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Abstract 

 

This paper presents a new boundary integral equation with the adjoint Neumann kernel associated with 

    where   is the boundary correspondence function of Ahlfors map of a bounded multiply connected 

region onto a unit disk. The proposed boundary integral equation is constructed from a boundary 
relationship satisfied by the Ahlfors map of a multiply connected region. The integral equation is solved 

numerically for     using combination of Nystrom method, GMRES method, and fast multiple method. 

From the computed values of       we solve for the boundary correspondence function   which then 
gives the Ahlfors map. The numerical examples presented here prove the effectiveness of the proposed 

method. 

 
Keywords: Ahlfors map, adjoint Neumann kernel, Generalized Neumann kernel, GMRES, fast multipole 

method. 

 

Abstrak 

 

Kertas kerja ini memberikan satu persamaan kamiran sempadan baru dengan inti Neumann adjoin 

berkaitan dengan     dengan   ialah fungsi kesepadanan sempadan terhadap pemetaan  Ahlfors dari 
rantau terkait berganda terbatas ke cakera unit. Persamaan kamiran sempadan ini dibina dari hubungan 

sempadan yang ditepati oleh pemetaan Ahlfors map tersebut. Persamaan kamiran tersebut diselesaikan 

secara berangka untuk   menggunakan kombinasi kaedah on of Nystrom, kaedah GMRES, dan kaedah 

multikutub pantas. Dari nilai     yang telah dihitung, kita selesaikan fungsi kesepadanan sempadan   
lalu menghasilkan pemetaan Ahlfors. Contoh-contoh berangka yang dibentangkan menunjukkan 

keberkesanan kaedah yang dibincangkan. 
 

Katakunci : Pemetaan Ahlfors, inti Neumann adjoin, Inti Neumann teritlak, GMRES, kaedah multikutub 

pantas. 
 

© 2015 Penerbit UTM Press. All rights reserved 

 

 

 

 
1.0  INTRODUCTION 

 

Conformal mapping  is  a useful tool for solving various problems 

of science and engineering such as fluid flow, electrostatics, heat 

conduction, mechanics, aerodynamics, and image processing. The 

conformal mapping from a multiply connected region onto the 

unit disk is known as the Ahlfors map. If the region is simply 

connected then the Ahlfors map reduces to the Riemann map. 

Many of the geometrical features of a Riemann mapping function 

are shared with Ahlfors map. The Riemann mapping function can 

be regarded as a solution of the following extremal problem: 

  For a simply connected region Ω and canonical region D in 

the complex plane C and fixed   in Ω, construct an extremal 

analytic map 

      
  

with    ( )     
The Riemann map is the solution of this problem. It is unique 

conformal, one-to-one and onto map with   ( )       
 For a multiply connected region Ω of connectivity     

 
the 

answer to the same extremal problem above becomes the Ahlfors 

map.  It is unique analytic map 

                   

                            
                              Df :   

that is onto, if    ( )     and  ( )      However it has       

branch points in the interior and is no longer one-to-one there. In 

fact it maps Ω onto D in an n-to-one fashion, and maps each 

boundary curve one‐to‐one onto the unit circle (see [1] and [2]). 

Therefore the Ahlfors map can be regarded as the Riemann 

mapping function in the multiply connected region. 

  Conformal mapping of multiply connected regions can be 

computed efficiently using the integral equation method. The 

integral equation method has been used by many authors to 

compute the one‐to‐one conformal mapping from multiply 

connected regions onto some standard canonical regions [3-16] . 

In [10] the authors presented a fast multipole method, which is 

fast and accurate method for numerical conformal mapping of 

bounded and unbounded multiply connected regions with high 

connectivity and highly complex geometry. The authors used the 

Matlab function dpartzfmm2  in the MATLAB toolbox 

FMMLIB2D developed by Greengard and Gimbutas [17] as a 



2                                            Kashif , Ali H. M. & Ali W. K. / Jurnal Teknologi (Sciences & Engineering) 73:1 (2015) 1–9 

 

 

vector product function for the coefficient matrix of the linear 

system. 

  Some integral equations for Ahlfors map have been given in 

[2, 18-21]. In [3] Kerzman and Stein have derived a uniquely 

solvable boundary integral equation for computing the Szegö 

kernel of a bounded region and this method has been generalized 

in [18] to compute Ahlfors map of bounded multiply connected 

regions without relying on the zeros of Ahlfors map. In [19, 20] 

the integral equations for Ahlfors map of doubly connected 

regions requires knowledge of zeros of Ahlfors map, which are 

unknown in general. 

  In this paper, we extend the approach of Sangawi [12, 14, 

15] to construct an integral equation for the Ahlfors map of 

multiply connected region onto a unit disk. The plan of this paper 

is as follows: After presenting some auxiliary materials in Section 

2, we shall derive in Section 3, a boundary integral equation 

satisfied by   , where   is the boundary correspondence function 

of Ahlfors map of bounded multiply connected regions onto a 

disk. From the computed values of   , we then determine the 

Ahlfors map. In Section 4,  we present some examples to illustrate 

our boundary integral equation method. The numerical examples 

are restricted to annulus region for which the exact Ahlfors map is 

known which allows for the numerical comparison between our 

proposed method with the exact Ahlfors map. Finally, Section 6 

presents a short conclusion. 

 
2.0  AUXILIARY MATERIAL  

 
Let Ω be a bounded multiply connected region of connectivity 

   . The boundary   consists of     smooth Jordan curves 

             such that           lie in the interior of    
 
where the 

outer curve    has counterclockwise orientation and inner curves 

          have clockwise orientation. The positive direction of the 

contour                 is usually that for which Ω is on 

the left as one traces the boundary as shown in Figure 1. 

 
Figure 1  A bounded multiply connected region of connectivity M+1 

 

   The curves    are parameterized by     - periodic twice 

continuously differentiable complex‐valued functions    ( )  with 

non‐vanishing first derivatives 
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The total parameter domain   is defined as the disjoint union of 

    intervals                 The notation 

           
.,...,1,0,),()( MjJttztz jj 
                        (2.1)                                                     

is interpreted as follows [20]:   For a given  ̃  [    ]   to evaluate 

the value of  ( ) at  ̃   we should know in advance the interval 

   to which  ̃ belongs, i.e. we should know the boundary    

contains  ( ̃)   then we compute   ( ̃)    ( ̃)   

 The generalized Neumann kernel formed with a complex 

continuously differentiable   ‐periodic function  ( ) for all 

     is defined by[22, 23]                  

      
.
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For  ( )      ̂(   ) reduces to the well-known classical 

Neumann kernel  (   )   
The kernel is continuous which takes on the diagonal the values 

with 
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It follows from the representation (2.2) that the adjoint kernel 
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can be represented as 
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with the adjoint function  ̃( ) is given by  
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The generalized Neumann kernel  ̃(   ) formed with  ̃( ) is 

given by 
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.),(),( *
~

tsNtsN   

 It is also known that 1  is an eigenvalue of the kernel N  with 

multiplicity 1 and 1  is an eigenvalue of the kernel N  with 

multiplicity   [23]. The eigenfunctions of N  corresponding to 

the eigenvalue 1  are  { [ ]  [ ]    [ ]}  
  

where 
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     Let    be the space of all real Hölder continuous    ‐ 
periodic functions  ( ) of the parameter    on    

 
for   

              
.,...,1,0,),()( MjJtttω jj   

We define the space S   by 

                ,...,,span ]1[]0[ [M]S   

and the integral operators J   by [13,15, 24] 
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 with the inner product 
            J

jj .dsv(s)(s)χv),(χ ][][              

We also define the Fredholm integral operator     by 

 
.,)(),()( ** JtdssψstNtψ

J
 N

                   (2.4) 

The following theorem which can be proved by using the 

approach as in Theorem 5 in [24] will be useful in the next 

section. 

 

2.1  Theorem 2.1 

 

Suppose the function        and       such that 

 )(ihγ)(ˆ  zgA                                           (2.5) 

are the boundary values of an analytic function  ̂( ) in Ω. Then 

the functions   (          ) 
 
and (          )  are given 

by 
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where  [ ] are solutions of the following integral equations 

         .,...,1,0,][][* Mjφ jj  JNI                              (2.8) 

  

   A complex‐valued function  ( ) is said to satisfy the 

interior relationship if  ( ) is analytic in Ω and satisfies the 

non‐homogeneous boundary relationship 
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where  ( ) is analytic in Ω, Hölder continuous on     and 

 ( )     on  . The boundary relationship (2.9) also has the 

following equivalent form: 
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The following theorem gives an integral equation for an analytic 

function satisfying the interior non‐homogeneous boundary 

relationship (2.9) or (2.10). 

 

2.2  Theorem 2.2 [14] 

 

If the function  ( )  satisfies the interior relationship (2.9) or 

(2.10), then 
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The symbol “ ˮ in the superscript denotes the complex 

conjugate and the sum is over all those zeros that lie inside Ω. If   

has no zeros in Ω,  then the term containing the residue will not 

appear.   

 

3.0  INTEGRAL EQUATION METHOD FOR 

COMPUTING  

  

Let  ( ) be the Ahlfors function which maps Ω conformally onto 

a unit disc. The mapping function   is determined up to a factor of 

modulus 1. The function   could be made unique by imposing the 

condition 
    .,...,1,0,0)(,0)( 0 Mjafaf j   

where                 are the zeros of the Ahlfors map. 

The boundary values of     can be represented as 
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where    ( )            are the boundary correspondence 

functions of    . The unit tangent to   at  ( ) is denoted by 
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Taking modulus on both sides of  (3.2), we get 
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Dividing (3.2) by (3.3) 
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By the angle preserving property of conformal map, the image of 

  
 
remains in counter‐clockwise orientation so    ( )      

 while the images of inner boundaries    in clockwise orientation     

therefore     ( )      for            Thus
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The boundary relationship (3.4) can be written briefly as
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Since the Ahlfors map can be written as
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where )(zg  is analytic in Ω  and 0)( zg  in  Ω,  we have 
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so that 
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is analytic in Ω. Squaring both sides of (3.5), gives 
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Comparing (3.14) with (2.9), we get 
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Using the facts  that [13] 
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Using the similar approach, (3.18) becomes 
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      (3.20) 

Substituting the results  from (3.19)  and (3.20) into  (3.16),  we 

get 
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                                                                                (3.21) 

where 
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                                                                            (3.22)                                                                            

In integral equation (3.21), letting     ( )    ( )    and 

multiplying both sides by |  ( )|, gives 

.
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                     (3.23)                                                                               

Using the fact that 

 

          (t),i
))((

)())((
 
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tzf

tztzf                                            (3.24) 

(3.23) becomes 

            

.
)(

)(
Im2)(),()(

0
 


















J

M

j jatz

tz
dssstNt   (3.25)                                                                              

Since ,),(),( stNtsN   the integral equation (3.25) in the 

operator form is 

 .,...,1,0),()( MjtN j   I                  (3.26) 

where 

 .
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)(
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t                                      (3.27) 

By Theorem 12 in [23], 1  is an eigenvalue of 
N with 

multiplicity    therefore the integral equation (3.26) is not 

solvable. To overcome this problem, we note that image of the 

curve    is counterclockwise oriented, we have   (  )  
  ( )      and the image of the curves Mjj ,...,2,1,   is 

clockwise oriented with   
  (  )    ( )       

So that we have
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(3.28) 

As J is the disjoint union of     intervals               so we 

can write vector form of J  as  

 .,...,',' '

10 MJJ'J  J  

from (3.24) and (3.28) and using the definition of J ,  we  have
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                                                                                                (3.29) 

which implies that 

       

                                                                                          

,'  J                                                  (3.30)

 where 

           ).1,...,1,1,1( ψ                            (3.31)          

By adding (3.26) and (3.30), we get 

 .)(   
JNI                                    (3.32) 

Assuming the zeros of  ( )  are known, we can solve the integral 

equation (3.32) for   
 ( )  The boundary correspondence 

functions   ( ) for           can be calculated from   
 ( ) by 

[15]  
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J

jj Jttdttt

j
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      (3.33)                                     

where     are undetermined real constants and the real functions 

  ( ) are defined by 

                .,)()( j

J

jj Jtdttt

j

                                   (3.34) 

The functions   ( )  being 2 ‐ periodic can be represented by a 

Fourier series 
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Hence the functions   ( ) can be calculated by the Fourier series 

representation as 
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It now remains to determine                 in (3.33). Now as 

from Nasser [20], the Ahlfors map    can also be written as 
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Taking log on both sides of (3.35), we get 
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                                                                                 (3.38) 

Applying (3.1) to the term     ( )   and using  
(3.33), Eq. (3.38) becomes
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This result has the form 

   ,)(~i(t)γ(t))()( 0 thzgaz    (3.39) 
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We now apply Theorem 2.1 to (3.39). Solving the integral 

equation (2.8) for  ,,...,1,0,][ Mjj   gives    through (2.6), 

and   from (3.40b). By (3.36) we get the value of    and through 

(2.7) we get the values of   ̃   which in turn give    from (3.40c), 

and finally    from (3.33). The approximate boundary values of 

 ( )  are given by 
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j
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                                                                               (3.41) 

Then the interior values of the function  ( ) are calculated by the 

Cauchy integral formula 

 

 





 .,
)(

)( zdw
zw

wf
zf                             (3.42) 

 

4.0  NUMERICAL EXAMPLES 
 

For solving the integral equation (3.32) numerically, the reliable 

procedure is by using the Nyström method with the trapezoidal 

rule with n equidistant nodes in each interval               [6-

10]. In [10] an iterative method GMRES have been applied for 

solving the linear systems powered by the fast multipole method 

(FMM). We use the similar approach as [10]  to solve our linear 

system. For evaluating the Cauchy integral formula (3.42) 

numerically, we use the equivalent form 
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
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
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

 z

dw
zw

dw
zw

wf

zf
                                (4.1) 

 

which also works very well for z  near the boundary  . 

When the trapezoidal rule is applied to the integrals in (4.1), the 

term in the denominator compensates the error in the numerator 

(see [15]). In [2], Tegtmeyer and Thomas computed the Ahlfors 

map using Szegö and Garabedian kernels for the annulus region, 

where the authors have used series representations of both Szegö 

kernel and Garabedian kernel. With these representations, they 

found the two zeros    and    
  

  ̅̅̅̅
 for Ahlfors map, where    is 

the radius of the inner circle. They have also considered the 

symmetry case when the zeros are    √    and     √ . Here 

we shall use these values of zeros of Ahlfors map and consider a 

numerical example in the annulus   | |     These examples 



6                                            Kashif , Ali H. M. & Ali W. K. / Jurnal Teknologi (Sciences & Engineering) 73:1 (2015) 1–9 

 

 

have also been considered in [20]  where Ahlfors map was 

computed using a boundary integral equation related to a 

Riemann‐Hilbert problem. Orthogonal grids over the original 

region Ω are shown in Figure 2(a) and Figure 3(a) for different 

values of   . The images of the region Ω for non‐symmetrical are 

shown in Figure 2(b) and Figure 3(b) and symmetric cases in 

Figure 2(c) and Figure 3(c).   

   The numerical values of  (  ) and  (  )  for both 

non‐symmetric and symmetric cases are shown in Table     and  

Table     Since     and     are zeros of   , theoretically   (  )  
  and  (  )   . Figure 4 shows some Ahlfors maps of annulus 

shaped digital images using the proposed integral equation 

method. 

 

 

Table 1.  Numerical values of  (  ) and  (  ) 

with        
 

 

 Non‐Symmetric case            
  

  ̅̅̅̅
  

n )( 0af  )( 1af  

8 9.0(‐02) 5.4(‐02) 

16 2.7(‐03) 3.9(‐03) 

32 6.5(‐06) 8.7(‐06) 

64 1.9220(‐11) 2.4431(‐11) 

128 1.3271(‐14) 8.2577(‐15) 

 Symmetric case     √       √ . 
8 8.7(‐02) 3.9(‐02) 

16 1.6(‐03) 5.6122(‐04) 

32 9.0527(‐07) 2.6040(‐07) 

64 3.6991(‐13) 9.6021(‐14) 

128 3.9200(‐15) 3.8750(‐15) 

 
 

 

Table 2.  Numerical values of  (  ) and  (  ) 

with        
 

 

 

Non‐Symmetric case           
  

  ̅̅̅̅
 

n )( 0af  )( 1af  

8 5.82(‐02) 6.01(‐02) 

16 1.4(‐03) 1.4(‐03) 

32 4.9822(‐07) 5.0099(‐07) 

64 4.4766(‐14) 4.5830(‐14) 

128 3.5388(‐15) 4.6887(‐15) 

 Symmetric case     √       √ . 
8 2.0058(‐04) 1.7918(‐04) 

16 1.8586(‐08) 1.65839(‐08) 

32 6.2063(‐16) 6.5799(‐16) 

 

 

5.0  CONCLUSION 

 
In this paper, we have constructed a boundary integral equation 

method for finding the Ahlfors map of multiply connected region 

onto a unit disk, provided that the zeros of Ahlfors map are 

known. We first derived an integral equation for boundary 

correspondence function  ( ) of Ahlfors map and then used fast 

multipole method (FMM) for each iteration of the iterative 

method GMRES to solve the linear system obtained by 

discretization of our integral equation. Analytical method for 

computing the exact zeros of Ahlfors map for annulus region is 

presented in [21] and  [2] but the problem of finding zeros for 

general doubly and higher connected regions remains unsolved. 

Probably the boundary integral equation used here and [20] can be 

combined with the approach used in [18] to obtain a method for 

computing zeros of Ahlfors map. 

.  
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                  (a) Original region Ω                                  (b)           

  

  ̅̅̅̅
 
                                      

(c)    √       √ . 

 
          Figure 2: Numerical Ahlfors map of a region Ω with         for (b) non‐symmetric case, and (c) symmetric case. 

 
 
 
                
         
 
 
 
 
 
 
 

 
                      (a) Original region Ω                                  (b)           

  

  ̅̅̅̅
 
                                       

(c)    √       √ . 
 

             Figure 3: Numerical Ahlfors map of a region Ω with         for (b) non‐symmetric case, and (c) symmetric case. 
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                          (a) Non-symmetric                                                       (b) Symetric                                                               (c) Canonical Region 

 

                  
                   (d) Non-symmetric                                                           (e) Symmetric                                                                  (f) Canonical Region 
 

                  
                         (g) Non-symmetric                                                  (h) Symmetric                                                               (i) Canonical Region 

 

Figure 4    Processed images under proposed numerical Ahlfors map with        for non‐symmetric cases           
  

  ̅̅ ̅̅
   

                and symmetric cases    √       √ .
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