, the link L1 

coordinate system with respect to the base coordinate can be 

written as 

 z1 = L1      (1) 

 

  Similarly, the link L2 coordinate system (x2, y2 and z2) with 

respect to the base coordinate can be written as 

 x2 = - L2  sin α cos β    (2)  

 

 y2 =   L2  cos α cos β     (3)  

 

 z2 =   L2  sin β    (4)  

 

and the link L3 coordinate system (x3, y3 and z3) with respect to 

the base coordinate as  

x3=L3sin θ2  sin α - L3  sin θ1  cos θ2  cos α  (5) 

 

y3 =   L3  sin θ2  sin α - L3  sin θ1  cos θ2  cos α   (6)  

 

z3 = - L3 cos θ1  cos θ2  (7)  

 

  Finally, the total of x, y and z can be obtained as  

 

x = - L2  sin α cos β + L3  sin θ2  sin α - L3  sin θ1  cos θ2  cos α  (8)  

  

y = L2  cos α cos β + L3  sin θ2  sin α - L3  sin θ1  cos θ2  cos α    (9)  

 

z =   L1 + L2 sin β - L3 cos θ1 cos θ2     (10)  

 

  Considering the payload as a point mass, m the potential 

energy can be obtained as  

P = mgh = -mgz  (11)  

 

where g is the gravitational acceleration and h is the height in z 

component. On the other hand, the kinetic energy can be 

obtained as 
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where  q = (θ1, θ2) and the Lagrange operator, L= K – P is used 

to derive the dynamic equations of motion of the system. Due to 

the complexity of the equations, Matlab Symbolic Toolbox is 

utilized to derive and verify the equations. Solving the 

Lagrange’s Equation yields the tangential pendulation and radial 

sway of the boom crane as 
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  In this work, the unshaped bang-bang input of amplitude 

±0.3 rad/s2 is used as the input command. Figure 2 shows the 

single-switch bang-bang acceleration of the joystick and foot 

pedal used as the input to the system. The inputs are applied at 

the slew (hub) of the boom crane. The bang-bang input is 

required to have positive and negative periods to allow the 

boom crane to, initially, accelerate and then decelerate and 

eventually, stop at the target position. Three system responses 

namely slew-angle, tangential pendulation of payload and radial 

sway of payload of the boom crane are obtained. To investigate 

the behaviour of the system in the frequency domain, power 

spectral density (PSD) of the tangential pendulation response is 

also studied. The results are recorded with a sampling frequency 

of 1 KHz. In this work, the first three modes of sway/oscillation 

are considered, as these dominantly characterise the behaviour 

of the crane system. 
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Figure 2  The bang-bang input 

 

 

  Figure 3 shows the slew-angle response, the radial sway 

and tangential pendulation of payload of the crane to the 

unshaped bang-bang input in time and frequency domains. It is 

noted that the steady-state slew-angle of 1.2 rad for the boom 

crane system with no overshoot was achieved within the settling 

time of 8.6 s. The radial sway and tangential pendulation 

responses reveal that a significant payload sway occurs during 

the movement of the boom crane. The responses were found to 

oscillate between -0.05 and 0.03 rad and between -0.05 and 0.05 

degrees for the tangential pendulation and radial sway 

respectively. Moreover, the responses settle down only after 20 

s. Natural frequencies of the system were obtained by 

transforming the time-domain representation of the system 

responses into the frequency domain using power spectral 

analysis. Figure 3(d) shows the PSD of the tangential 

pendulation of the system. The natural frequencies of the boom 

crane system were obtained as 0.48, 1.37 and 2.35 Hz for the 

first three modes respectively. These results were considered as 

the system response to the unshaped input and will be used to 

evaluate the performance of the command shaping techniques in 

suppressing the boom crane payload oscillations. 

 
(a) Slew-angle 

 
 

(b) Radial sway of the payload 

 

(c) Tangential pendulation of the payload 

 
(d) PSD of tangential pendulation of the payload 

 

Figure 3  Response of the boom crane to the unshaped bang-bang input 
 

 

4.0  COMMAND SHAPING CONTROL SCHEMES 

 

Command shaping techniques are feed-forward control 

technique that functions as a notch filter on the commanded 

maneuver to remove the payload pendulation frequencies. In 

this work, filtering and input shaping techniques are investigated 

for control of payload sway of a boom crane. The following 

section provides a brief description of both feed-forward control 

techniques. 
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4.1  Filtering Technique 

 

In this work, command shaping based on feed-forward filtering 

technique is developed on the basis of extracting the energies 

around the natural frequencies of the system using filtering 

techniques. The input signal is shaped to notch out the spectral 

components at system’s resonance frequencies. The filters are 

thus used for pre-processing the input signal so that no energy is 

fed into the system at the natural frequencies. In this manner, the 

sway modes of the system are not excited, leading to a sway-

free motion. 

  The low pass filter (LPF) and band stop filter (BSF) are 

used to shape the input command. The low pass filter is 

designed with a cut-off frequency lower than the first natural 

frequency of the oscillation of the system. As for band stop 

filter, the filter is designed with its center frequencies at the 

natural frequencies of the system. The low-pass and band stop 

filters thus designed are then implemented in cascade to 

preprocess the input signal. With the reference to the natural 

frequency obtained from the spectral analysis of the system, the 

filters are designed to eliminate the energy components in that 

frequency. There are various filter types such as Butterworth, 

Chebyshev and Elliptic that can be designed and employed. In 

these investigations, infinite impulse response (IIR) Butterworth 

low-pass and band-stop filters are examined. 

 

4.2  Input Shaping Technique 

 
Input shaping technique is a feed-forward control technique that 

involves convolving a desired command with a sequence of 

impulses known as input shaper [6]. The shaped command that 

results from the convolution is then used to drive the system. 

Design objectives are to determine the amplitude and time 

locations of the impulses, so that the shaped command reduces 

the detrimental effects of system flexibility. These parameters 

are obtained from the natural frequencies and damping ratios of 

the system. Thus, sway reduction of a boom crane system can be 

achieved with the input shaping technique. Several techniques 

have been investigated to obtain an efficient input shaper for a 

particular system. A brief description and derivation of the 

control technique is presented in this section. 

  Generally, a vibratory system of any order can be modeled 

as a superposition of second order systems each with a transfer 

function 
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where ω is the natural frequency of the vibratory system and ζ is 

the damping ratio of the system. Thus, the response of the 

system in time domain can be obtained as  
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where A and t0 are the amplitude and the time location of the 

impulse respectively. The response to a sequence of impulses 

can be obtained by superposition of the impulse responses. 

Thus, for N impulses, with  21  d
, the impulse 

response can be expressed as  
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  idi t    and Ai and ti are the amplitudes and time 

locations of the impulses. 

 The residual single mode sway amplitude of the 

impulse response is obtained at the time of the last impulse, tN as 
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  To achieve zero sway after the last impulse, it is required 

that both V1 and V2 in Equation (20) are independently zero. 

This is known as the zero residual sway constraints. In order to 

ensure that the shaped command input produces the same rigid 

body motion as the unshaped reference command, it is required 

that the sum of amplitudes of the impulses is unity. This yields 

the unity amplitude summation constraint as 

                 
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  In order to avoid response delay, time optimality constraint 

is utilized. The first impulse is selected at time t1 = 0 and the last 

impulse must be at the minimum. The robustness of the input 

shaper to errors in natural frequencies of the system can be 

increased by taking the derivatives of V1 and V2 to zero. Setting 

the derivatives to zero is equivalent to producing small changes 

in sway corresponding to the frequency changes. The level of 

robustness can further be increased by increasing the order of 

derivatives of V1 and V2 and set them to zero. Thus, the 

robustness constraints can be obtained as 

                      01 
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  The ZV input shaper, i.e. two-impulse sequence is designed 

by taking into consideration the zero residual sway constraints, 

time optimality constraints and unity magnitude constraints. 

Hence, by setting V1 and V2 in Equation (20) to zero, 

 


N

i iA
1

1,  t1 = 0 to avoid response delay and solving yields 

a two-impulses sequence with parameters as 

t1 = 0,  t2 = 
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
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1
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  The ZV shaper does not consider the robustness 

constraints. To increase the robustness of the positive input 

shaper, the robustness constraints must be considered in solving 
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for the time locations and amplitudes of the impulses sequence. 

The robustness constraints equations can be obtained by setting 

the derivatives of V1 and V2 in Equation (20) to zero. By solving 

the zero-residual sway, robustness, unity magnitude and time 

optimality constraints yield a three-impulse sequence known as 

the ZVD shaper.  

  Hence, a three-impulse sequence can be obtained with the 

parameters as  
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where K as is equation (25). 

 

  In order to handle higher sway modes, an impulse sequence 

for each sway mode can be designed independently. Then, the 

impulse sequences can be convoluted together to form a 

sequence of impulses that attenuate sway at higher modes. 

 

 

5.0  IMPLEMENTATION AND RESULT 

 

The feed-forward control techniques were designed on the basis 

of vibration frequencies and damping ratios of the boom crane 

system. These were obtained from the developed dynamic 

model of the boom crane as presented in the previous section. 

For evaluation of robustness, the control techniques were 

designed based on 50% error tolerance in the sway frequencies. 

As a consequence, the system oscillation modes were 

considered at 0.72 Hz, 2.06 Hz and 3.53 Hz under this situation. 

The filters and input shapers thus designed were used for pre-

processing the bang-bang input command. The shaped and 

filtered torque inputs were then applied to the system in an 

open-loop configuration as shown in Figure 4 to reduce the 

sway of the payload of the boom crane. In this process, the 

shaped and filtered inputs were designed within the Matlab and 

Simulink environment with a sampling frequency of 1 kHz. 

  Simulation results of the response of the boom crane to the 

shaped and filtered inputs are presented in this section in the 

time and frequency domains. To investigate the performance of 

both techniques, the results are examined in comparison to the 

unshaped bang-bang input for a similar input level in each case. 

Similarly, three system responses are investigated namely the 

slew-angle, tangential pendulation and radial sway of the 

payload. Moreover, the PSD of the tangential pendulation 

response is evaluated to investigate the dynamic behavior of the 

system in frequency domain. Three criteria are used to evaluate 

the performances of the control schemes: 

 

(1) Level of sway reduction at the natural frequencies. This is 

accomplished by comparing the responses to the shaped and 

filtered inputs with the response to the unshaped input.  

(2) The time response specifications. Parameters that are 

evaluated are settling time and overshoot of the slew angle 

the steady-state value. Moreover, the magnitude of oscillation of 

the system response is observed.  

(3) Robustness to parameter uncertainty. To examine the 

robustness of the techniques, the system performance is assessed 

with 50% error tolerance in natural frequencies. This is 

incorporated in the design of the filters and input shapers. 

 

  In this work, for a valid performance comparison of the 

control schemes in suppression of payload oscillations/sways, 

the parameters of the low-pass and band-stop filters and ZVD 

that provide a similar settling time of the slew-angle response 

are chosen. 

 

 
Figure 4  Block diagram of feed-forward control configuration 

 

 

5.1  Filtered and Shaped Inputs 

 

Using the low-pass filter, the input energy at all frequencies 

above the cut-off frequency can be attenuated. In this study with 

several investigations to achieve similar settling time of the 

slew-angle response, low-pass filters with cut-off frequency at 

65% of the first sway mode were designed. Thus, for the boom 

crane, the cut-off frequencies of the filters were selected at 0.17 

Hz and 0.26 Hz for the two cases of exact and 50% erroneous 

natural frequencies respectively. On the other hand, using the 

band-stop filter, the input energy at selected (dominant) 

resonance modes of the system can be attenuated. In this study, 

band-stop filters with bandwidth of 0.54 Hz were designed for 

the first three resonance modes. Similarly, the filters were 

designed with consideration of exact and 50% error in natural 

frequencies. In both cases, sixth order filters were designed and 

examined. The filtered inputs with the low-pass and band-stop 

filters are shown in Figure 5. 

  Using the properties of the system, an input shaper with 

three-impulse sequence (ZVD) was designed for three sway 

modes of the system. With the exact natural frequencies of 0.48 

Hz, 1.37 Hz and 2.35 Hz, the time locations and amplitudes of 

the impulses were obtained by solving equation (26). For 

evaluation of robustness, input shapers with error in natural 

frequencies were also evaluated. With the 50% error in natural 

frequencies, the system sways were considered at 0.72 Hz, 2.06 

Hz and 3.53 Hz for the three modes of sway. Similarly, the 

amplitudes and time locations of the input shapers with 50% 

erroneous natural frequencies for the ZVD input shapers were 

calculated. For digital implementation of the input shapers, 

locations of the impulses were selected at the nearest sampling 

time. The shaped input using ZVD shaper with exact natural 

frequency is shown in Figure 5. 
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Figure 5  The filtered and shaped inputs 

 

 

5.2  Exact Natural Frequencies 

 

Figure 6 shows the slew-angle responses of the boom crane with 

the three control schemes with exact natural frequencies. As 

designed, all the responses give almost similar settling times of 

16 s and achieve a similar level of steady-state slew angle of 1.2 

rad. Moreover, the slew-angle responses are achieved with 

overshoots of 5.9%, 5% and 0% using LPF, BSF and ZVD 

respectively. 

  The tangential pendulation and radial sway responses of 

the payload of the boom crane with the three control schemes 

are shown in Figures 7 and 8 respectively. It is noted that the 

magnitude of the in-plane and out-of-plane sways were 

significantly reduced with the controllers as compared to the 

unshaped input (Figure 3). With the tangential pendulation 

response, the responses were found to oscillate between -0.01 to 

0.02 rad, -0.013 to 0.023 rad and -0.005 to 0.023 rad using LPF, 

BSF and ZVD respectively. On the other hand, with the radial 

sway, the responses were found to oscillate between -0.014 to 

0.022 rad, -0.078 to 0.025 rad and -0.004 to 0.007 rad 

respectively. The results show sway reduction of more than 64% 

and 52% of the unshaped bang-bang input for the tangential 

pendulation and radial sway responses respectively. It is clearly 

shown that ZVD provides the best performance in suppressing 

sway of the payload. 

 
 
Figure 6  Slew angle responses of the boom crane using LPF, BSF and 

ZVD with exact frequencies 

 

 
Figure 7  Tangential pendulation responses of the boom crane payload 
using LPF, BSF and ZVD with exact frequencies 

 
Figure 8  Radial sway responses of the boom crane payload using LPF, 
BSF and ZVD with exact frequencies 

 

 

  Figure 9 shows the PSD of the tangential pendulation of 

the boom crane payload using the control techniques. It is noted 

that the payload oscillation/sway at the resonance modes have 

significantly been reduced as compared to the unshaped bang-

bang input. In this case, lower magnitudes of the PSD were 

achieved. Table 1 summarizes the PSD magnitudes of tangential 

pendulation response at the resonance modes using the control 

schemes as compared to the response with the unshaped bang-

bang input. 
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Figure 9  PSD of the tangential pendulation responses of the boom 
crane payload using LPF, BSF and ZVD with exact frequencies. 

 
 
Table 1  Level of sway reduction of the tangential pendulation using 
LPF, BSF and ZVD as compared to the bang-bang input 

 
 

Frequency 

 

Control 

techniques 

 

Attenuation (dB) of sway of 

tangential pendulation 

Mode 1 Mode 2 Mode 3 

 

 
Exact 

 

LPF 

 

9.78 

 

5.38 

 

4.4 
 

BSF 

 

9.78 

 

3.1 

 

2.53 

 
ZVD 

 
12.73 

 
3.7 

 
0.64 

 

 

Error 

 

LPF 

 

9.78 

 

4.26 

 

3.01 

 
BSF 

 
6.02 

 
3.1 

 
1.24 

 

ZVD 

 

11.08 

 

3.7 

 

4.0 

 

 

5.3  Robustness 

 

To examine the robustness of the shaper, the shaper with 50% 

error in natural frequencies were designed and implemented to 

the boom crane system. Figure 10 shows the slew-angle 

responses of the boom crane with the three control schemes with 

erroneous natural frequencies. It is noted that, a similar level of 

steady-state slew angle of 1.2 rad is achieved with the control 

schemes. However, the settling times of the slew-angle response 

are achieved as 11 s, 12 s and 14 s using LPF, BSF and ZVD 

respectively, which are faster as compared to the case with exact 

frequencies. Moreover, the slew-angle responses are achieved 

with overshoots of 2.5%, 2.4% and 0% respectively. In this 

case, a better time response is achieved as a shorter impulse 

sequence and lower cut-off frequencies are used. 

 
Figure 10  Slew angle responses of the boom crane using LPF, BSF and 

ZVD with erroneous frequencies 

 

 

  The tangential pendulation and radial sway responses of 

the payload of the boom crane using the control schemes with 

erroneous frequencies are shown in Figures 11 and 12 

respectively. It is noted that the magnitude of the in-plane and 

out-of-plane sways were considerable reduced with the 

controllers as compared to the unshaped input. With the 

tangential pendulation response, the sway reductions of 61%, 

40% and 83% were achieved using LPF, BSF and ZVD 

respectively. On the other hand, with the radial sway, the sway 

reductions of 48%, 11% and 83% were achieved respectively. 

However, the results are less than the case without error.  

  

 
Figure 11  Tangential pendulation responses of the boom crane payload 
using LPF, BSF and ZVD with erroneous frequencies 
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Figure 12  Radial sway responses of the boom crane payload using 

LPF, BSF and ZVD with erroneous frequencies 

 

 

  Figure 13 shows the PSD of the tangential pendulation of 

the boom crane payload using the control techniques with 

erroneous frequencies. As in the time domain, the payload 

oscillation/sway at the resonance modes have considerable been 

reduced as compared to the unshaped bang-bang input. Table 1 

summarizes the PSD magnitudes of tangential pendulation 

response at the resonance modes using the control schemes as 

compared to the response with the unshaped bang-bang input. 

 

 
Figure 13  PSD of the tangential pendulation responses of the boom 

crane payload using LPF, BSF and ZVD with erroneous frequencies 

 

 

5.4  Comparative Performance Assessment 

 

A comparison of the results presented in Figures 7, 8 and 9 and 

Table 1 reveals that the highest performance in the reduction of 

sway of the boom crane is achieved with the ZVD (input 

shaping technique). This is observed and compared to the filters 

at the first three modes of sway. The performance of ZVD is 

evidenced in the magnitude of sway with the tangential 

pendulation and radial sway responses. For the tangential 

response, a sway reduction of 89% as compared to the bang-

bang input is achieved using ZVD whereas LPF and BSF 

provide sway reductions of 70% and 64% respectively. 

Similarly, for the radial sway, a sway reduction of 87%, 57% 

and 49% are achieved using ZVD, LPF and BSF respectively. 

This is further evidenced in Figure 14 which demonstrated the 

level of sway reduction achieved using the control schemes at 

the resonance modes. It is noted that a better performance in 

sway reduction of the system is achieved with the low-pass 

filtered input as compared to the band-stop filtered input. This is 

mainly due to the higher level of input energy reduction 

achieved with the low-pass filter, especially at the second and 

third modes. However, the band-stop filtered input gives higher 

reduction at the first mode of sway. As expected, system 

responses were slower with the shaped and filtered inputs as 

compared to the system response to the unshaped input. 

Comparisons of specifications of slew-angle responses in Figure 

6 show that ZVD is able to maintain the level of overshoot as 

the unshaped input. However, higher overshoots as compared to 

the unshaped input were achieved with LPF and BSF.  

 

 
 

Figure 14  Level of sway reduction with exact natural frequencies using 

LPF, BSF and ZVD 

 

 

  A comparison of the results presented in Figures 11, 12 and 

13 and Table 2 reveals that the highest robustness to uncertainty 

in natural frequencies is achieved with ZVD. It is noted that the 

ZVD can successfully handle errors in the natural frequency. In 

this case, only a slight different in sway reduction in both cases, 

with exact and erroneous frequency was noted. This is further 

revealed in Figure 15 that demonstrates the level of reduction of 

sway of the tangential pendulation response at the resonance 

modes with the control schemes. The input shaping technique is 

more robust, as significant reduction was achieved at the first 

mode of vibration, which is the most dominant mode. The band-

stop filtered input did not handle the error as only small amount 

of reduction of the system vibration was achieved. On the other 

hand, using the low-pass filter, a significant amount of 

attenuation of the system sway was achieved at the second and 

third resonance modes. Moreover, the sway reduction achieved 

with low-pass filtered inputs was higher than that with the 

shaped input at these resonance modes.  

 

 

6.0  CONCLUSION 

 

Investigations into sway reduction control of a boom crane 

using command shaping techniques with filtering and input 

shaping techniques have been presented. The dynamic model of 

the boom crane utilizing the Euler-Lagrange formulation has 

been considered. The system response to the unshaped bang-

bang torque input has been used to investigate the dynamic 

behavior of the boom crane and to determine the parameters of 

the system for evaluation of the control strategies. Significant 
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reduction in the system vibrations has been achieved with these 

control strategies. Performances of the techniques have been 

evaluated in terms of level of sway reduction, time response 

specifications and robustness. For the boom crane and the 

specifications used in designing the input shapers and filters, the 

input shaping technique has been demonstrated to provide the 

best performance in sway reduction, especially in terms of 

robustness to errors. The low-pass filtered input has also been 

shown to perform better than the band-stop filtered input. 

 

 
 

Figure 15  Level of sway reduction with erroneous natural frequencies 

using LPF, BSF and ZVD 
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