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Abstract 

 
Hulu Kelang is a region in Malaysia which is very susceptible to landslides. From 1990 to 2011, a total of 

28 major landslide events had been reported in this area. This paper evaluates and compares the probability-

frequency ratio (FR), statistical index (Wi), and weighting factor (Wf), used for assessing landslide 

susceptibility in the study area. Eleven landslide influencing factors were considered in the analyses. These 

factors included lithology, land cover, curvature, slope inclination, slope aspect, drainage density, elevation, 

distance to lake and stream, distance to road and trenches and two indices (the stream power index (SPI) 
and the topographic wetness index (TWI)) found in the area. The accuracy of the maps produced from the 

three models was verified using a receiver operating characteristics (ROC). The verification results 

indicated that the probability-frequency ratio (FR) model which was developed quantitatively based on 
probabilistic analysis of spatial distribution of historical landslide events was capable of producing a more 

reliable landslide susceptibility map in this study area compared to its other counterparts. About 89% of the 

landslide locations have been predicted accurately by using the FR map.  
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1.0 INTRODUCTION 

 

Landslide susceptibility is considered as the susceptibility of the 

terrain to defined slope failures. A landslide hazard map explains 

regions probably to have landslides in the future. Landslide losses 

in all parts of the world are likely to increase continuously, as 

growing population, combined with the need to protect natural 

and agricultural areas, presses human developments ever closer 

to unstable slopes. The only way to reduce such losses is to 

develop a better understanding of landslide processes and more 

reliable techniques of predicting their potential effects and 

designing remedial or protective measures. Hence, the 

identification of landslide-prone regions is essential for carrying 

out quicker and safer mitigation programs, as well as future 

planning of the area.  

  Nilsen et al. (1979) developed the earliest methods used to 

assess the risk of landslides by laying qualitative morphological 

and geological slope-characteristics over landslide inventories.  

State of the art research pertaining to landslide susceptibility 

mapping has witnessed the development of sophisticated 

assessment techniques that have included inventory, bivariate, 

multivariate, probabilistic frequency ratio, logistics regression, 

fuzzy logic, such as the analytical hierarchy process (AHP), 

probabilistic frequency and artificial neural network analysis 

(Van-Westen, 1997; Dai et al., 2001; Lee and Min, 2001; 

Ercanoglu and Gokceoglu, 2004; Lee, 2005; Pradhan et al., 2006; 

Dahal et al., 2008; Sarkar et al., 2008, Sarkar and Anbalagan 

2008; Dwikorita et al., 2011 ).  

  Quantitative models use a numerical assessment of the 

relationship between slope instability and other controlling 

factors. Two examples of a quantitative method are deterministic 

and statistical methods, which were frequently used in previous 

landslide susceptibility studies (Ercanoglu and Gokceoglu, 2002; 

Suzen and Doyuran, 2004; Ercanoglu and Gokceoglu, 2004; 

Yesilnacar and Topal, 2005; Kanungo et al. 2006; García-

Rodríguez et al. 2008; Nefeslioglu et al. 2008; Nandi and 

Shakoor, 2009; Dongyeob et al., 2010; Pradhan, 2012 etc.). 

Deterministic approaches are mainly based on factor of safety 

(FOS) computation (Refice and Capolongo 2002; Zhou et al. 

2003), while statistic methods focus on historical correlations 

between landslide-controlling parameters and the distribution of 

landslide events. 

  The goal of this study was to compare and evaluate 

quantitative methods including a probabilistic frequency ratio 

(FR) model, a statistical index (Wi) and weighting factor (Wf) 

techniques for their ability to assess the probabilistic frequency 

landslide susceptibility of a case study. The probabilistic 

frequency ratio draws on data regarding the distribution and 

effectiveness of factors that causes landslides to determine the 

correlation between regions and these factors (Lee, 2005).  

Bivariate methods combine factor maps with landslide 
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distribution maps.  Weighted values are found for each factor or 

class of factors (Oztekin and Topal, 2005; Conoscenti et al., 2008; 

Nandi and Shakoor, 2009). Finally, the landslide susceptibility 

maps created as a result of this process are subjected to a 

comprehensive validation process. The models are validated 

using either data for landslides that was used to create the map or 

independent landslide information can be used (Chung and 

Fabbri, 2003; Guzzetti et al., 2005, 2006). This study used 

landslide data that was divided into two groups, a modeling group 

(70% of the total landslide events) and a prediction group (30% 

of the total landslide events). The modeling group was used as a 

training set for the development of landslide susceptibility maps 

that built on the three models discussed earlier (probabilistic 

frequency ratio, Wi, and Wf models) while the prediction group 

was used for verification purposes. 

 

1.1  Background Of The Study Area 

 

Hulu Kelang is known as one of the most landslide susceptible 

areas in Malaysia. From 1990 to 2011, a total of 28 major 

landslide events had been reported in this area (Lee et al., 2013). 

Hulu Kelang is in Kuala Lumpur, the capital city of Malaysia and 

is located between latitude 101º 44′ 13" and 101º47′ 51"N and 

Longitude 3º 09′ 25" and 3º 13′ 45" E as presented in Figure 1. 

  Soil investigations from previous studies revealed that the 

area rests on coarse-grained granite (Ali, 2000). Weathering of 

the granite produced sandy clay residual soil of approximately 15 

to 30 m thick at areas of high elevation. The residual soil layer 

becomes thinner on the mid-course of slopes (Lee et al., 2009), 

followed by exposed granite at the low elevation areas. Landslide 

slip planes commonly develop in residual soil layers.  

 

 

 
 

Figure 1  Location of Hulu Kelang area, Serdang, Malaysia (Saadatkhah et al. 2014) 

 

 

2.0  MATERIAL AND METHODS 

 

2.1  Layers Of Thematic Data 

 

This study began with data from past landslides found in 

previous reports, it is essential to document the distribution 

of landslides in an area, to investigate the extent, sample and 

types of landslide, and to determine landslide susceptibility, 

hazard, and vulnerability. According to the data sources 

from the Ampang Jaya Municipal Council (MPAJ) and the 

Slope Engineering Branch of Public Works Department 

Malaysia (PWD), a total of 28 major historical landslide 

events have been reported in the Hulu Kelang area from 

1990 to 2011 as shown in Figure 2.  

  The lithological settings in the study area can generally 

be classified into three main types, namely granite, phyllite 

and schist, and limestone. The analysis of landslide 

distribution and lithological units performed in this area 

revealed that 72.73% of the historical landslide events in 

Hulu Kelang occurred on highly or completely weathered 

granitic rock formation, while the remaining 27.27% of the 

landslides were located on phyllite and schist rock as 

presented in Table 1. 
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Figure 2  Landslide Inventory Map of Hulu Kelang Area 

 

  

 

Land covers could act as a buffer to limit rainwater 

infiltration into soil slopes by evapo-transpiration from the 

canopies (interception loss) and, to a lesser extent, absorbed 

by plants (Rutter et al., 1971, 1975). Under the classification 

system, eight types of land covers were identified, i.e. 

primary forest, secondary jungle, rubber, sundry tree 

cultivation, grassland, cleared land, developed area, and 

lake. Historical slope failures were mainly scattered on the 

rubber and grassland areas. These land covers with no 

canopy allow for more rainfall infiltration, which increases 

soil pore-water pressure and increases the potential for 

landslides (Table 1). 

  Slope inclination is one of the factors used to controls 

areal hydraulic continuity, and consequently factor of safety 

of slopes. In this study, six categories of slopes were used 

(0-10o, 10-20 o, 20-30 o, 20-40 o, 40-50° and 50-90 o). Based 

on the distributions of the historical landslide events, it was 

found that 98.8% of the landslides occurred on slopes 

between 0 and 40° (Table 1).  

 

 
Table 1  Frequency ratio, Wi and Wf values of the data layers 

 

Factor Class 
% of total 

area 

% of landslide 

area 

Frequency 

ratio 
Wi* Wf** 

Lithology 

Granite 54.08 44.08 1.345 0.296 

46.52 Phyllite-schist 42.51 16.53 0.642 -0.444 
Limestone 3.41 0.00 0.000 0 

Landcover 

Primary forest 31.61 7.35 0.383 -0.958 

100 

Secondary forest 1.88 2.20 1.934 0.661 

Rubber 14.29 21.67 2.502 0.917 

Sundry tree cultivation 1 0.00 0.000 0 

Grassland 2.87 3.67 2.112 0.748 

Cleared land 4.64 2.57 0.914 -0.089 

Developed area 43.25 23.14 0.883 -0.125 

Lake 0.47 0.00 0.000 0 

Slope Inclination 0-10 56.69 32.32 0.941 -0.061 41.89 

file:///D:/PHD%20Thesis/Progress%20Reports/Semester%204/Downloads/Table-figure-charts.docx
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10-20 15.16 15.43 1.679 0.518 

20-30 22.01 9.92 0.743 -0.296 
30-40 5.54 2.20 0.656 -0.421 

40-50 0.49 0.73 2.474 0 

50-90 0.11 0.00 0.000 0 

Slope Aspect 

North 5.77 6.61 1.891 0 

91.20 

Northeast 5.08 2.57 0.835 -0.181 

East 7.5 7.35 1.616 0.480 

Southeast 8.75 0.37 0.069 0 

South 8.08 7.71 1.575 0.455 

Southwest 8.75 3.67 0.693 -0.367 

West 10.77 1.47 0.225 0 

Northwest 7.93 8.45 1.758 0.564 

Flat 37.37 22.41 0.989 -0.011 

Plan Curvature 

Concave 34.87 23.88 1.130 0.122 

51.72 Flat 30.89 17.63 0.942 -0.060 
Convex 34.24 19.10 0.920 -0.083 

Elevation 

0-100 48.24 34.89 1.194 0.177 

71.52 
100-200 31.92 25.71 1.329 0.284 

200-300 17.99 0.00 0.000 0 

300-425 1.85 0.00 0.000 0 

Distance to the roads 

and trenches 

0-25 10.13 11.75 1.915 0.650 

68.01 

25-50 13.22 19.83 2.476 0.907 

50-75 7.22 1.47 0.336 -1.091 
75-100 5.82 2.94 0.833 -0.182 

100-125 5.04 6.61 2.165 0.772 

125< 58.57 18.00 0.507 -0.679 

Distance to lake and 

streams 

0-25 12.29 6.61 0.888 -0.119 

0.01 

25-50 22.11 9.92 0.740 -0.301 

50-75 12.51 8.45 1.114 0 

75-100 8.74 3.31 0.624 -0.471 

100-150 10.96 2.20 0.332 -1.103 

150-200 5.86 2.57 0.724 -0.323 

200-250 5.26 7.35 2.304 0.836 

250< 22.26 16.53 1.225 0.203 

Drainage density 

0-0.0025 44.22 11.75 0.439 -0.824 

88.86 

0.0025-0.005 8.69 0.00 0.000 0 
0.005-0.0075 8.88 2.94 0.546 -0.605 

0.0075-0.01 14.17 19.10 2.224 0.799 

0.01-0.0125 10.89 15.06 2.282 0.825 
0.0125_0.015 9.74 11.75 1.991 0.689 

0.015-0.03 0.62 0.00 0.000 0 

0.03-0.135 2.78 0.00 0.000 0 

Topographic wetness 

index (TWI) 

6-9.32 0.00 0.00 0.858 0 

93.19 

9.32-11.04 0.62 0.00 0.000 0 

11.04-12.76 7.58 4.85 0.000 -0.447 

12.76-14.48 11.61 24.24 0.640 0.737 

14.48-16.2 3.09 6.06 2.089 0.674 

16.2-17.9 0.59 0.61 1.962 0.025 

17.9-19.3 0.59 0.00 1.025 0 

Stream power index 

(SPI) 

6-8.74 1.15 0.61 0.000 -0.642 

87.63 

8.74-10.44 0.94 0.00 0.858 0 

10.44-12.15 3.08 6.06 0.526 0.677 

12.15-13.85 11.88 13.94 0.000 0.160 

13.85-15.56 7.53 14.55 1.968 0.658 

15.56-16.6 0.51 0.00 1.173 0 

 

Note: *Wi was calculated from equation 2 

       **Wf was calculated from equation 3 

 

 

Slope aspect as another factors used, influences intensity of 

rainfalls received on a sloping surface and weathering 

process in a soil slope (Cevik and Topal, 2003; Lee, 2005; 

Galli et al., 2008). Nine different regions were investigated 

in the present study: flat area (−1°), north (337.5°–22.5°), 

northeast (22.5°–67.5°), east (67.5°–112.5°), southeast 

(112.5°–157.5°), south (157.5°–202.5°), southwest (202.5°–

247.5°), west (247.5°–292.5°), and northwest (292.5°–

337.5°). Slopes facing the same direction as the monsoons 

(northeast and southwest) are more prone to landslides. 

Observations from the landslide inventory map revealed that 
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about 48.5% of the landslides occurred on the slopes inclined 

to these directions (Table 1). 

  The term curvature as one of the factors used in the 

study area defines the morphology of topography. Curved 

land normally increases the moisture content of soil, keeps 

the soil saturated, and consequently increases the 

susceptibility of slopes to erosion and landslides. In this 

study, three zones were identified based on their plan 

curvatures: positive curvature (convex), negative curvature 

(concave), and zero curvature representing flat surface. The 

analysis of landslide distribution density showed that 40% of 

the landslides located in the concave zone, while 31% of the 

landslides occurred in the convex zone (Table 1). 

  The elevation factor influences the surface of the terrain 

and other topographical characteristics such as profile 

curvatures, the angle and aspect of a slope, and the 

determination of catchment areas and planning 

concerns(Wilson and Gallant, 2000; Gruber and Peckham, 

2008) in the study area. The area investigated in this study 

ranged in elevation from 0 to 425m above sea level. Most of 

the landslide distribution densities occurred at 0–100 m 

(57.6%) and 100-200 m (42.4%) (Table 1).  

  Distance to road construction activities such as soil 

excavation, imposing of surcharge load, cut slope, 

embankment construction, and removal of vegetation cover 

may cause failures to the slopes which are otherwise stable. 

Six regions were identified in this study based on their 

distances from roadways (0-25 m, 25-50 m, 50-75 m, 75-100 

m, 100-125 m, and less than 125 m). About 86% of past 

landslides occurred 0 –50 m from a roadway (Table 1). 

  Several studies have shown that susceptibility to 

landslides could be affected by preferential flows in soil 

(Tsukamoto et al., 1982; Sidle et al., 2000, 2006; Uchida et 

al., 2002) and rock masses (Montgomery et al., 1997; Uchida 

et al., 2002 ; Sidle and Chigira, 2004). In this area, distance 

to stream as one of the factors used represented at eight 

buffer zones (0–25 m, 25–50 m, 50–75 m, 75–100 m, 100-

150 m, 150-200 m, 200-250 m, and less than 250 m) based 

on their proximity to where are identified as shown in Table 

1. Most of the historical landslides were located between 0 

and 75 m from a stream. 

  Drainage density is defined as the proportion of the 

total length of the water flow to the total area of the drainage 

basin. Drainage networks also as one of factor used in this 

study were extracted directly from the digital elevation map 

(DEM). Eight drainage buffer zones were produced to define 

the extent of slope instability caused by streams.  These 

drainage buffer zones were: Zone A (0-0.0025m-1), Zone B 

(0.0025-0.005m-1), Zone C (0.005-0.0075m-1), Zone D 

(0.0075-0.01m-1), Zone E (0.01-0.0125m-1), Zone F (0.0125-

0.015m-1), Zone G (0.015-0.03m-1), and Zone H (0.03-

0.135m-1). The drainage density analyses showed that all the 

historical landslides occurred within the density range of 0–

0.015 m-1 (Table 1). 

  The Compound Topographical Index is also known as 

the Topographic Moisture Index and Saturation Conditions 

or the Topographic Wetness Index (TWI) that used in this 

study. The TWI is a ratio of contributing catchment area to 

slope inclination (Wilson and Gallant, 2000). The study area 

was divided into eight different classes of TWI ranging from 

0 to 19.3. Table 1 shows that 35.76% of the historical 

landslides occurred within the TWI range of 11.04-17.9. 

The Stream Power Index (SPI) is a way of measuring the 

power of surface water to erode surfaces based on the 

hypotheses that discharge (q) is proportional to the specific 

catchment area (As). The SPI value is governed by two 

parameters: viscosity of the land slope and steepness of the 

terrain. Seven SPI classes were used in this study and they 

ranged from 0 to 16.6. The SPI analysis showed that 57% of 

the historical landslides occurred within the SPI range of 

10.44–15.56 (Table 1). 

 

 

3.0  ANALYSIS OF LANDSLIDE SUSCEPTIBILITY  

 

In this study, an analysis of the susceptibility to landslides 

was carried out using the probabilistic frequency ratio, and 

bivariate (Wi and Wf) models. Prior to the analyses, the 

factors affecting landslides in Hulu Kelang area were 

identified. In this study, the DEM was derived using 

photogrammetric techniques. A series of aerial photographs 

from 1966 to 2003 were provided by department of 

surveying and mapping Malaysia (JUPEM). In particular, 

aerial photographs from the 2003 flight were sufficient to 

cover the study areas. The cloud of photographic points 

extracted from aerial photographs data was therefore 

imported into a GIS environment. In addition to the points 

obtained using the photogrammetric analysis, the contour 

lines of the Regional Topographical Map at a 1: 10000 scale 

is extracted in standard topographic Ampang and Kampung 

Kelang Gates Baharu maps. The pixel dimensions used was 

30×30m pixel for the landslide and factor maps. Landslide 

regions were defined using the landslide inventory map and 

satellite images.  

 

3.1  Probabilistic Frequency Ratio Model 

 

A probabilistic frequency ratio model used GIS techniques 

to quantitatively construct a landslide susceptibility map. 

The probabilistic frequency ratio method is based on the 

distribution of landslides and the parameters related to 

landslides so that the correlation between the location of the 

landslide and the parameters for the area can be represented 

(Pradhan et al., 2010). The first step was to calculate the 

frequency ratio for each parameter based on its relationship 

to landslides, as shown in Table 1. Next, the frequency ratio 

for the sub-criteria of each parameter was calculated.  These 

ratios were used to find the landslide susceptibility index 

(LSI) (refer to Eq. 1) (Lee and Pradhan, 2007). 

 

𝐿𝑆𝐼 =  𝐹𝑟1 +  𝐹𝑟2 +  𝐹𝑟3 + … +  𝐹𝑟𝑛             [1] 

 

Where, Fr is the rating for each parameter. According to the 

probabilistic frequency ratio method, an average LSI has a 

value of unity. A value of > 1 indicates that there is a strong 

relationship between the landslide and the parameter being 

investigated (Akgun et al., 2007). 

 

3 2  Bivariate Statistics Method 

 

This study used a statistical bivariate model based on Wi 

(Van-Westen, 1997) and Wf approaches, which are widely 

considered to be a simple and quantitative method of 

susceptibility mapping (Cevik and Topal, 2003; Lan et al., 

file:///D:/PHD%20Thesis/Progress%20Reports/Semester%204/Downloads/Table-figure-charts.docx
file:///D:/PHD%20Thesis/Progress%20Reports/Semester%204/Downloads/Table-figure-charts.docx
file:///D:/PHD%20Thesis/Progress%20Reports/Semester%204/Downloads/Table-figure-charts.docx
file:///D:/PHD%20Thesis/Progress%20Reports/Semester%204/Downloads/Table-figure-charts.docx
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2004; Wang and Sassa, 2005; Thiery et al., 2007; Dahal et 

al., 2008), were used to compute the distribution of 

landslides for each factor class. These density values can be 

standardized by correlating them to the overall density in an 

area (Oztekin and Topal, 2005). In this study, the Wi for each 

class was computed using the formula proposed by 

vanWesten (1997): 

 

   

𝑊𝑖 = 𝐼𝑛
𝐷𝑒𝑛𝑠𝑐𝑙𝑎𝑠𝑠

𝐷𝑒𝑛𝑠𝑚𝑎𝑝
 = 𝐼𝑛

𝑁𝑝𝑖𝑥 (𝑆𝑖)

𝑁𝑝𝑖𝑥(𝑁𝑖)
𝑆𝑁𝑝𝑖𝑥(𝑆𝑖)

𝑆𝑁𝑝𝑖𝑥(𝑁𝑖)

  [2] 

 

 

Where, Wi is the weight given to a determined class of 

parameter.  Densclass refers to the landslide density within 

the class of parameter and the Densmap is the landslide 

density for the whole map.  Npix(Si) is the number of pixels 

that contain a determined parameter class of landslide,  

Npix(Ni) is the total number of pixels for a determined 

parameter class, SNpix(Si) is the total number of pixels in all 

the landslides, and SNpix(Ni) it the total number of all pixels.   

  Table 1 shows the Wi value of each computed attribute. 

All the layers were laid on top of one another to create a 

susceptibility map.  The Wi susceptibility map was separated 

into equal classes labeled very low, low, moderate, high, 

very high, and critical susceptibility. However, these maps 

indicate that each factor map had an equal effect on 

landslides, which is not an accurate reflection of what really 

happens (Oztekin and Topal, 2005). To resolve this issue, a 

Wf was produced for each factor shown on a map. The first 

step in this process is to define the Wi value of each pixel 

using the Wi method. In the next step, the values for all the 

pixels within the landslide zones for each layer were added 

together. The results were stretched using the maximum and 

minimum for all layers (Cevik and Topal, 2003).The 

weighting factors that ranged from 1 to 100 for each layer 

were defined using the formula shown below: 

 

𝑊𝑓 =  
(𝑇𝑊𝑖𝑣𝑎𝑙𝑢𝑒)−(𝑀𝑖𝑛𝑇𝑊𝑖𝑣𝑎𝑙𝑢𝑒)

(𝑀𝑎𝑥𝑇𝑊𝑖𝑣𝑎𝑙𝑢𝑒)−(𝑀𝑖𝑛𝑇𝑊𝑖𝑣𝑎𝑙𝑢𝑒)
 x 100   [3] 

 

  

Where, Wf is the calculated weighting factor for each layer 

and TWivalue is the total weighting index value of the cells in 

the landslide bodies for each layer.  The minimum total 

weighting index value in selected layers is represented using 

MinTWivalue and the Maximum total weighting index value 

within selected layers is calculated using  MaxTWivalue.  

In this analysis, the Wf value was multiplied by the Wi 

value.  All the factors shown on the map were added together 

to determine final landslide susceptibility.  

 

 

4.0  RESULTS AND DISCUSSION 

 

The landslide susceptibility maps produced from the three 

prescribed approaches, i.e.  probabilistic frequency ratio, 

statistical index (Wi), and weighting factor (Wf) models 

yielded six susceptibility classes, namely very low (the 

lowest susceptibility), low, moderate, high, very high, and 

critical (the highest class) susceptibility.  

 

4.1  Prediction of Landslide Susceptibility Maps 

 

Different weight factors and ratios were used to evaluate the 

spatial relationship between landslides and landslide 

conditioning factors. The frequency ratio for probabilistic 

frequency ratio model, Wi and Wf values for statistical index 

and weighting factor models are tabulated in Tables 2, 3, and 

4, respectively. In general, these assigned weight factor / 

ratio / index showed good agreement with the historical 

landslide data and fundamental theories of slope stability. 

Based on the weight factor / ratio / index assigned for each 

landslide influencing factors, the landslide susceptibility 

maps produced using probabilistic frequency ratio, Wi, and 

Wf models are presented in Figures 3 to 5, respectively.  

 
 

Table 2  Summary of FR model results in landslide simulations 
 

FR Landslide site (a) 
% of landslide site (c) 

=a/b 
% of predicted area (d) LRclass (e) =c/d % of LRclass = e/f 

Very low 0 0 4.34 0.00 0.00 
Low 28 11 43.22 0.26 0.72 

Moderate 99 40 37.35 1.07 2.93 

High 83 33 12.89 2.60 7.11 
Very high 27 11 2.02 5.38 14.75 

Critical 12 5 0.18 27.19 74.51 

Sum 249 (b) 100.000 100.00 36.49(f) 100.00 

 

Table 3  Summary of Wi model results in landslide simulations 

 

Wi Landslide site (a) 
% of landslide site (c) 

=a/b 
% of predicted area (d) LRclass (e) =c/d % of LRclass = e/f 

Very low 4 2 7.30 0.22 1.16 

Low 82 33 56.83 0.58 3.05 
Moderate 80 32 30.77 1.05 5.50 

High 75 30 4.67 6.47 33.96 

Very high 8 3 0.30 10.73 56.31 
Critical 0 0 0.13 0 0 

Sum 249 (b) 100.000 100.00 19.06 (f) 100.00 

file:///D:/PHD%20Thesis/Progress%20Reports/Semester%204/Downloads/Table-figure-charts.docx
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Table 4  Summary of Wf model results in landslide simulations 

 

Wf Landslide site (a) % of landslide site (c) =a/b % of predicted area (d) LRclass (e) =c/d % of LRclass = e/f 

Very low 11 4.42 21 0.21 1.67 

Low 103 41.37 55.27 0.75 5.94 

Moderate 83 33.33 21.32 1.56 12.41 
High 52 20.88 2.07 10.08 80 

Very high 0 0 0.23 0 0 

Critical 0 0 0.10 0 0 

Sum 249 (b) 100 100 12.6(f) 100 

 

 

 

 
 
Figure 3  Landslide susceptibility map produced from probabilistic-

frequency ratio (FR) model 

 

 

 
 

Figure 4  Landslide susceptibility map produced from statistical 
index (Wi) model 

 

 

 

 
 

Figure 5  Landslide susceptibility map produced from weighting 
factor (Wf) model 

 

One main objective of this study was to evaluate the spatial 

predictability of landslide events in Hulu Kelang area, using 

the landslide susceptibility maps produced from 

probabilistic frequency ratio, Wi, and Wf models. The 

success of landslide prediction model has been typically 

evaluated by comparing locations of measured landslides 

with the predicted results. Therefore, the landslide ratio of 

each predicted hazard class (landslide ratio for each 

predicted hazard class) was employed for evaluating the 

performance of the landslide model. Landslide ratio for each 

predicted hazard class (LRclass) was based on the ratio of 

landslide sites contained in each hazard class, in relation to 

the total number of actual landslide sites, according to the 

predicted percentage of area in each class of hazard category. 

 

 

𝐿𝑅𝑐𝑙𝑎𝑠𝑠 =

 
% 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑠𝑖𝑡𝑒𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 ℎ𝑎𝑧𝑎𝑟𝑑

% 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒 𝑎𝑟𝑒𝑎𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 ℎ𝑎𝑧𝑎𝑟𝑑
  [4] 

 

 

Note that in the numerator, the number of landslide sites, 

instead of the number of landslide cells, is used. The 

performance value derived from LRclass enables 

consideration of predicted stable areas as well as predicted 
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unstable areas, and thus substantially reduces the over-

prediction of landslide potential. Unlike the numerator, the 

number of predicted and total cells is used in denominator. 

The numerator, also, is the same as the SR (Success Ratio) 

index. Tables 2, 3, and 4 show that 15.09%, 5.1%, and 2.4% 

of the area were classified as unstable (Hazardous area ≥ 

High), while that 49%, 33%, and 20.88% of the actual 

landslides were correctly localized within this predicted 

unstable areas, respectively. FR model represented the 

LRclass ≥ High about 35.17 by calculating the % of LRclass 

equal to 96.37% (Figure 6a). The % of LRclass ≥ High of Wi 

model presented about 90.27% by calculating the LRclass 

equal to 17.2 (Figure 6b). And Wf model represented the 

LRclass ≥ High about 10.08 by calculating the % of LRclass 

equal to 80% (Figure 6c).  If a landslide happens, then 

predicted unstable area (Hazardous area ≥ High) has 96.37% 

chance of including the landslide using Fr model and have 

90.27% and 80% chances using Wi, Wf models, 

respectively. These results indicated that the frequency ratio 

model was the landslide susceptibility mapping method 

preferred for use in this study as the resultant map contained 

a relatively low percentage of active landslide zones in the 

very low and low susceptibility classes, and a high 

percentage of active landslide zones in the high, very high 

and critical susceptibility zones. 

 

 

 
 

Figure 6a  Percent of LRclass using FR model 

 

 

 
 

Figure 6b  Percent of LRclass using Wi model 

 

 

 

 
 

Figure 6c  Percent of LRclass using Wf model 

 

4.2  Receiver Operating Characteristics (ROC) 

 

The receiver operating characteristics (ROC) is employed in 

this study to determine what areas might be affected by 

future landslides. A ROC curve is an effective way to 

indicate the quality of probabilistic and deterministic 

findings and forecast systems (Swets, 1988). In this study a 

ROC curve test was used as a cross-validation method. First, 

the historical landslide events were divided into two groups. 

The modeling group, which represented approximately 70% 

of the total landslides, was used as a training set to construct 

the susceptibility maps.  The remaining 30% of landslides 

were used for prediction testing. The regions that were not 

affected by landslides were used as prediction group during 

the training phase.  The regions affected by landslides were 

used in the training set labeled ‘‘areas prone to landslides.’’ 

The ROC curve was used to evaluate the prediction database 

and the region under the curve (AUC) was computed 

(Pradhan and Lee, 2010; Pradhan et al., 2010; Pourghasemi 
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et al., 2012). The AUC indicates how well a forecast system 

performed by determining how accurate the model was and 

if it was threshold independent (Yesilnacar and Topal, 

2005). The result of sensitivity analysis indicated that the 

probabilistic frequency ratio model (Figure 7) was more 

efficient in terms of its predictions when compared to the 

other models used in this study. 

  The AUC for the landslide susceptibility map produced 

using the probabilistic frequency ratio model was 0.8154 

(prediction accuracy = 81.5%) as determined by the ROC 

plot assessment.  The AUC for the Wi and Wf models ranged 

from 0.7475 to 0.7305, respectively. With respect to 

predicted unstable pixels (Fig. 8), the AUC for the 

probabilistic frequency ratio was also the highest (0.7904), 

followed by the Wi model (0.7441), and the Wf model 

(0.7246) (Table 6). From the ROC curve test, it can be 

concluded that the probabilistic frequency ratio model was 

the best modeling technique used in this study.  

 

Figure 7  Success rate curves for the three landslide susceptibility 

maps  

 
 

Figure 8  Prediction rate curves for the three landslide susceptibility 
maps 

 
Table 6 Comparison of prediction rate curves for the three landslide susceptibility maps 

 

Model AUC Prediction 

Probability-Frequency ratio 0.7904 GOOD 

Statistical index (Wi) 0.7441 GOOD 

weighting factor (Wf) 0.7246 GOOD 

5.0  CONCLUSION 

 

This paper compared and evaluated three different models 

used to assess landslide susceptibility in the Hulu Kelang 

area of Kuala Lumpur, Malaysia. Three landslide 

susceptibility maps were produced and their reliabilities 

were verified by the receiver operating characteristics 

(ROC) of the susceptibility levels and active landslide zones. 

  LRclass is shown the predicted unstable area 

(Hazardous area ≥ High) has 96.37% chance of including the 

landslide using Fr model and have 90.27% and 80% chances 

using Wi, Wf models, respectively. Therefore, the landslide 

susceptibility map using the frequency ratio model preferred 

for use in this study as the resultant map contained a 

relatively low percentage of active landslide zones in the 

very low and low susceptibility classes, and a high 

percentage of active landslide zones in the high, very high 

and critical susceptibility zones. 

  The prediction rate of ROC curves for the susceptibility 

maps indicated that the probabilistic frequency ratio model 

had the highest prediction accuracy (>81%), while the Wf 

model showed the least prediction accuracy (73.05%). The 

verification results from the frequency ratio plots also 

indicated that the probabilistic frequency ratio method was a 

preferred landslide susceptibility assessment model for this 

area of study.  

file:///D:/PHD%20Thesis/Progress%20Reports/Semester%204/Downloads/Table-figure-charts.docx
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