
 
74:1 (2015) 153–157 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |  

 

Full paper 
Jurnal 

Teknologi 

A Rectification Strategy In Genetic Algorithms for Academic Timetabling 
Problem 
 
Chong-Keat, Teoha*, Wibowo, Antonib, Ngadiman, Salihina 

 
aDept. of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia 
bDept. of Decision Sciences, School of Quantitative Sciences, Universiti Utara Malaysia, 06010, Sintok, Kedah, Malaysia 
 
*Corresponding author: ckteoh3@live.utm.my 
 

 

Article history 

 

Received :28 May 2014 
Received in revised form : 

7 January 2015 

Accepted :15 March 2015 
 

Graphical abstract 

 

 
 

 
 

Abstract 

 

The university course timetabling problem is both an NP-hard and NP-complete scheduling problem. The 
nature of the problem concerns with the assignment of lecturers-courses to available teaching space in an 

academic institution and may take on the form of high school timetabling, examination timetabling or 

university course timetabling. In this paper, the authors attempt to construct a feasible timetable for a faculty 
department in a local university in Malaysia which at the present moment; the scheduling task is performed 

manually by an academic registrar. The feasible timetable is constructed by means of Genetic Algorithm, 

embedded with a rectification strategy which transforms infeasible timetables into feasible timetables.   
 

Keywords: Academic timetabling problem; genetic algorithm; rectification strategy 

 

Abstrak 

 

Masalah penjadualan kursus universiti merupakan sebuah masalah penjadualan NP-hard dan NP-complete. 
Secara ringkasnya, objektif masalah ini adalah untuk menugaskan pensyarah yang mengajar ke sumber 

yang sedia ada seperti dewan kuliah. Masalah penjadualan ini juga boleh mengambil bentuk penjadualan 

sekolah menengah, penjadualan peperiksaan serta penjadualan kursus universiti. Dalam artikel ini, para 
penyelidik akan membina sebuah jadual waktu yang boleh dilaksanakan untuk sebuah jabatan fakulti 

universiti tempatan di Malaysia disebabkan tugas penjadualan masih dilakukan secara bertulis oleh 

pendaftar akademik pada masa kini. Jadual waktu tersebut dibina menggunakan prinsip Algoritma Genetik, 
yang ditambah dengan strategi pembetulan yang mengubahkan jadual waktu yang silap ke jadual waktu 

yang boleh dilaksanakan.   

 
Kata kunci: Masalah penjadualan akademik; algoritma genetik; strategi pembetulan  

 

© 2015 Penerbit UTM Press. All rights reserved. 

 

 

 

 

 
1.0  INTRODUCTION 

 

The university course timetabling problem (UCTP) is often treated 

as a NP-hard and NP-complete problem, implying that there is no 

known polynomial time algorithm which can guarantee the finding 

of the best solution1-2. Basically, the objective of the UCTP is to 

assign a set of resources which often comprises entities such as 

lecturers, courses and rooms to available timeslots whilst 

respecting the stipulated constraints of the institution. Since the 

problem is typically considered large-sized in nature, possesses a 

substantial amount of variables and constricted by numerous 

constraints, it is also referred to as a constraint satisfaction 

problem3. Even till present day, one of the main issues in many 

institutions is that the scheduling of courses is still performed 

manually by an academic registrar. Constructing a master timetable 

can be a tedious, daunting and time consuming process and may be 

subjected to a high percentage of anomalies.  

In a scheduling environment, more often or not there are specific 

constraints to adhere by. Similarly, in UCTP, there are two types of 

constraints to adhere by which are hard constraints and soft 

constraints. The former (hard) constraints are vital and mandatory 

constraints in which they cannot be violated under any 

circumstances at all, lest the timetable is rendered infeasible. On 

the other hand, the latter (soft) constraints, such as the 

unavailability of lecturers are secondary constraints which can be 

violated, but preferably not since the satisfaction of these 

constraints enhances the quality of the timetable. In the literature, 

the UCTP has been reported to be successfully solved through 

various metaheuristic algorithms such as Genetic Algorithm4-7, Ant 

Colony Optimization8-9, Particle Swarm Optimization10-12, 

Simulated Annealing13-15 and Tabu Search16-17 to name a few. The 

rest of the paper is organized as such: Section 2 presents the model 

definition, section 3 details the research methodology and section 

4 presents the results of the experiments. 

 



154                                                      Chong-Keat, Teoh et al. / Jurnal Teknologi (Sciences & Engineering) 74:1 (2015), 153–157 

 

 

2.0  MODEL DEFINITION 

 

The model addressed in this paper is adopted from a faculty 

department in a local university in Malaysia. This section outlines 

the background and properties of the dataset, the various entities 

involved in the problem formulation, the constraints which govern 

the problem and the mathematical formulation of the problem. 

 

2.1  Properties of Dataset 

 

In the university's academic system, the intake of fresh 

undergraduates takes place only once a year, which means that at 

any time, students are always in their odd (first, third, fifth) or even 

(second, fourth, sixth) semesters (Note that the industrial training 

semester is omitted in this model). In this work, we attempt to 

schedule the courses for students who are in their first, second and 

third year for five various departments in a faculty in a local 

university in Malaysia. To model the data in a distinct manner, the 

dataset is separated into three respective problem instances and 

consists of 4 entities namely course, day, timeslot and room – The 

first instance consists of courses and the amount of lectures for year 

1 students, the second instance consists of year 1 and year 2 

students and the third dataset consists of year 1, year 2 and year 3 

students.  

 
Course (c): The data used in this experiment are the total courses 

which cater to all students of the faculty, ranging from the 1st – 3rd 

year. The data structure tailored in such a way that the lecturers are 

bound together with the course entity, thus ensuring that they do 

not conflict with one another.  

 

Day (d): There are 5 working days for the staffs which is from 

Monday till Friday. 

 

Timeslot (t): The duration for a timeslot is 50 minutes and there 

are 9 usable timeslots every day except for Friday, which has only 

8 timeslots due to reasons of religious prayers. In total, there are 44 

usable timeslots for the entire week from 8.00am until 5.00pm. 

 

Room (r): There is a total of 17 usable rooms, all fit to be used for 

lecturing activities, which include computing activities. 

 

  The aforementioned entities are then assigned to specific sets 

of events such that they do not conflict with one another according 

to the constraints as follow: 

 

H1 - All lectures belonging to a course must be scheduled to distinct 

periods. A violation occurs if a lecture is not scheduled or 

two lectures are scheduled simultaneously (Hard Constraint) 

H2 - Lectures belonging to a course cannot be scheduled at the same 

room simultaneously. A violation occurs if two lectures are 

scheduled simultaneously and additional violation 

constitutes additional violation score (Hard Constraint) 

H3 - Lectures cannot be scheduled in between 1.00pm-1.50pm 

(period 6) from Monday till Thursday (Hard Constraint) 

H4  -  Lectures cannot be scheduled in between 1.00pm-2.50pm 

(period 6-7) on Friday (Hard Constraint) 

S1   -  Lectures should not be scheduled at the last period of the day 

(Soft Constraint) 
  

  The aforementioned constraints delimitate the search space 

and govern the search direction of the algorithms. The objective is 

therefore to locate the feasible solution location with the least 

objective function value. 

 

 

2.2  Model Formulation 

 

The value of the objective function is synonymous to the fitness 

value of a solution which connotes the quality of the solution. The 

model formulation in this work is adapted from the previous works 

reported in the literature.18 In this paper, the objective function is 

calculated over all candidate solutions as the summation of violated 

constraints for all courses multiplied with the weights attached to 

both the hard and soft constraints respectively. In this paper, the 

hard constraint weight is denoted as α and given the value 10; soft 

constraint weight denoted as β and given the value 1. The model 

formulation is described in Equation (1). 

 

𝑀𝑖𝑛 𝐺(𝑥) =  𝛼 ∗ ∑ ∑ 𝑓(𝐴𝑖
ℎ)

𝑖𝑐

+  𝛽 ∗ ∑ ∑ 𝑓(𝐴𝑖
𝑠)

𝑖𝑐

 (1) 

 

s.t. 

 (ci, ri, di, ti) and (cj, dj, tj, rj) 

𝐴𝐻2 : (di=dj) and (ti=tj) and (ri=rj) 

𝐴𝐻3 : [(di=1) or (di=2) or (di=3) or (di=4)] and (ti=6) 

𝐴𝐻4  : (di=5) and [(ti =6) or (ti =7)] 

𝐴𝑆1  : [(di=1) or (di=2) or (di=3) or (di=4) or (di=5)] and (ti=9) 

 

where: 

G(x) = G(α,β, 𝐴𝑖
ℎ, 𝐴𝑖

𝑠) = fitness function value, 

α = 1= hard constraint weight, 

β = 0.5 = soft constraint weight, 

ci = course corresponding to the ith course, 

di = day corresponding to the ith course, 

ri = room corresponding to the ith course,  

𝐴𝑖
ℎ = hard constraint corresponding to the the ith course, 

𝐴𝑖
𝑠 = soft constraint corresponding to the the ith course, 

i = 1, 2, ..., n.  

nc = number of courses. 

 

  Through the representation of the chromosome as the 

candidate solution, the first constraint (H1) is naturally satisfied and 

therefore excluded from the mathematical formulation. 

 

 

3.0  SOLUTION METHODOLOGY 

 

This section describes the proposed algorithm in detail to solve the 

university course timetabling problem. It illustrates the 

chromosome representation, the effect of the genetic operators 

toward the search procedure and also the rectification strategy 

employed to transmute the infeasible solutions into feasible 

solutions.  

 

3.1  Chromosome Representation 

 

In Genetic Algorithm, the chromosomes are the fundamental 

exploring agents which form the population of the algorithm. A 

well represented chromosome is essential in aiding the exploration 

of the search space and might enhance the efficiency of the search 

space exploration. The chromosome, x in this work consists of a set 

of resources such as lecture, room, day and timeslot as given in 

Equation (2). 
 

xi = li,ri,di,ti / i=1:nc 

 

where nc is the number of courses  

 

(2) 



155                                                      Chong-Keat, Teoh et al. / Jurnal Teknologi (Sciences & Engineering) 74:1 (2015), 153–157 

 

 

 
 

Figure 1  Population illustration and the encoding of chromosome 

 

 

  A matrix representation of size var*nc represents the 

chromosome where var is the number of decision variables used 

and takes the value of 4 in this case. Figure 1 illustrates the 

representation and encoding of the chromosome. 

 

3.2  Crossover and Mutation 

 

The process of taking two best chromosomes (known as parents) 

and producing an offspring from them is known as crossover. The 

intention of crossover is to retain the best traits of the parents and 

to ensure that they are being passed down to the offspring.19 A 

single-point crossover which swaps a set of rows amongst the two 

chromosomes is often used and is employed in this implementation 

as well. The mutation operator is often regarded as vital as it 

prevents the algorithm to stagnate in local optima. It functions by 

randomly selecting a set of rows, usually performed with a few 

rows to avoid jeopardizing the entire chromosome, and transmutes 

the entity values with respect to its permissible value and domain. 

In this case, the entity values represented are the number of courses, 

rooms, day and timeslots. The crossover rate and mutation rate in 

this experiment take the value of 0.5 and 0.1 respectively. 

 
3.3  Rectification Strategy 

 

Infeasible solutions are commonly referred to as solutions whose 

resources are in conflict and can be dealt with in three distinct 

manner: (a) Discard them; (b) Heavily penalize them or (c) Rectify 

them.20-21 In this paper, the rectification strategy is employed to 

transform infeasible candidate solutions into valid solutions. The 

reason for employing the rectification strategy is to immediately 

rectify the conflicting resources directly, rather than having the 

algorithm to explore the entire search space all over again, resulting 

in a significantly improved computational time. The rectification 

strategy is outlined in Figure 2. 
 

 

 

Figure 2  Rectification strategy for infeasible candidate solutions 

 

 

  In the example illustrated in Figure 2, both courses c0001 and 

c0002 are assigned to day 1 and period 1 which violates constraint 

H1. The rectification process is then invoked with the initialization 

of the construction of a dummy matrix which lists every available 

period for every available room. Next, the algorithm performs a 

random swap by simply swapping one of the conflicting rows with 

any random content of the matrix, resulting in a feasible timetable 

instantly. In the example, the first row (course c0001) is selected to 

swap content with the dummy matrix, resulting in a conflict free 

timetable. At each iteration, the dummy matrix is reconstructed to 

eliminate the risk of error. The construction of the dummy matrix 

is crucial as the information it contains ensure that the resulting 

candidate solution is always conflict-free. 

 

Chromosome 1 

Chromosome 2 

... 

... 

... 

Chromosome 

popsize 

Population 

Chromosomes 

Course Room Day Time 

c0001 1 1 1 

… … … … 

… … … … 
nc 17 5 9 

 

Step 1: Identify the conflict among resources 

l r d t 

c0001 A 1 1 

c0002 A 1 1 

c0003 B 4 2 
c0004 C 5 4 

 
Step 2: Construct a dummy matrix of available timeslot for 

each room 

r d t 

A 1 2 

A 1 3 

A 1 4 

A 1 5 

A 1 6 

A 2 1 

A 2 2 

… … … 

A 5 [Last day of the 
week] 

6 [Last timeslot of the 
day] 

 

Step 3: Randomly swap the infeasible row with contents from 

the dummy matrix 

l r d t 

c0001 A 1 1 

c0002 A 1 1 

c0003 B 4 2 
c0004 C 5 4 

 

r d t 

A 1 2 

A 1 3 

A 1 4 

A 1 5 

A 1 6 

A 2 1 

A 2 2 

… … … 

A 5 [Last day of the 

week] 

6 [Last timeslot of the 

day] 

 

Step 4: Resultant solution is a feasible timetable 

l r d t 

c0001 A 1 2 

c0002 A 1 1 

c0003 B 4 2 

c0004 C 5 4 

 

swap 



156                                                      Chong-Keat, Teoh et al. / Jurnal Teknologi (Sciences & Engineering) 74:1 (2015), 153–157 

 

 

4.0  RESULTS AND DISCUSSION 

 

The results of the experiment are presented in this section. The 

algorithm is set to terminate when the fitness value of the candidate 

solution reaches zero or when the evaluation time exceeds fifteen 

minutes (whichever comes first). Table 1 tabulates the results 

which comprise the fitness scores which are measured in terms of 

constraint violation, running time which is recorded in seconds and 

the number of iterations lapsed to reach feasibility. Figure 3, Figure 

4 and Figure 5 collectively illustrate the progression of the fitness 

score to highlight the stark contrast between the two algorithms. 

 
Table 1  Fitness score and computational time results for the experiment 

 

 

 
Figure 3  Fitness progression for the first problem instance 

 

 
Figure 4  Fitness progression for the second problem instance 

 

 
Figure 5  Fitness progression for the third problem instance 

 

 

  It is evident that the algorithm which features the rectification 

strategy is superior compared to the one without. In all the tested 

instances, the rectification strategy outperforms in terms of fitness 

score, evaluation time and the number of iteration as well. It can be 

observed that the computational time for the algorithm without the 

rectification strategy spans two times longer and the number of 

iterations required to achieve feasibility marks a great difference as 

compared to the algorithm with the embedded rectification 

strategy. This demonstrates the superiority of the rectification 

strategy in solving a highly-constrained problem. It should also be 

noted that the normal algorithm could not find a feasible timetable 

for the third problem instance, which attempts to schedule courses 

for students in their first, second and third year. 

 

 

5.0  CONCLUSION 

 

This paper presents a Genetic Algorithm which features a 

rectification strategy to solve a university course timetabling 

problem for a faculty department in a local university in Malaysia. 

The algorithm is implemented on three distinct problem instances 

and based on the experimental results; the algorithm which features 

the rectification strategy outperforms the normal Genetic 

Algorithm in terms of fitness score and records a significantly 

reduced computational time and number of iterations.  For future 

works, the authors would consider to implement the algorithm on a 

more complex and constrained dataset and compare it with other 

best-known metaheuristic algorithms. 

 

 

Acknowledgement 

 

The authors would like to express their gratitude to Universiti 

Teknologi Malaysia and Ministry of Higher Education (MOHE) 

Malaysia for the myBrain scholarship and Research University 

Grant (RUG), number Q.J130000.2528.07H84. In addition, the 

authors would also like to thank the Research Management Center 

(RMC) – UTM for supporting this research project. 

 

 

References 
 

[1] Bardadym, V. A. 1996. Practice and Theory of Automated Timetabling, 

Lecture Notes in Computer Science. Computer-Aided School and 

University Timetabling: The New Wave. 1153: 22–45. 
[2]  Ismayilova, N. a., Sağir, M., & Gasimov, R. N. 2007. A Multiobjective 

Faculty–Course–Time Slot Assignment Problem with Preferences. 

Mathematical and Computer Modelling. 46(7–8): 1017–1029. 

[3]  Teoh, C. K., Wibowo, A., & Ngadiman, M. S. 2013. Review of State of 

the Art for Metaheuristic Techniques in Academic Scheduling Problems. 

Artificial Intelligence Review. doi:10.1007/s10462-013-9399-6. 

0

1

2

3

4

5

6

7

1 2 3 4

F
it

n
es

s 
V

al
u

e

Iteration

w/o rectification

with

rectification

0

5

10

15

20

25

1 4 7 101316192225283134

F
it

n
es

s 
V

al
u

e

Iteration

w/o rectification

with

rectification

0

10

20

30

40

50

60

70

80

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1

3

1
2

9

1
4

5

1
6

1

F
it

n
es

s 
V

al
u

e

Iteration

w/o rectification

with

rectification

Proble

m 

Instanc
e 

w/o 

Rectification Strategy 

With  

Rectification Strategy 

Scor

e 

Time(s

) 

Iteratio

n 

Scor

e 

Time(s

) 

Iteratio

n 
1 0 3.43 5 0 2.92 2 

2 0 95.39 35 0 32.08 7 

3 9 900.42 172 0 143.11 19 



157                                                      Chong-Keat, Teoh et al. / Jurnal Teknologi (Sciences & Engineering) 74:1 (2015), 153–157 

 

 

[4] Agustín-Blas, L. E., Salcedo-Sanz, S., Ortiz-García, E. G., Portilla-

Figueras, A., & Pérez-Bellido, Á. M. 2009. A Hybrid Grouping Genetic 

Algorithm for Assigning Students to Preferred Laboratory Groups. Expert 

Systems with Applications. 36(3, Part 2): 7234–7241. 

[5] Jain, A., Jain, S., & Chande, P. K. 2010. Formulation of Genetic Algorithm 
to Generate Good Quality Course Timetable. 1(3): 248–251. 

[6] Kohshori, M., & Abadeh, M. 2012. Hybrid Genetic Algorithms for 

University Course Timetabling. International Journal of Computer 

Science. 9(2): 446–455. 

[7] Suyanto, S. 2010. An Informed Genetic Algorithm for University Course 

and Student Timetabling Problems. Proceedings of the 10th international 

conference on Artificial Intelligence and Soft Computing. 229–236. 
[8] Lutuksin, T., & Pongcharoen, P. 2010. Best-Worst Ant Colony System 

Parameter Investigation by Using Experimental Design and Analysis for 

Course Timetabling Problem. 2010 Second International Conference on 

Computer and Network Technology. 467–471. 

[9] Thepphakorn, T., Pongcharoen, P., & Hicks, C. 2014. An ant colony based 

timetabling tool. International Journal of Production Economics. 149(0): 

131–144.  

[10] Qarouni-Fard, D., Najafi-Ardabili, A., & Moeinzadeh, M.H. 2007. Finding 
Feasible Timetables with Particle Swarm Optimization. Innovations in 

Information Technology, 2007. IIT  ’07. 4th International Conference on. 

387–391.  

[11] Shiau, D.F. 2011. A hybrid particle swarm optimization for a university 

course scheduling problem with flexible preferences. Expert Systems with 

Applications. 38(1) : 235–248. 

[12]  Tassopoulos, I. X., & Beligiannis, G. N. 2012. Solving Effectively the 

School Timetabling Problem Using Particle Swarm Optimization. Expert 

Systems with Applications. 39(5): 6029–6040. 

[13]  Aycan, E., & Ayav, T. 2009. Solving the Course Scheduling Problem 

Using Simulated Annealing. Advance Computing Conference. 6–7. 
[14] Frausto-solís, J., Alonso-pecina, F., & Mora-vargas, J. 2008. An Efficient 

Simulated Annealing Algorithm for Feasible Solutions of Course 

Timetabling. 675–685. 

[15] Zhang, D., Liu, Y., M’Hallah, R., & Leung, S. C. H. H. 2010. A Simulated 

Annealing with a New Neighborhood Structure Based Algorithm for High 

School Timetabling Problems. European Journal of Operational 

Research. 203(3): 550–558. 
[16] Alvarez-Valdes, R., Crespo, E., & Tamarit, J. M. 2002. Design and 

Implementation of a Course Scheduling System Using Tabu Search. 

European Journal of Operational Research. 137(3): 512–523. 

[17] Lü, Z.P., & Hao, J.K. 2010. Adaptive Tabu Search for Course Timetabling. 

European Journal of Operational Research. 200(1) : 235–244. 

[18] Othman, M. 2010. Universal Tool for University Course Schedule Using 

Genetic Algorithm. International Journal. 2(6): 1–6. 

[19] Sivanandam, S., & Deepa, S. 2007. Introduction to Genetic Algorithms. 
Springer. 15–60 

[20] Pongcharoen, P., Promtet, W., Yenradee, P., & Hicks, C. 2008. Stochastic 

Optimisation Timetabling Tool for University Course Scheduling. 

International Journal of Production Economics. 112(2): 903–918. 

[21] Blum, C., & Roli, A. 2003. Metaheuristics in Combinatorial             

Optimization: Overview and Conceptual Comparison. ACM Computing 

Surveys [CSUR]. 1–4. 

 
 




