
DYNAMIC TIMETABLING USING REACTIVE CONSTRAINT AGENTS 45

Jurnal Teknologi, 46(D) Jun 2007: 45–60
© Universiti Teknologi Malaysia

DYNAMIC TIMETABLING USING REACTIVE
CONSTRAINT AGENTS

HANY ALASHWAL1* & SAFAAI DERIS2

Abstract. Most of the approaches that have been applied to solve the timetabling problems focus
on the construction of the timetable as a static process. In real world, the timetabling problems are
dynamic and open problems since the initial timetable is not fixed and it is required to be changed as
the constraints or assumptions on which the timetable is based on, are changed or became invalid.
Therefore, the main objective of this paper is to handle the changes after generating the initial timetable.
The Reactive Constraint Agents (RCA) architecture is capable of repairing and modifying the timetable
gradually by communicating and cooperating with each other to maintain the timetable feasibility.
This architecture has been implemented and tested using real data from Faculty of Science, University
of Ibb - Yemen. The results show that the RCA can cope with the changes in real-time with minimal
modification to the existing timetable.

Keywords: Timetabling problem, dynamic timetabling, constraints programming, software agents,
open agent architecture

Abstrak. Kebanyakan teknik yang diimplimentasi bagi menyelesaikan masalah penjadualan
tertumpu kepada proses yang statik. Walau bagaimanapun, di dalam dunia sebenar, masalah penjadualan
merupakan satu masalah yang terbuka, dinamik dan sentiasa berubah-ubah mengikut kekangan dan
andaian. Oleh yang demikian, objektif utama kertas ini adalah untuk mengendalikan perubahan-
perubahan yang berlaku setelah jadual waktu awalan terhasil. Agen Kekangan Reaktif (AKR) telah
diimplimentasi lebih khusus dan berkeupayaan membaiki dan mengubahsuai jadual waktu secara
bertahap dengan komunikasi dan kerjasama di antara satu sama lain bagi mengekalkan kesauran
jadual waktu tersebut. Seni bina AKR ini telah dilaksana dan diuji dengan menggunakan data sebenar
iaitu data dari Fakulti Sains, Universiti Ibb, Yemen. Hasil kajian menunjukkan bahawa AKR berupaya
mengendalikan perubahan-perubahan dalam masa nyata dengan pembaikan yang minimum ke atas
jadual waktu asal.

Kata kunci: Masalah penjadualan waktu, penjadualan waktu dinamik, pengaturcaraan terhad, agen
perisian, seni bina agen terbuka

1.0 INTRODUCTION

The timetabling problems are combinatorial problems that consist of scheduling a set
of courses within a given number of rooms and timeslots. Solving a real-world
timetabling problem manually often requires a significant amount of time, sometimes

1&2 Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, 81310 Skudai,
Johor, Malaysia

* Corresponding author: Tel: +607 5532541, Fax: +607 5565044, Email: hany@siswa.utm.my

JTjun46D[04].pmd 10/08/2007, 03:3345

HANY ALASHWAL & SAFAAI DERIS46

several days or even weeks. It has been known that the timetabling problem fall under
the NP-complete problems [1]. Moreover, it is a dynamic and perturbed problem.
Constraints alter as unexpected events occur, such as adding or deleting resources
which are subjects or lecturers, and as the changes of the user demands put on to the
scheduling system.

During the last thirty years, many contributions related to the timetabling problem
have appeared and it will probably continue with the same rate for years. This could
be due to the fact that timetabling problems are often over-constrained, dynamic, and
optimization criteria are hard to define. Different techniques have and are being applied
to solve the static timetabling problem, including graph coloring [2], integer
programming [3] (from Operations Research), simulated annealing [4], tabu search
[5], genetic algorithms [6], and constraint logic programming [7] (from Artificial
Intelligence). Most of the existing timetabling systems focus on the static part of the
timetabling problem and generate a near optimal solution. Moreover, the required
modification or changes are usually done manually, which is difficult and time
consuming.

In the dynamic timetabling problem, the main task is to minimally reconfigure
schedules in response to a changing resources or activities [8]. A survey of current
approaches to dynamic scheduling in general can be found in [9]. Dynamic timetabling
problem has started to be investigated in [10]. Another approach to cope with the
changes after the first schedule has been generated is by using an interactive tool [11].
Using this method, user must interact with the system to modify the schedule during
the rescheduling process.

Recently, software agents have been applied to cope with the dynamic scheduling
problems [12-14]. Agent Technology has received a great deal of attention among the
researchers and practitioners in the field of Artificial Intelligence (AI). These agents
are typically reactive, treating the world as an external memory from which knowledge
can be retrieved by perception. Furthermore, the AI community has shown an increasing
interest in solving Constraints Satisfaction Problems using the agent technology [15].
Constraint computation provides a general problem-solving framework whereas agents
are self-directed problem-solving entities [16].

2.0 DYNAMIC TIMETABLING PROBLEM

In order to manage a rapid growth of academic activities in a university, an efficient
and flexible timetabling must be developed. Figure 1 shows a typical university
timetabling processes. Timetabling is thus an ongoing and continuous process. The
problem of updating timetables in the most effective way, when the constraints or
assumption on which they are based are changed or became invalid, is one that is
receiving increasing attention amongst researchers and practitioners.

The main alternatives to the revision of a timetable are either by completely
rescheduling the original timetable from scratch, or by repairing or modifying the

JTjun46D[04].pmd 10/08/2007, 03:3346

DYNAMIC TIMETABLING USING REACTIVE CONSTRAINT AGENTS 47

previous timetable interactively such as the approach that has been used by [11].
However, most approaches to reactive scheduling are based on infrequent regeneration
which cannot maintain continuity as it is progressively modified. Therefore, the aim of
this paper is to show how to cope with the dynamic timetabling problem by using
Reactive Constraint Agents (RCA). Many cases can arise which is always leading to
some modifications to the current timetable such as:

(i) Turnover of academic staff.
(a) Adding teaching staff: This problem can occur when teaching staff has just

finished a study leave or new staff has joined. It can also be considered as a
free staff.

(b) Unplanned staff absences: This problem can occur due to retirement, illness,
or emergence of other commitment of a teaching staff. It can also occur
when a teaching staff gets a study leave.

(ii) Dynamic of enrolments make section or subject unavailable or inadequate.
(a) Deleting sections or subjects. This problem occurs when there is not enough

students to enroll in the subject. It can also be considered a free staff.
(b) Adding new sections or subjects that previously are not being offered. This

problem occurs in case of extra students or a new subject has been offered.
(c) Adding/deleting activities (lectures, tutorials, seminars, etc.).

Figure 1 Timetable construction process

Define subjects to be offered

Assign lecturers to subjects

Define available times and rooms

Generate a draft timetable

Analyze/comment timetable

Generate the final timetable

JTjun46D[04].pmd 10/08/2007, 03:3347

HANY ALASHWAL & SAFAAI DERIS48

(d) Amending lecturers (swapped from one lecture to another, dropped from/
added to lecturers).

(e) Grouping teaching activities.

(iii) Request for changing timetable: This problem may occur due to lecturers'
preferences to move class to better fit their timetable and so forth.

As shown above, it is difficult to maintain a given timetable on a real timetabling
problem because of all kinds of disturbances that occur as mentioned above. The
manual solution for the dynamic timetabling problem is based on the try-check
principle. This manual technique is a time-consuming process. In addition, there is no
guarantee that the new timetable is a conflict-free solution. Meanwhile, most of the
current timetabling systems are static in which the first near optimal timetable is
generated automatically. Then, any new timetable required to be computed due to
changes or new requirements will be done manually.

3.0 REACTIVE CONSTRAINT AGENTS ARCHITECTURE

The Reactive Constraint Agents (RCA) is a multi-agent architecture aimed to implement
a reactive system that is capable of coping with the dynamic timetabling problem. In
the RCA, each agent executes specific types of tasks, and serves a specific purpose. No
agent does an entire job. Rather, it does what it can, then delegates the other tasks to
other agents. The RCA uses the Open Agent Architecture (OAA™) [17] as a platform.
The Open Agent Architecture is a blackboard-based framework allowing individual
software agents to communicate by means of goals posted on a blackboard controlled
by a facilitator. The facilitator is responsible both for storing data that is global to the
agents, identifying agents that can achieve various goals, and scheduling and
maintaining the flow of communication during the computation. An extension of
Prolog is used as the Inter-agent Communication Language (ICL) to take advantage
of unification and backtracking when posting queries. The primary job of the facilitator
is to decompose ICL expressions and route them to agents who have indicated a
capability in resolving them. Thus, agents can communicate in an undirected fashion,
with the blackboard acting as a broker. In the timetabling system, many activities
have to be done in order to construct a timetable that satisfies all constraints
simultaneously and optimize the timeslots and room as much as possible. By analyzing
the system, the roles are identified and each role is mapped to an agent type. The
agent should be able to perform the tasks associated with its role. In the timetabling
process, there are different roles:

(i) Lecturer
(ii) Students’ group

JTjun46D[04].pmd 10/08/2007, 03:3348

DYNAMIC TIMETABLING USING REACTIVE CONSTRAINT AGENTS 49

(iii) Administrators
(iv) Timetable designer

There are four basic domain agents that represent the described roles in the
timetabling system. For these agents to do their tasks and communicate with each
other, two other agents should be considered:

(v) Facilitator
(vi) Database agent

 Figure 2 shows the architecture of the reactive constraint agents. This architecture
consists of six types of agents:

(i) Facilitator: The OAA facilitator is a specialized server agent that is responsible
for coordinating agent communications. The facilitator is also used to provide a
global data store for its client agents, which allows them to adopt a blackboard
style of interaction.

(ii) Administrator agent: This agent is created to represent the faculty administrator
in the timetabling system. It has the authority to introduce a new change of the
resources or the subjects in the timetabling system.

(iii) Timetabler agent: This agent is responsible for repairing the timetable when it is
necessary. It can cooperate with the database agent, lecturer agents and students’
group agents to accomplish his task.

(iv) Database agent: This is a special agent that establishes a connection with the
timetabling database. It can provide the required data to the agent community.

(v) Lecturer agents: This is a personal agent to represent the lecturers in the timetabling
system. It stores the availability and the preferences of its user. This agent can ask
the timetabler agent to change his timetable. If there are available timeslots and
rooms, the timetabler agent can change and update the timetable of the
corresponding lecturer.

(vi) Students’ group agents: This is a personal agent to represent the student groups
in the timetabling system. It stores the availability and preferences of its user.
This agent can ask the timetabler agent to change his timetable. If there is available
timeslots-rooms and the related lecturer agent agree to change, the timetabler
agent can change and update the timetable of the corresponding lesson.

JTjun46D[04].pmd 10/08/2007, 03:3349

HANY ALASHWAL & SAFAAI DERIS50

4.0 AGENTS COMMUNICATION AND COORDINATION

Communication among agents takes place through the facilitator. It usually does this
by providing two main services: routing outgoing messages to the appropriate
destination and translating incoming messages for consumption by its agents.
Cooperation among the agents in the RCA is achieved via messages expressed in a
common language; ICL, and is normally structured around a three-part approach:
providers of services register capabilities specifications with a facilitator, requesters of
services construct goals and relay them to a facilitator, and facilitators coordinate the
efforts of the appropriate service providers in satisfying these goals.

When a new change is introduced, negotiation and cooperation among agents is
necessary to resolve the constraints violation and repairing the existing timetable. As
unexpected events or requests occur, negotiation and cooperation between agents is
necessary to resolve the constraints violation and repairing the modified timetable.
The agents interact with each other to recognize and categorize the conflict then
select and apply the appropriate action in such way that all the constraints remain
satisfied.

In the static timetabling problem, the constraints processing is done before the
generation of the timetable (i.e. it is done during the assigning process), however in the
dynamic problem, the constraint must be processed based on the current timetable.

Figure 2 The reactive constraint agents architecture

Facilitator

Timetable agent

Timetable
Constraint
updating

Constraint
solver

Administrator
agent

Invoke

User
interface

Students
group agent

Invoke Invoke

Invoke

Preferences

Lecturer
agent

Preferences

Database
agent

Timetabling
database

Invoke

JTjun46D[04].pmd 10/08/2007, 03:3350

DYNAMIC TIMETABLING USING REACTIVE CONSTRAINT AGENTS 51

This constraints processing can be regarded as real-time constraints processing. In
order to handle the new events or the requested changes, the RCA uses algorithms that
maintain the constraints in real time manner. In this problem, the variables are the
timeslot T(Si) and the room R(Si) for each lesson Si. The values to be assigned to
timeslot variables T(Si) are the total available timeslots in a week, tj, 1≤ j ≤ m. The
values assigned to a room variable R(Si) are the available rooms rk, 1≤ k ≤ p, where p
is the number of the available rooms.

A solution to a timetabling problem can be defined as assignment of time tj,
1≤ j ≤ m and room rk, 1≤ k ≤ p to lessons Si, 1≤ i ≤ n taught be lecturer L(Si) such that
all constraints C(Si) are satisfied. L(Si) and C(Si) are lecturers and constraints of lesson
Si, respectively.

The constraints referred to the relationship between two variables. The basic
constraints or relations are the mathematical relations, i.e., ≤, ≥, = and ≠. The types of
constraints that have to be satisfied in the timetabling process at Ibb University are as
follows:

(i) Lecturer time-clash constraints: A lecturer cannot teach more than one subject in
the same timeslot.

T(Si) ≠ T(Sj) if L(Si) = L(Sj) (1)

where T(Si) and T(Sj) are the timeslots for the subject Si and Sj respectively.
L(Si) and L(Sj) are the lecturers of the subjects Si and Sj respectively, i,
j = 1, 2, ..., n

(ii) Group time-clash constraints: A students group cannot attend more than one
subject at the same timeslot.

T(Si) ≠ T(Sj) if G(Si) = G(Sj) (2)

where G(Si) and G(Sj) are the students groups of the subjects Si and Sj respectively,
i, j = 1, 2, ..., n

(iii) Room time-clash constraints: Not more than one subject can be assigned to one
room at the same timeslots.

T(Si) ≠ T(Sj) if R(Si) = R(Sj) (3)

where R(Si) = R(Sj) are the classrooms of the subjects Si and Sj respectively,
i, j = 1, 2, ..., n

(iv) Room capacity constraints: The number of students for subject assigned to the
room must be less or equal to the capacity of the room.

N(Si) ≤ Z(R(Si)) (4)

JTjun46D[04].pmd 10/08/2007, 03:3451

HANY ALASHWAL & SAFAAI DERIS52

where N(Si) is the number of students of the subject Si and Z(R) is the capacity of
the room R, i, j = 1, 2, ..., n

Before making any change, we must make sure that this change will not lead to
violate any constraints. Therefore, we should check the lecturer time-clash constraints,
group time-clash constraint, room time-clash constraint and room capacity constraint
during the rescheduling process. The timetabler agent uses Get_Available algorithm
(Figure 3) to find all the available timeslots and rooms for a specific lesson. Indeed to
find the available timeslots and rooms, we must ensure that the change will not lead to
violate any constraints.

Algorithm Get_Available
Input : timetable[n,3] : array of int //the first column represents the lesson

id
//the second column represents the
 timeslot
//the third column represents the room
 id
//n is the number of lessons

subject[n] : array of subject_record
room[p] : array of room_record //p is the number of rooms
lessonId : int
no_of_timeslots: int
continue : boolean

Output : list_free_tm_rm
Begin

k := 1
continue := true
While k < = n And continue Do

If subject[k].lesson = lesson Then
continue = false;

Else k = k + 1
EndIf

EndWhile
lecturer_id = subject[k].lecturer
group_id = subject[k].group
no_students = subject[k].no_students
For timeslot = 1 To no_of_timeslots Do

If is_lecturer_free(t, lecturerID) And is_group_free(t, groupID) Then
For room = 1 To p Do

If is_room_free(t,r) And room_capacity(r) >= no_Students Then
list_free_tm_rm.Add(timeslot,room)

EndIf
EndFor

EndIf
EndFor

End

Figure 3 The Get_Available algorithm

JTjun46D[04].pmd 10/08/2007, 03:3452

DYNAMIC TIMETABLING USING REACTIVE CONSTRAINT AGENTS 53

5.0 RESULTS AND DISCUSSION

To validate the results, it is essential to implement a system prototype of the proposed
architecture to verify its properties. The prototype implementation is tested by modeling
the timetabling problem at University of Ibb - Yemen. In this system prototype, the
initial timetable was generated using the hybrid genetic algorithm which has been
introduced in [18]. The timetabling problem at University of Ibb - Yemen has been
modeled as a constraints satisfaction problem then solved using the hybrid genetic
algorithm. The basic information in the timetable planning data is shown in Table 1.
There are 129 subjects, 226 lessons and 16 rooms of various capacities. There are 18
timeslots (6 days a week with 3 timeslots per day of 3 hours per lesson).

The near-optimal timetable which was generated using the hybrid genetic algorithm
is used as an initial timetable for the dynamic timetabling system (Figure 4). See
Appendix A for the full timetable that includes all timeslots.

Figure 4 The initial near-optimal timetable

Table 1 Basic information of timetable planning data

Items Values

No. of subjects 129
No. of lessons 226
No. of teachers 41
No. of rooms 16
No. of timeslots 18

JTjun46D[04].pmd 10/08/2007, 03:3453

HANY ALASHWAL & SAFAAI DERIS54

For the system prototype implementation, we use Java programming language, and
for the database, we use Microsoft Access. As an example, we trace the scenario of
deleting a classroom which leads to reschedule all the lessons that are assigned to this
classroom. The following is an example of an operational demonstration scenario that
illustrates inter-agent communication (Figure 5).

Figure 5 Example of agent interaction

The
administrator
delete a room

Administrator agent Timetabler agent

Request for
timetable data

Request to delete room

Database agent

Return the timetable data

Reschedule all the
lesson in this room

Request to update
the TT

Return success

Return success

 When the administrator agent send a request for deleting a classroom, the timetabler
agent receive this request and try to satisfy it. In order to handle this request, the timetabler
agent need to cooperate with the database agent to get the sufficient timetabling data.
After the timetabler agent gets the sufficient timetabling data, it applies appropriate
action to reschedule all the lessons that were assigned in the deleted room. The new
timetable is feasible and has minor changes from the initial timetable (see Figure 6).
See Appendix A for the full new timetable that includes all timeslots. It also shows the
difference between the initial timetable and the new timetable after deleting Room 16.
For different scenarios that lead to changing timetable, see [19].

Unlike the previous interactive approach to cope with the dynamic timetabling
problem that has been reported in [11], the use of reactive constraints agents which
is introduced in this research, relieve human user from the responsibility of
interfacing, task planning, and execution monitoring. This has several benefits,

JTjun46D[04].pmd 10/08/2007, 03:3454

DYNAMIC TIMETABLING USING REACTIVE CONSTRAINT AGENTS 55

including reducing the complexity for users and agents, precipitating a more open
and dynamically extensible computing style, and encouraging reuse across applications
and domains.

Recently, [10] have used constraint-programming-based tools for solving dynamic
timetabling problems modelled as resource-constrained project scheduling problems.
Comparing this approach with the agent technology approach, the reactive constraint
agents’ architecture provides these advantages:

(i) Flexibility of the system.
(ii) Extensibility of the architecture, making it particularly easy to add and enhance

agents.
(iii) Modularity in which each agent is independent which eases development and

maintenance.
(iv) Ease of integration with other systems through the encapsulation of existing

problem-solving systems as agents.
(v) Reusability of the agents across multiple domains (e.g. utilizing existing agents

in different scheduling systems).
(vi) Adaptable to distributed environment.

Figure 6 The timetable after deleting Room 16

���
���

JTjun46D[04].pmd 10/08/2007, 03:3455

HANY ALASHWAL & SAFAAI DERIS56

The time performance of the system is shown in Table 2 which shows that the
agents can react to the events in the timetabling system in a real time manner. In
contrast, the manual modification of the initial timetable may take several days or
even weeks.

In addition to the advantages of using agents’ technology to handle the dynamic
timetabling problem, the proposed reactive constraint agents’ architecture can be
applied to other dynamic problems, like dynamic manufacturing scheduling problem,
meeting scheduling problem, and staff scheduling problem, with minor modification.
This is due to the modularity of the agents and the flexibility of the system.

6.0 CONCLUSION AND FUTURE WORK

In this paper, we have presented a reactive constraint agents architecture that is capable
of coping with the dynamic timetabling problem. The architecture has been
implemented and a prototype has been produced. The implementation has been tested
using real data from University of Ibb - Yemen. The experiments show that when a
change is required to be done on the existing timetable, the timetabler agent can
cooperate with other agents in the system to modify the timetable in such a way that all
the constraints are satisfied simultaneously. Future work is needed to fully test all type
of changes that can occur in the timetabling environment. Furthermore, the architecture
can be implemented in a distributed environment.

REFERENCES
[1] Tim, B. C. and J. H. Kingston. 1995. The Complexity of Timetable Construction Problems. In Proceedings

of the 1st International Conference on Practice and Theory of Automated Timetabling (PATAT 1995).
LNCS 1153. Springer-Verlag. 283-295.

[2] Miner, S., S. Elmohamed, and H. W. Yau. 1995. Optimizing Timetabling Solutions Using Graph Coloring.
NPAC REU Program, NPAC. Syracuse University. Syracuse, NY.

[3] Dimopoulou, M. and P. Miliotis. 2001. Theory and Methodology Implementation of a University Course
and Examination Timetabling System. European Journal of Operational Research. 130: 202-213.

[4] Melício, F., P. Caldeira, and A. Rosa. 1999. Solving the Timetabling Problem with Simulated Annealing.
Proc. First Int. Conf. on Enterprise Information Systems, ICEIS’ 99 - Setúbal. 272-279.

[5] Schaerf, A. 1996. Tabu Search Techniques for Large High-school Timetabling Problems. In Proceedings of
the Fourteenth National Conference on Artificial Intelligence. Portland, Oregon. 363-368.

Table 2 The processing time for agents’ tasks

Task Agent Time

Get available timeslots and rooms Timetabler agent 8 seconds
Reschedule all lessons in a room Timetabler agent 56 seconds
Add lesson Timetabler agent 6 seconds
Provide the timetable data Database agent 5 seconds
Update the timetable data Database agent 2 seconds

JTjun46D[04].pmd 10/08/2007, 03:3456

DYNAMIC TIMETABLING USING REACTIVE CONSTRAINT AGENTS 57

[6] Colorni, A., M. Dorigo, and V. Maniezzo. 1990. Genetic Algorithms: A New Approach to the Time Table
Problem. NATO-ASI School on Combinatorial Optimization. Ankara, Turkey.

[7] Azevedo, F. and P. Barahona. 1994. Timetabling in Constraint Logic Programming. In Proceedings of 2nd

World Congress on Expert Systems. Estoril, Portugal.
[8] El Sakkout, H. and M. Wallace. 2000. Probe Backtrack Search for Minimal Perturbation in Dynamic

Scheduling. CONSTRAINTS. 4(5): 359-388.
[9] Kocjan, W. 2002. Dynamic Scheduling: State of the Art Report. Technical Report T2002:28. SICS.
[10] Elkhyari, A., C. Guéret, and N. Jussien. 2003. Solving Dynamic Timetabling Problems as Dynamic Resource

Constrained Project Scheduling Problems Using New Constraint Programming Tools. In Practice and Theory
of Automated Timetabling, Selected Revised Papers. Springer-Verlag LNCS 2740. 39-59.

[11] Cambazard, H., F. Demazeau, N. Jussien, and P. David. 2004. Interactively Solving School Timetabling
Problems Using Extensions of Constraint Programming. Practice and Theory of Automated Timetabling V.
LNCS, Springer-Verlag. 190-207.

[12] Kouiss, K., H. Pierreval, and N. Mebarki. 1997. Using Multi-Agent Architecture in FMS for Dynamic
Scheduling. Journal of Intelligent Manufacturing. 8(1): 41-47.

[13] Gozzi, A., M. Paolucci, and A. Boccalatte. 2002. A Multi-Agent Approach to Support Dynamic Scheduling
Decisions. In Proc. of ISCC2002. Taormina, Italy. 983-988.

[14] Ouelhadj, D. 2003. Multi-agent based Scheduling. In the Workshop of Open Issues in Grid Scheduling.
National e-Science Centre, Edinburgh.

[15] Shen, W. 2002. Distributed Manufacturing Scheduling Using Intelligent Agents. IEEE Intelligent Systems.
17(1): 88-94.

[16] Eaton, P. S., E. C. Freuder, and R. J. Wallace. 1998. Constraints and Agents: Confronting Ignorance.
AI Magazine. 19(2): 51-65.

[17] Martin, D. L., A. J. Cheyer, and D. B. Moran. 1999. The Open Agent Architecture: A Framework for
Building Distributed Software Systems. Applied Artificial Intelligence. 13(1/2): 91-128.

[18] Deris, S., S. Omatu, H. Ohta, and P. Saad. 1999. Incorporating Constraint Propagation in Genetic Algorithm
for University Timetable Planning. Journal of the Engineering Application of Artificial Intelligence. 12: 241-
253.

[19] Alashwal, H. 2003. The Development of Reactive Constraint Agents for the Dynamic Timetabling Problem.
M.Sc. Thesis. Universiti Teknologi Malaysia.

JTjun46D[04].pmd 10/08/2007, 03:3457

HANY ALASHWAL & SAFAAI DERIS58

Figure A1a The initial timetable with the first timeslots

Figure A1b The new timetable with the first timeslots

��
��

APPENDIX A

JTjun46D[04].pmd 10/08/2007, 03:3458

DYNAMIC TIMETABLING USING REACTIVE CONSTRAINT AGENTS 59

Figure A2a The initial timetable with the middle timeslots

Figure A2b The new timetable with the middle timeslots

JTjun46D[04].pmd 10/08/2007, 03:3459

HANY ALASHWAL & SAFAAI DERIS60

Figure A3b The new timetable with the last timeslots

Figure A3a The initial timetable with the last timeslots

JTjun46D[04].pmd 10/08/2007, 03:3460

