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Abstract 

 

Developing an efficient algorithm for automated Magnetic Resonance Imaging (MRI) segmentation to 

characterize tumor abnormalities in an accurate and reproducible manner is ever demanding. This paper 
presents an overview of the recent development and challenges of the energy minimizing active 

contour segmentation model called snake for the MRI. This model is successfully used in contour 

detection for object recognition, computer vision and graphics as well as biomedical image processing 
including X-ray, MRI and Ultrasound images. Snakes being deformable well-defined curves in the 

image domain can move under the influence of internal forces and external forces are subsequently 

derived from the image data. We underscore a critical appraisal of the current status of semi-automated 
and automated methods for the segmentation of MR images with important issues and terminologies. 

Advantages and disadvantages of various segmentation methods with salient features and their 

relevancies are also cited. 
 

Keywords: Deformable models; active contour; snake; magnetic resonance imaging; image 

segmentation 
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1.0  INTRODUCTION 

 

Despite the availability of different treatment options for tumor, 

MRI and Computer Tomography (CT) scanning are the two most 

common techniques used to confirm the presence of tumor and to 

identify the location for treatment. The choices in tumor treatment 

options including surgery, radiation therapy and chemotherapy 

often depend on the size, type and the grade of tumors. It also 

depends on whether or not the tumor is triggering pressure on 

vital parts of the human body. The possible side effects on the 

patients overall health caused by the spreading of the tumor to 

other parts of the Central Nervous System (CNS) or body are 

important considerations when deciding the treatment options [1].  

  Precise detection of the type of abnormality is highly 

essential for treatment planning in order to minimize diagnostic 

errors. The accuracy can be improved by using Computer Aided 

Diagnosis (CAD) systems. CAD provides an output as a second 

opinion to assist radiologists’ image interpretation and thereby 

reduces image reading time. This significantly improves the 

accuracy and consistency of radiological diagnosis. Nonetheless, 

segmentation of the tumors image is very tricky task. Firstly, the 

variation in shapes and sizes of tumor types are quite complex [2]. 

Secondly, the occurrence of tumors at different locations in the 

human body with different image intensities is the other factor 

that makes automated tumor image detection and segmentation 

extremely difficult [1].  

  Image segmentation being a process of identifying and 

grouping image features with similar properties often solves 

problems via statistical classification, thresholding, edge 

detection, region detection or any combination of these methods. 

These techniques are developed on the basis of region, threshold, 

edge or connectivity [3]. The region based methods rely on the 

intensity of regular patterns within a cluster (region) of 

surrounding pixels. The main goal of the segmentation algorithm 

is to group regions rooted in their functional or anatomical 

characters and the performance depends on the local pixel 

information. It is helpful when the intensity levels of the objects 

fall straight outside of the range of levels in the background. 

Ignoring the spatial information of an image may cause problem 

at blurred boundary regions. The edge-based techniques depend 

on the discontinuation in image values between distinct regions 

and the main focus of segmentation algorithm here is to 

accurately detect the boundary that separates these regions. 

Conversely, the connectivity-based techniques depend on a curve 

known as active contour which is formed through several control 

points on the image. 

  Active models or deformable models are extensively used in 

image segmentations and objects tracking [4-13]. Despite many 

modified version of active models the active contours and active 

surfaces are the most popular one [4, 5, 14-17]. The active models 

deform the image domain to capture the desired features and 

minimize energy functional subjected to certain constraints. 

Generally, the energy function consists of an internal energy 

stopping the smoothness and tautness of the model and an 

external energy that attracts the elastic model to the features of 

interest. Kass et al. introduced the celebrated active contour 

model popularly known as “Snakes” or “energy-minimizing 

curves” [4]. 

  This paper focuses on the importance and potential of snake 

models for precise detection and diagnosis of tumors through MRI 

mailto:m_altamimi75@yahoo.com


102                                     Mohammed Sabbih & Ghazali Sulong / Jurnal Teknologi (Sciences & Engineering) 69:2(2014), 101–106 

 

 

image segmentation. We conclude with a discussion on the 

present challenges and future promises of these models for MR 

image segmentation. 

 

 

2.0 PRINCIPLES OF MRI AND TUMORS 

CHARACTERISTICS 

 

Varieties of imaging techniques including MRI, CT, Positron 

Emission Tomography (PET), Single Photon Emission Computer 

Tomography (SPECT) and Cerebral Angiography (CA) are 

developed to diagnose body tumors. Lately, CT and MRI methods 

are extensively employed because of their widespread availability 

and capability in producing high resolution images for normal 

anatomic structures and pathological tissues. MRI is viable in 

visualizing pathological or other physiological alterations of 

living tissues and commonly used for tumor imaging due to many 

advantages [18, 19]. Firstly, it does not use ionizing radiation like 

CT, SPECT and PET. Secondly, contrast resolution of MRI is 

much higher than other methods. Finally, the ability of MRI 

devices in generating 3D space images achieves superior tumor 

localization enabling the acquisition of both functional and 

anatomical information of the tumor during the same scan.  

  It is worth mentioning the working principle of MRI in 

addition to the image characteristics of human tumors. MRI is 

primarily used in medical settings to produce high quality images 

of the interior of the human body. As shown in Figure 1, during 

MR imaging, the patient is placed in a strong magnetic field 

which causes the protons in the water molecule of the body to 

align in either parallel (low energy) or anti-parallel (high energy) 

orientation with respect to the magnetic field. A radio frequency 

pulse is then introduced which forces the spinning protons to 

move out of equilibrium state. Upon stopping the radio frequency 

pulse, protons return to the equilibrium state producing a 

sinusoidal signal whose frequency depends on the strength of the 

local magnetic field. Finally, radio frequency coils or resonators 

within the scanner detect the signal and build the image [20, 21]. 

 

             
 

Figure 1  MRI scanner cutaway [22] 

 

 

  In MRI the signal processing considers signal emissions and 

are characterized by various magnetic signals weighting with a 

particular value of the echo time (Tg) and the repetition time (Tr). 

The signal processing has three different images such as T1-

weighted, T2-weighted and PD-weighted (proton density) that can 

be accomplished from the patient.  

  Figure 2 displays typical MRI examination report of a 

patient’s brain in three different clinical diagnosis plans including 

plane, sagittal plane and coronal plane. Furthermore, T1-weighted 

brain images from various planes are shown in Figure 2(a), (b) 

and (c). Depending on the type of echo recorded, there are two 

main families of MRI sequences namely Spin Echo (SE) and 

Gradient Echo (GE). SE sequence with its variant Fast Spin Echo 

(FSE) is established as standard MRI pulse sequences for 

anatomical and pathological details [23].   

 

                                 
                       (a)                          (b)                            (c)       
 
Figure 2  MR images from three viewpoints (a) Axial plane, (b) Sagittal 

plane and (c) Coronal plane [20] 

 

 

  Body images in MRI scan can be normal or abnormal. The 

abnormality is usually associated with active tumor, necrosis and 

edema in addition to normal body tissues. Necrosis is a dead cell 

located inside an active tumor, while edema is positioned near 

active tumor borders. Edemas are resulted from the local 

disruption of blood body barrier and often overlap with normal 

tissues that always make them difficult to distinguish from the 

other tissues [1]. 

  An image from MRI scan is composed of gray level intensity 

values in the pixel spaces. The gray level intensity values depend 

on the cell concentration in the scanned volume. The darker 

region signifies the presence of notable abnormality.   

  In normal brain MR images for instance, image intensity 

level for brain tissues is of increasing brightness as illustrated in 

Figure 3. Conversely, the MR images for tumorous brain tissues 

depending on the type of tumor exhibit different intensity level on 

T1-w and T2-w images. For most tumors T1-w reveals low or 

intermediate signal intensity but interestingly, some tumors 

exhibit high signal intensity. In contrast, on T2-w most tumors 

display bright intensity but some disclose low intensity, the 

classic examples are lymphoma tumors [1]. Figure 4 shows some 

example of tumors intensity level characteristics in MRI. 

 

                               
 
Figure 3  Original raw MRI data from pioneer diagnostic center. (a) T1-w 

Axial scan image and (b) T2-w Axial scan image [20] 
 

                
                   (a)                    (b)                    (c)                     (d) 
 
Figure 4  Original MRI data from pioneer diagnostic center showing 

tumor region intensity characteristics, (a) Low intensity (T2-w) (b) High 

intensity (T1-w), (c) High intensity (T2-w) and (d) Low intensity (T1-w) 
[20] 

 

 

3.0  DIFFICULTIES IN SEGMENTATION OF MRI 

 

Cortical segmentation has not yet been fully automated and 

operated at high speed. The reliability of the MRI with regards to 

the homogeneity of magnetic field is still debatable. The 

dilemmas of MRI including noise, shading artifact and partial 

volume effect need to be minimized. The random noise connected 

to MR imaging system obeying Rician distribution requires 

thorough realization [24]. The intensity inhomogeneity called bias 

field or shading artifact is the non-uniformity in the Radio 

Frequency (RF) field resulting shading effect during data 

collection is not fully understood [25]. Partial volume effect 
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originates when more than one type or class of tissue occupies one 

pixel or voxel (called mixels) of an image [26]. 

  Segmentations of MRI outputs are normally done by medical 

experts requiring time consuming processes. The images of tumor 

tissues from different patients contain many diverse appearance 

and gray level intensities. They frequently look similar to normal 

tissues and the process of automation for segmentation of MRI 

outputs thereby faces many challenges. One of these challenges is 

surmounted by utilizing prior information related to the 

appearance of normal body while performing classification from a 

multi-dimensional volumetric features set. This is tantamount in 

using a statistical model for tumor and normal tissue of similar 

features.  

  Presently, manual segmentation and analyses of MR images 

of body tumor is carried out by radiologists nearly in all hospitals. 

The reliability of the segmentation is entirely depends on the 

knowledge and skill of the radiologists. Nevertheless, this manual 

process is not only tedious and time-consuming but highly 

subjective and impractical in today’s medical imaging diagnosis 

where a large number of images are usually taken from a single 

patient. It is needless to mention that the automation of the tumor 

detection and image segmentation process is ever demanding. 

Despite numerous efforts and promising results in medical 

imaging community the quest for efficient and precise methods is 

never ending. There remain many challenges such as accurate and 

reproducible segmentation and characterization of abnormalities 

using intelligent algorithms. The complexities associated with 

varieties of shapes, locations and image intensities of different 

brain tumors demand smart algorithms for detection and analyses. 

The need of automated body tumor detection and segmentation 

system from MR image is justified.   

 

 

4.0 ACTIVE CONTOUR MODELS 

 

4.1  Definition 
 

As mentioned before, the concept of snake was introduced by 

Kass et al. [4]. by observing the behavior active contours on a 

given image. While minimizing their energy, it slithers on the 

image. A snake is expressed as a planar parametric curve 

represented by, 

 

v(s) = [x(s), y(s)]            s ∈ [0,1]                                               (1) 

 

  The parameter is the snake control points called snaxels 

which are connected to make an active contour as shown in Figure 

5. The snake is not a method for automatically detecting the 

boundary of the desired object in an image but requires an 

appropriate parameters setting and initial locations of the snaxels 

according to the subjective boundary. Therefore, some prior 

knowledge of the image from somewhat higher level system is 

prerequisite. 

 

 

 

 

 
 

 

 
Figure 5  Parametric curve displaying snaxels in snake 

 

 

The snake is defined as an energy minimizing spline that deforms 

itself by minimizing the energy [4]. The energy functions of a 

snake yields, 

 

𝐄𝐬𝐧𝐚𝐤𝐞 = ∫ (𝛂
𝟏

𝟎
. 𝐄𝐞𝐥𝐚𝐬𝐭𝐢𝐜(𝐯(𝐬)) + 𝛃. 𝐄𝐛𝐞𝐧𝐝𝐢𝐧𝐠(𝐯(𝐬)) + 𝛄. 𝐄𝐢𝐦𝐚𝐠𝐞 (𝐯(𝐬)))𝐝𝐬      (2) 

 

  The energy function is designed for convergence towards the 

boundary of the target. It acts similar to a rubber band that it put 

outside of an object and shirks for reaching the boundary of the 

target. The first two terms in Equation (2) is the internal energy 

which control the tension and rigidity of the snake. The third term 

is the external energy and is usually derived by the image that 

helps in attracting the snake to the target contour. 
 

4.2  Internal Energy 

 

The internal energy consisting of two components originating 

from the elasticity and bending forces is given by the expression, 

 

𝐄𝐢𝐧𝐭𝐞𝐫𝐚𝐥 = [𝛂(𝐬) |
𝐝𝐯(𝐬)

𝐝𝐬
|

𝟐
+ 𝛃(𝐬) |

𝐝𝐯(𝐬)𝟐

𝐝𝐬𝟐
|

𝟐

] /𝟐                                      (3) 

 

  The first and second derivatives of the contour representing 

these energy terms are called elastic and bending forces, 

respectively. The elastic force helps in controlling the tension of 

the snake by discouraging the stretching of the active contour and 

remains responsible for shrinking the contour as pointed by red 

arrow in Figure 6. 

  The bending force is defined as the bending energy which 

allows snake acts like a thin plate [4]. It facilitates in controlling 

the rigidity of the snake. It also assists in controlling the 

curvature, without changing the length of the contour. During the 

deformation process it tries to maintain a smooth curve or straight 

line as indicated by blue-dashed arrow in Figure 6. 

 

 

 

 

 

 
Figure 6  Variation in internal energy 

 

 

  The coefficients α(s) and β(s) represent constants values of 

weighting functions for all snaxels. Selection of an appropriate set 

of these constants is necessary because of their significant impact 

in snake’s behaviors. The performance of the deformation process 

is entirely controlled by these constants. Each object in an image 

requires a different set of constants for the best performance of the 

snake. One way of solving this problem is to allow the snake to 

change dynamically for suitable values of these constants during 

the deformation process. This dynamical alteration necessitates a 

computer for automatically recognizing the shapes or topologies 

of an object in the image. Consequently, the solution is left for 

further improvements of the snake. Presently, the selection of 

these parameters is up to the user for initialization process.  

 

4.3  External Energy 

 

The external energy is obtained from the image data and it is the 

image-driven force that aids in attracting the snake to move 

toward the target contour. Following Kass et al. the expression for 

energies are given by [4], 

𝑬𝒆𝒙𝒕𝒆𝒓𝒏𝒂𝒍(𝒔) = −𝜸(𝒔). |𝛁(𝑰(𝒔))|
𝟐
                                            (4) 

𝑬𝒆𝒙𝒕𝒆𝒓𝒏𝒂𝒍(𝒔) = −𝜸(𝒔). |𝛁(𝑮𝝈(𝒔) ∗ 𝑰(𝒔))|𝟐                               (5) 

 

S=0.

3 

x 

y 
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v(s) = (x(s), y(s))                   0 ≤ s ≤ 1 

𝒗𝒊+𝟏 

𝒗𝒊 
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where ∇ is the gradient operator, I(s) is the intensity of the image 

at s and Gσ(s) is the two dimensional Gaussian functions with 

standard deviation σ, a vital feature to acquire the range of the 

snake. The weight function γ(s) is commonly employed to 

regulate the image coerce.  

  The Gaussian filtration system is carried out on the original 

image for improving the acquired range of the snake via Equation 

(4). This filtration system is helpful in transforming the image into 

blurring. Routinely, Equation (5) is used as a tool to calculate the 

additional force considering the square of the gradient is 

significantly acquires small-scale range. Higher values of σ cause 

blurring in the objects boundaries. Often, this is essential to make 

an active curve to shift towards the preferred boundary.  

 

4.4  Snake Algorithm 

 
Most of the snake algorithms consist of the three phases called 

initialization, deformation and termination as described below.  

 

4.4.1  Initialization  

 

During initialization, the user fits a set of the initial locations of 

the snaxels around the target object boundary. Meanwhile, the set 

of weighting parameters α, β and γ are suitably chosen so that the 

snake deforms itself towards the true object boundaries. The 

initial contour should be closer to the subject boundary since the 

snake can move toward noises or other unwanted edges or lines 

on an image if it is kept away from the true boundary. 

 

4.4.2  Deformation  

 

In this process, self-deformation (in each iteration) starts for 

minimizing the energy function given in Equation (2). 

Corresponding to each snaxel, a new location is searched among 

neighboring pixels. A snaxel moves to a pixel if a lower energy 

configuration is available otherwise it remains in the same 

location. Two approaches are offered to compute new locations 

for snaxels in which the greedy algorithm is commonly used due 

to its simplicity and easy implementation. 

  During the iterations, the sum of the internal and external 

energies is computed at a snaxel and its eight neighboring pixels. 

The location having lower energy is preferred to be a new 

location. Hence, a snaxel starts moving to one of the eight 

possible neighboring pixels as displayed by red arrows in Figure 

7. Otherwise, it remains in the same location due the absence of 

lower energy configuration. 

 

 

 

 

 

 

 
Figure 7  The greedy algorithm for deformation process of active contour 

 

 

4.4.3  Termination 

 

Sometimes the deformation of the snake needs to be terminated. 

Naturally, the deformation is ceased if all the snaxels fail to find 

new locations in the neighboring pixels. Simply, it converges to 

zero and disappears from the sight. However, it may end up in an 

infinite loop when the snaxels are shifted along the boundary or 

some of snaxels oscillate. Thus, some termination criteria of the 

snake are inevitable. A simpler way to terminate is to set a 

threshold on the maximum number of iterations executed in the 

deformation process. This guarantees that the snake is terminated 

and it never ends up in an infinite loop. However, the user needs 

to set the appropriate number of iterations before the deformation 

process starts. Indeed, it is difficult to estimate the number of 

required iterations for detecting the subject contour because the 

numbers greatly vary depending on the shape and the size of the 

target object. However, setting the smaller number of the 

maximum iterations assures the snake gets terminated either 

before reaching or closer to the true boundary.  

  The terminating criteria in this case are not useful because 

sometimes the snaxels gets shifted along the boundary and the 

contour only moves very slightly. 

Frequently, the snaxels are transferred towards the boundary 

along with curve that merely moves [27].  

 

 

5.0 ACTIVE CONTOUR IN MRI SEGMENTATION 

 

The segmentation of anatomic structures is essential for the first 

stage of most medical image analysis tasks including registration, 

labeling and motion tracking. These tasks require the anatomic 

structures in the original image to be reduced to a compact and 

analytic representation in their shapes. Performing this 

segmentation manually is extremely laborious and time-

consuming. A primary example is the segmentation of the heart, 

especially the Left Ventricle (LV) from cardiac imagery. 

Segmentation of the LV is a prerequisite for computing diagnostic 

information such as ejection-fraction ratio, ventricular volume 

ratio and heart output as well as wall motion analysis which 

provides information on wall thickening [28]. Compared to the 

threshold, the active contour algorithms are more flexible and can 

be used for complex segmentations as displayed in Figure 8.  

  The model evolution is usually driven by a global energy 

minimization process, where the internal and external energies 

(corresponding to the smoothness and image forces) are integrated 

into a model of total energy. The optimal position/configuration is 

obtained in minimizing the total energy. Moreover, the 

initialization far away from object boundary may trap in local 

energy minima caused by spurious edges and/or high noise.  

 

                   
             (a)                        (b)                        (c)                     (d) 

 

Figure 8  Segmentation of the left and right ventricles (LV, RV) in a 
cardiac MRI using parametric deformable models (active contours) (a) 

Original image, (b) Ground truth boundaries, (c)  Ground-truth (red) and 
final solution (yellow) and (d)  Magnified view of LV and RV with 

ground-truth and the final solution [28]  

 

 

  Parametric or explicit deformable models also called active 

contours use parametric curves to represent the model shape [4, 

17, 29, 30]. Edge-based parametric models use edges as image 

features which usually make them sensitive to noise. Conversely, 

the region-based methods use region information to drive the 

curve [31-33]. A limitation of the latter is that they do not update 

the region statistics during the model evolution and therefore, 

local feature variations are difficult to be captured. Florin et al. 

proposed Region updating where an active contour with particle 

filtering is used for vascular segmentation [34]. 

  The image in Figure 8 shows a magnification of the 

ventricles. One can observe that the deformable model converges 

8 Possible Moves 
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to edges that do not correspond to the actual region boundaries, 

which is caused by a local minimum of the model’s energy. 

  Malladi, et al. and Caselles, et al. first applied the level set 

methods in medical images. Malladi’s model used the gradient 

information as a stop criterion in which the speed is intuitive. An 

increase in gradient magnitude decreases the speed and thereby 

slows down the contour as it moves to the structure boundary. 

However, the model suffers from leakage due to its mere 

dependence on the gradient magnitude [35, 36]. Unlike Malladi’s 

model, Geodesic Active Contour (GAC) algorithm treats the 

segmentation as an optimization problem for finding the minimal 

distance curve [37, 38]. The moving equation of GAC is also 

derived from energy function. Instead of directly solving the 

moving equation, the contour is embedded in a level set function 

and the moving equation then becomes a level set equation. GAC 

algorithm shows a strong correlation between parametric and 

geometric models. The introduction of level set representation in 

geodesic active model makes the algorithm flexible in handling 

the topological changes. The basic geodesic deformable snake 

algorithms are applied to MR, CT and ultrasound images for 

tumor detection and cardiac segmentation [39]. Another popular 

geometric model is due to paragios which is based on a simplified 

version of Mumford-Shah energy model [40]. The Chan-Vese’s 

algorithm is highly advantageous in obtaining a boundary of 

discrete points useful for medical image applications when the 

interested structures are represented by discrete pixel clusters and 

without clear definition of boundaries.  

  Many efforts are dedicated to segment structures in 2D 

images [41, 46]. Typically, users initialized a deformable model 

near the object of interest and allowed it to deform to take place. 

The interactive capabilities of these models with manual fine-

tuning are possible. Furthermore, with a satisfied result on an 

initial image slice, the fitted contour model can be used as the 

initial boundary approximation for neighboring slices. These 

models are then deformed and propagated until all slices have 

been processed. The resulting sequence of 2D contours can then 

be connected to form a continuous 3D surface model [47, 48]. The 

application of snakes and other similar deformable contour 

models to extract regions of interest is, however, not without 

limitations.  

  In non-interactive models initialization must be close to the 

structure of interest to guarantee superior performance. The 

internal energy constraints of snakes can limit their geometric 

flexibility and prevent them from representing long tube-like 

shapes with significant protrusions or bifurcations. Since the 

classical deformable contour models are parametric and are 

incapable of topological transformations without additional 

machinery, the topology of the structure of interest must be 

known in advance. Using simulated annealing, Poon et al. 

minimized the energy of active contour models for producing 

global solutions that allowed the incorporation of non-

differentiable constraints [49]. They also used a discriminant 

function to incorporate region based image features into the image 

forces of their active contour model. The discriminant function 

allowed the inclusion of additional image features in the 

segmentation and served as a constraint for global segmentation 

consistency in which every image pixel contributed. The use of 

such function results in much robust energy function and better 

tolerance to the deviation of the initial guess from the true 

boundaries. In an attempt to decrease the sensitivity to 

insignificant edges and initial model placement, others researchers 

have also integrated region-based information into deformable 

contour models [50-52]. Recently, topology independent shape 

modeling schemes are developed that allows a deformable 

contour or surface model to not only represent long tube-like 

shapes with bifurcations, but also to dynamically sense and 

change its topology [53]. 

 

 

6.0  CONCLUSION 

 

We reviewed the present status and future scopes of active 

contour segmentation models implemented in MRI.  Salient 

features of different models, their advantages and limitations are 

compared. The insight of the importance and urgent necessity of 

image segmentation algorithm in tumor detection are discussed 

and analyzed. The need of intelligent algorithms for automated 

MRI segmentation to characterize tumor abnormalities in an 

accurate and reproducible fashion is emphasized. The increasing 

demand of medical imaging in the diagnosis and treatment of 

diseases has opened an array of multifaceted problems. The 

concrete medical image segmentation task boils down in 

combining the application background and practical requirements 

to design smarter and proper algorithms. Accuracy, complexity, 

efficiency and interactivity of a segmentation algorithm are the 

relevant factors need to be considered. Active contour models 

offer attractive approach in tackling varieties of problems due to 

their capability of representing the complex shapes and broad 

shape variability of anatomical structures. Snakes are able to 

overcome many limitations of traditional low-level image 

processing techniques and provide compact and analytical 

depictions of object shape, incorporate anatomic knowledge and 

include interactive capabilities. The continuous development and 

refinement of deformable models will remain an important 

domain of research into the foreseeable future.  
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