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APPLICATION OF NEURAL NETWORK TECHNIQUE AND
ELECTRODYNAMIC SENSORS IN THE IDENTIFICATION OF

SOLID FLOW REGIMES

MOHD FUA’AD HJ RAHMAT1 & HAKILO AHMED SABIT2

Abstract. Imaging of industrial processes have been accomplished with better efficiency and
better control since the introduction of process tomography in several industries. This technique
enables a deeper look into the internal conditions of a process without invading the process. In
tomographic techniques, process information such as the distribution and velocity of the particles
conveying at a particular plane can be obtained by placing sensors around the periphery of the plane.
This paper is a continuation of a previous paper entitled Flow Regime Identification Using Neural
Network-based Electrodynamic Tomography System in Jurnal Teknologi 40(D). This paper presents
the results of sensors output in comparison to that of prediction models, concentration profiles and flow
regimes identification obtained from the system described in the previous paper.
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1.0 INTRODUCTION

The naturally occurring phenomenon of charge accumulation on dry solid particles as
they convey turbulently through a pipeline forms the basic principle of electrodynamic
tomography. The charges acquired by the solid particles are due to friction between
the particles during flow and abrasion on the conveyor wall [1]. Mechanisms such as
contact electrification, symmetric charge separation and triboelectrification are
responsible for the accumulation of charge on particles flow [2]. Particles in pneumatic
pipelines carry a certain amount of net electrostatic charge due to collision between
particles, impact between particles and pipe wall, and friction between particles and
air stream, with charge densities in the range of 10–7 – 10–3 C Kg–1 [3]. It is inherent
that materials being pneumatically conveyed become charged [4]. Detecting and
measuring the quantity of charge on the particles using an array of sensors provide
information about the solids distribution in the pipe cross-section which is the main
aim of tomographic systems.

Application of electrodynamic sensors for measurement of pneumatically conveying
materials has been reported by several researchers. Among the early works in this
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field were the design and analysis of electrodynamic transducers for velocity and
mass flow rate measurement of solid particles flow [2] and investigation of multisensing
of electrical charge in a cross-section, neural network based flow regimes identification,
cross correlation based velocity determination and spectral analysis of electrodynamic
signals [1]. Green et al. [6] developed an electrodynamic tomography system for a
gravity conveyor. They measured particles concentration profiles and velocity profiles
using discrete upstream and downstream arrays of sensors. They also applied linear
back projection (LBP) method and filtered back projection (FBP) methods to
reconstruct the tomograms of a particulate flow. They later combined velocity and
concentration profiles to generate mass flow rate profiles in the sensing zone. Rahmat
[7] analyzed linearity and frequency bandwidth of electrodynamic sensors signals and
effect of electrode size on sensitivity and spatial filtering for circular and rectangular
electrodes. Recently, Hezri [10] has accomplished real time velocity measurement of
solid flows using upstream and downstream arrays of electrodynamic sensors.
Measurements of solid particles’ concentration profiles, velocity profiles and mass
flow rate profiles alone do not completely satisfy economic, optimal and efficient
operation of pneumatic systems. For instance, efficiency of conveying and energy
consumption of pneumatic systems are determined by how the particles are distributed
through the course of flow [1]. This paper proposes flow regimes identification of
pneumatically conveyed solid particles utilizing neural network technique based on
the solid particles charge content information obtained directly from an array of
electrodynamic sensors. Resulting tomograms and sensors output are also discussed.
Figure 1 shows the block diagram of the proposed tomography system.

Figure 1 Block diagram of the proposed tomography system
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2.0 METHODOLOGY

2.1 Data Capture

Electrodynamic sensors are used to capture information about the quantity of charge
carried by the particles flowing through the conveyor at a particular plane. These are
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basically passive charge to voltage converters which comprises sensing electrode and
suitable charge detection circuit. The field is due to the charge on the moving solid
particles and hence the name electrodynamic. The input to the sensor is through the
electrode and is a physical quantity charge while the three outputs are electrical quantity.
Output 1 is an AC signal used for velocity measurement, Output 2 is used for spatial
filtering test and Output 3 is a DC averaged voltage output used for concentration
measurement and flow regimes identification. Output 3 is the signal of interest for the
proposed system highlighted below. The motivation for using electrodynamic sensors
as the sensing device in tomography arises from the fact that many flowing materials
pick up charge during transportation, primarily by virtue of friction of fine particles
amongst themselves and abrasion on the wall of the conveyor [5]. Electrodynamic
sensors are robust, of low cost and sensitive to low flow rates of dry solid materials [6].
The block diagram of an electrodynamic sensor is shown in Figure 2.

 
 

 
 

 
 

Figure 2 Block diagram of electrodynamic sensor
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2.2 Data Processing

Tomographic instrumentation offers non-invasive techniques and robust sensors to
solve industrial needs [7]. Flow information (i.e. charge density) captured by placing
an array of 16 electrodynamic sensors are manipulated using algorithms for tomographic
image reconstruction. Among the most common and simple tomographic image
reconstruction algorithms are linear back projection algorithm (LBPA) and filtered
back projection algorithm (FBPA). The sensors output signals are conditioned and
fed into a computer to reconstruct tomographic images of the cross-section being
interogated by the sensors. The tomographic images have the potential to provide
information on concentration, velocity, component volume flow rate and particle size
measurements [7].

2.3 Flow Regimes

The primary key to efficient design and flexible operation of many industrial
manufacturing processes is high quality information concerning their actual internal
states. Therefore, obtaining flow regime information certainly contributes to quality of
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process information and should be considered in tomography systems. Various factors
may be the cause of non-uniform particles distribution in pneumatic pipelines. The
distributions of solids in a pneumatic pipeline can be highly inhomogeneous, depending
upon the pipeline orientation, measurement position, phase loading, conveying air
velocity and properties of the solid material including particle size, moisture content,
cohesiveness and adhesiveness [3]. In this work, four types of flow regimes are created
artificially by placing different shaped baffles through the pipe; full flow, three-quarter
flow, half flow and quarter flow. Figure 3 shows the top view of the artificially generated
flow regimes.

The flow data obtained from the artificially created flow regimes are used in training
and testing a feedforward two layered back-propagation neural network to identify the
four flow regimes so that the trained network can identify naturally occurring flow
regimes later. This is a major step in obtaining concentration profiles for various flow
regimes using filtered back projection algorithm which is of more accuracy. The back-
propagation network here is trained to identify flow regimes based on direct data
from the sensors rather than data available after image processing. This is to avoid
time consuming image reconstruction process from delaying the identification process.
The direct-from sensor data based flow regimes identification would reduce the time
needed for decision-making when a control loop is involved [8]. There are 90 groups
of data sets at mass flow rates ranging from 26 grm/s to 204 grm/s out of which 45
groups are used in training the network and 45 groups in testing its performance.

2.4 Concentration Profiles

A concentration profile representing the solid materials distribution within the
measurement plane at various mass flow rates and flow regimes is very important in
the design of optimized solids flow meters. From the knowledge of material distribution
and movement, internal models of the process can be derived and used as an aid for
optimization of the process [9]. The concentration profiles presented in this paper are
generated using Visual C++ application program developed during this project and

 
 
 
 
 
 
 

Figure 3 Top view of artificially generated flow regimes
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the flow regimes identification procedures are accomplished using a Matlab software.
Concentration measurements are made using an array of sixteen electrodynamic
sensors. The output from the sensors is obtained by interfacing the sensors to a personal
computer (PC) via a Data Acquisition System (DAS1800). Each sensors output contains
156 samples obtained at a sampling frequency of 1 kHz. In this section, concentration
measurement results and flow regimes identification results based on a neural network
technique are presented.

3.0 RESULTS AND ANALYSIS

3.1 Comparison of Measured to Predicted Sensors Output

In this section, the measured average voltage output of the sensors for 10 different
types of mass flow rates (26 grm/s, 45 grm/s, 65 grm/s, 85 grm/s, 105 grm/s, 125 grm/s,
145 grm/s, 165 grm/s, 184 grm/s and 204 grm/s) and 4 different flow regimes (full flow,
three-quarter flow, half flow and quarter flow) are shown in Tables 1, 2, 3 and 4 along
with the corresponding predicted sensors outputs. The method of calculating a scaling
factor for estimating predicted output values is derived by Rahmat [7]. The above
specified mass flow rates interval are chosen for convenience, however, the lowest and
the highest rates are limited by the gravity flow rig hardwares.

The equation of measured outputs regression line is:

= +( ) 0.085 * 19.775measuredV flowrate (1)

The equations of predicted outputs regression line is:

( ) 0.085 * 19.958predictedV flowrate= + (2)

Table 1 Measured-to-predicted outputs difference for full flow case

No. Mass flow rate Measured output Predicted output |Difference|
 (grm/s)  (V ) (V )

1 26 22.9447 23.1424 0.1977
2 45 24.8195 25.0448 0.2253
3 65 25.1991 25.4296 0.2305
4 85 27.3198 27.5828 0.2630
5 105 27.5039 27.7620 0.2581
6 125 27.9086 28.1656 0.2570
7 145 29.5724 29.8472 0.2748
8 165 35.0465 35.3644 0.3179
9 184 35.2656 35.5884 0.3228

10 204 39.3410 39.6916 0.3506
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The regression lines of both measured and predicted outputs have correlation
coefficient of 0.939 and the gradient of both regression lines is 0.048 hence overlapping
of the regression lines is observed in Figure 5.

The equation of measured outputs regression line is:

( ) 0.048 * 34.12measuredV flowrate= + (3)

The equation of predicted outputs regression line is:

( ) 0.048 * 34.117predictedV flowrate= +
(4)

Figure 4 Sum of measured sensors output and predicted outputs along with their linear regression
lines plotted against mass flow rate
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Table 2 Measured-to-predicted outputs difference for three-quarter flow case

No. Mass flow rate Measured output Predicted output |Difference|
 (grm/s)  (V ) (V )

1 26 32.8559 32.8538 0.0021
2 45 37.5337 37.5278 0.0059
3 65 38.1805 38.1804 0.0001
4 85 38.3484 38.3523 0.0039
5 105 39.8649 39.8646 0.0003
6 125 40.5349 40.5347 0.0002
7 145 40.9150 40.9130 0.0020
8 165 41.8988 41.8921 0.0067
9 184 42.4663 42.4592 0.0071

10 204 43.3965 43.4043 0.0078
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The regression lines of both measured and predicted outputs as shown in Figure 6
have correlation coefficient of 0.978 and the gradients of both regression lines is 0.151.
Therefore, the two regression lines overlap as shown in Figure 6.

The equation of measured outputs regression line is:

( ) 0.151* 5.753measuredV flowrate= + (5)

The equation of predicted outputs regression line is:

( ) 0.151* 5.754predictedV flowrate= + (6)

Figure 5 Sum of measured sensors output and predicted outputs along with their linear regression
lines plotted against mass flow rate

Table 3 Measured-to-predicted outputs difference for half flow case

No. Flow rate Measured output Predicted output |Difference|
 (g/s)  (V ) (V )

1 26 12.7040 12.7034 0.0006
2 45 12.7168 12.7156 0.0012
3 65 15.9674 15.9586 0.0088
4 85 16.9735 16.9744 0.0009
5 105 18.5901 18.5897 0.0004
6 125 21.6577 21.6497 0.0080
7 145 28.1516 28.1477 0.0039
8 165 31.5338 31.5255 0.0083
9 184 34.1651 34.1569 0.0082

10 204 38.0971 38.0855 0.0116
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The equation of measured outputs regression line is:

( ) 0.042 * 11.083measuredV flowrate= +
(7)

The equation of predicted outputs regression line is:

( ) 0.055 * 14.584predictedV flowrate= + (8)

Figure 6 Sum of measured sensors output and predicted outputs along with their linear regression
lines plotted against mass flow rate

Table 4 Measured-to-predicted outputs difference for quarter flow case

No. Mass flow rate Measured output Predicted output |Difference|
 (grm/s)  (V ) (V )

1 26 12.4939 16.4443 3.9504
2 45 13.0583 17.1892 4.1309
3 65 14.0137 18.4453 4.4316
4 85 14.0978 18.5557 4.4579
5 105 15.4078 20.2807 4.8729
6 125 15.8258 20.8331 5.0073
7 145 17.1155 22.5305 5.4150
8 165 18.2871 24.1384 5.8513
9 184 18.9018 24.8768 5.9750

10 204 19.7672 26.0153 6.2481
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3.2  Flow Regimes Identification

Results of flow regime recognition by a neural network (feed-forward back-propagation)
are discussed below. The training patterns for this network are measured sensors
output signals obtained by inserting various shaped baffles (Section 4, Figure 3) to
artificially create different flow regimes. The training patterns represent full flow, three-
quarter flow, half flow and quarter flow data at a range of flow rates. Sample training
patterns are shown in Figures 8 and 9.

Figure 7 Sum of measured sensors output and predicted outputs along with their linear regression
lines plotted against mass flow rate
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 Figure 8(a) Training patterns at mass flow rate of 26 grm/s
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Figure 8(b) Training patterns at mass flow rate of 65 grm/s

Figure 9(a) Training patterns at mass flow rate of 165 grm/s

Figure 9(b) Training patterns at mass flow rate of 204 grm/s
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3.3 Concentration Profiles

The concentration profiles of the solid materials flow at various flow rates and flow
regimes are obtained from the average outputs of electrodynamic sensors. Linear back
projection and filtered back projection image reconstruction algorithms are used to
obtain these profiles. All the figures in this section are generated by a Visual C++
program where darkness is related to lower solids presense.

4.0 DISCUSSION

The sums of the total voltages obtained from the experiments are closely related to the
predicted values generally. However, higher voltage differences between measured
and predicted values are observed in the quarter flow case which suggests that the
quarter flow prediction model requires modification for better prediction.

A feed-forward back-propagation network with fast converging learning function
which has been developed in a Matlab environment has been successfully used in

Figure 10 The performance curve of trainlm (Levenberg-Marquardt training algorithm)
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Table 5 Successful identification of flow regimes

Flow No. of Successfull Correct
regime data set identification  identification (%)

Full flow 10 9 90

Three-quarter flow 10 8 80

Half flow 10 9 90

Quarter flow 10 10 100
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Figure 11 Concentration profiles for full flow at 45 g/s (LBPA) and (FBPA)

Figure 13 Concentration profiles for full flow at 165 g/s (FBPA) and (FBPA)

Figure 12 Concentration profiles for full flow at 125 g/s (LBPA) and (FBPA)
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Figure 14 Concentration profiles for three-quarter flow at 45 g/s (LBPA) and (FBPA)

Figure 15 Concentration profiles for three-quarter flow at 125 g/s (LBPA) and (FBPA)

  

  

Figure 16 Concentration profiles for half flow at 45 g/s (LBPA) and (FBPA)
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Figure 17 Concentration profiles for half flow at 125 g/s (LBPA) and (FBPA)

  

Figure 18 Concentration profiles for quarter flow at 45 g/s (LBPA) and (FBPA)

Figure 19 Concentration profiles for quarter flow at 204 g/s (LBPA) and (FBPA)
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flow regime identification. The learning process of the back-propagation network is
repeated for four different learning algorithms. For this particular problem, the
Levenberg-Marquardt training algorithm (trainlm) is preferred as it converges in fewer
number of iterations and has not been affected by overleaning which is undesirable
drawback of many neural networks.

The concentration profiles of Figures 11 to 19 show the distribution of plastic bead
particles at a cross-section of the conveyor pipe. For all the flow rates, the linear back
projection profiles show lower pixels values towards the center of the pipe. This reveals
the electrodynamic sensors’ near field dominance character. However, the concentration
profiles generated using filtered back projection algorithm overcame this limitation
by applying filter masks to the linear back projection profiles. This is possible certainly
after identifying the flow regimes using back-propagation neural network technique.
Therefore, the profiles obtained from filtered back projection are more accurate
representations of the particles concentration distribution.

REFERENCES
[1] Bidin, A. R. 1993. Electrodynamic Sensors and Neural Networks for Electrical Charge Tomography. Ph.D.

Thesis. Sheffield Hallam University.
[2] Shackleton, M. E. 1982. Electrodynamic Transducers for Gas/Solids Flow Measurement. M. Phil Thesis.

University of Bradford.
[3] Yan, Y. 1996. Mass Flow Measurement of Bulk Solids in Pneumatic Pipelines. Meas. Sci. Technol Journal.

7: 1687-1706.
[4] Gregory, I. A. 1987. Shot Velocity Measurement Using Electrodynamic Transducers. Ph.D. Thesis. University

of Manchester Institute of Science and Technology.
[5] Cross, J. 1987. Electrostatics; Principles, Problems & Applications. Adam Hilger.
[6] Green, R. G., M. F. Rahmat, K. Evans, A. Goude, M. Henry, and J. A. R. Stone. 1997. Concentration

Profiles of Dry Powders in a Gravity Conveyor Using an Electrodynamic Tomography System. Meas, Sci.
Technol Journal. 8: 192-197.

[7] Rahmat, M. F. 1996. Instrumentation of Particle Conveying Using Electrical Charge Tomography. Ph.D.
Thesis. Sheffield Hallam University.

[8] Yan, H., Y. H. Liu, and C. T. Liu. 2004. Identification of Flow Regimes Using Back-Propagation Networks
Trained on Simulated Data Based on a Capacitance Tomography Sensor. Meas. Sci. Technol Journal.
15: 432-436.

[9] Azrita, A. 2002. Mass Flow Visualization of Solid Particles in Pneumatic Pipelines Using Electrodynamic
Tomography System. M.E. Thesis. Universiti Teknologi Malaysia.

[10] Hezri, M. F. R. 2002. Real Time Velocity Profile Generation of Powders Conveying Using Electrical Charge
Tomography. M.E. Thesis. Universiti Teknologi Malaysia.

[11] Hakilo, A. S. and M. F. Rahmat. 2004. Flow Regime Identification Using Neural Network-Based Electrodynamic
Tomography System. Jurnal Teknologi. 40(D): 109-118.

JTjun46D[06].pmd 10/08/2007, 03:3591


