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Abstract. The mixture model postulates a mixed population with two types of individuals, the
susceptible and long-term survivors. The susceptibles are at the risk of developing the event under
consideration. However, the long-term survivors or immune individuals will never experience the
event. This paper focuses on the covariates associated with individuals such as age, surgery and
transplant related to the probability of being immune in a logistic Weibull model and to evaluate
the effect of heart transplantation on subsequent survival.

Keywords: Mixture model, simple logistic Weibull model, split Weibull model, split logistic Weibull
model

Abstrak. Model gabungan mempostulatkan sebuah populasi yang terdiri daripada dua jenis
individu iaitu peka dan kebal. Individu yang peka merupakan individu yang berisiko mengalami
peristiwa terhadap kajian yang dibuat. Manakala individu yang kebal adalah individu yang tidak
berisiko mengalami peristiwa tersebut. Kertas kerja ini memfokuskan kepada kovariat pada individu
seperti umur, pembedahan dan pemindahan yang dihubungkan dengan kebarangkalian wujudnya
kebal dalam sebuah model logistik Weibull dan menghuraikan kesan pemindahan jantung terhadap
masa hayat seterusnya.

Kata kunci: Model gabungan, model logistik Weibull mudah, model Weibull belahan, model
logistik Weibull belahan

1.0  INTRODUCTION

Survival analysis is a class of statistical methods for studying the occurrence and
timing of many different kinds of events. There are extensive studies in the context
of parametric survival models for which the distribution of the survival times depends
on the vector of covariates associated with each individual. See Boag [1], Berkson
and Gage [2], and Maller and Zhou [3] for approaches which accommodate censoring
and covariates in the ordinary exponential model for survival.

There has been a great deal of recent interest in modeling in survival analysis
when immune is a possibility. This paper extends to the case of covariates involved
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in the mixture models as was considered in Farewell [4]. Currently, such mixture
models with immunes and covariates are in use in many areas such as medicine and
criminology. See Farewell [5], Schmidt and Witte [6] and Greenberg [7].

In our formulation, the covariates are incorporated into a Weibull mixture model
by allowing the proportion of ultimate failures and the rate of failure to depend on
the covariates and the unknown parameter vectors via logistic model. Our models
and analysis are described in Section 4.

The data set used in this study is the Stanford Heart Transplant data originally
taken from Crowley and Hu [8] then reproduced by Kalbfleisch and Prentice [9]. It
is on survival from early heart transplant operations at Stanford. This data set consists
of the time of admission to study until the time of death (in days), survival status
(uncensored and censored), ages of patients (in years) accepted into the study (Age),
indicator for previous surgery (Surgery) and time to transplant (Transplant) for 103
patients.

2.0 MIXTURE MODELS

In this section, we will consider mixture model in which the probability of eventual
failure is an additional parameter to be estimated, and may be less than one. Mixture
models are also known as split-population models and introduced to the criminological
literature by Maltz and MacCleary [10], with previous treatments in the statistical
literature dating back to Anscombe [11], and they have been further developed as
were summarized by Maltz [12] or Schmidt and Witte [13].

Mixture models in the biometrics literature, i.e., part of the population is cured
and will never experience the event, and have both a long history (e.g. Boag [1] and
Berkson and Gage [2])     and widespread applications and extensions in recent years
[7, 14, 15]. The intuition behind these models is that, while standard duration models
require a proper distribution for the density which makes up the hazard, mixed
population models allow for an existence of a subpopulation which never experiences
the event of interest. This is typically accomplished through a mixture of a standard
hazard density and a point mass at zero [16]. That is, mixed population models
estimate an additional parameter (or parameters) for the probability of eventual
failure, which can be less than one for some portion of the data. In contrast, standard
event history models assume that eventually all observations will fail, a strong and
often unrealistic assumption.

In standard survival analysis, data come in the form of failure times that are
possibly censored, along with covariate information on each individual. It is also
assumed that if complete follow-up were possible for all individual, each would
eventually experience the event. Sometimes however, the failure time data come
from a population where a substantial proportion of the individuals do not experience
the event at the end of the observation period. In some situations, there is reason to
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believe that some of these survivors are actually “cured” or “long–term survivors” in
the sense that even after an extended follow-up, no further events are observed on
these individuals. Long-term survivors are those who are not subject to the event of
interest. For example, in a medical study involving patients with a fatal disease, the
patients would be expected to die of the disease sooner or later, and all death could
be observed if the patients had been followed long enough. However, when
considering endpoints other than death, the assumption may not be sustainable if
long-term survivors are present in population.

Using the notation of Schmidt and Witte [13], we can express a mixture model as
follows. Suppose that FR (t) is the usual cumulative distribution function for failure
only, and ω is the probability of being subject to reconviction, which is also usually
known as the eventual death rate. The probability of being immune is (1-ω), which
is sometimes described as the rate of termination. This group of immune individuals
will never fail. Therefore, their survival times are infinite (with probability one) and
so their associated cumulative distribution function is identically zero, for all finite
t > 0. If we now define FS (t) = ω FR (t), as the new cumulative distribution function
of failure for the split-population, then this is an improper distribution, in the sense
that, for 0 <  ω < 1,  FS (∞) = ω < 1.

Let Yi be an indicator variable, such that

= 


th

th

0; if  individual is immune

1; if  individual is subject to failure
i

i
Y

i
(1)

and follows the discrete probability distribution

Pr[Yi = 1] = ω (2)

and

Pr[Yi = 0] = (1 – ω) (3)

For any individual belonging to the group of eventual failure, we define the density
function of eventual failure as FR (t) with corresponding survival function SR (t),
while for individual belonging to the other (immune) group, the density function of
failure is identically zero and the survival function is identically one, for all finite
time t.

Suppose the conditional probability density function for those who will eventually
fails is

( ) ( ) ( )1 R Rf t Y f t F t′= = = (4)

wherever FR (t) is differentiable. The unconditional probability density function of
the failure time is given by
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fs(t) = f(t|Y = 0)Pr [Y = 0] + f (t|Y = 1) Pr[Y = 1]

= 0 (1-ω) + fR (t) ω = ω fR(t) (5)

Similarly, the survival function for the failure group is defined as

( ) ( )

( ) ( )

Pr 1 1
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t
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S t T t Y f u Y du

f u du F t

∞

∞

= > = = =  

= = −

∫

∫ (6)

The unconditional survival time is then defined for the split-population as

( ) [ ] ( ) [ ] ( ) [ ]{ }
( ) ( )

Pr 0 Pr 0 1 Pr 1
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= − +

∫
(7)

which corresponds to the probability of being a long-term survivor plus the probability
of death at some time beyond t. In this case,

FS (t) = ω FR (t) (8)

is again an improper distribution function for ω < 1.

3.0 THE LIKELIHOOD FUNCTION

The corresponding likelihood function for the general model can be written as

( ) ( ) ( ) ( ) 1

1

, 1i i
n

R i R i
i

L f t S t
δ δω θ ω ω ω −

=
= − +      ∏ (9)

and the log-likelihood function as

( ) ( )
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= + + − − +      ∑
1

, ln ,

ln ln 1 ln 1
n

i R i i R i
i

l L

f t S t (10)

where δi is an indicator of the censoring status of observation ti, and θ  is the vector
of all unknown parameters for fR(t) and SR(t). The existence of these two types of
release, one type that simply does not fail and another that eventually fail according
to some distribution, leads to what may be described as simple split-model. When
we modify both fR(t) and SR(t) to include covariate effects, fR(t|z) and SR(t|z)
respectively, then these will be referred to as split models.

JTDIS45C[E]new.pmd 01/13/2009, 09:5960



61ESTIMATING A LOGISTIC WEIBULL MIXTURE MODELS WITH LONG-TERM

4.0  MODEL WITH COVARIATES

We now consider models with covariates. This is obviously necessary if we are to
make predictions for individuals, or even if we are to make potentially accurate
predictions for groups which differ systematically from our original sample.
Furthermore, in many applications in economics or criminology, the coefficients of
the explanatory variables may be of obvious interest.

We begin by fitting a parametric model based on the Weibull distribution. The
model in its most general form is a mixture model in which the probability of eventual
failure follows a logistic model, while the distribution of the time until failure is
Weibull, with its scale parameter depending on covariates. The estimates are based
on the usual MLE method.

To be more explicit, we follow the notation of Section 2. For individual i, there is
an unobservable variable Yi which indicates whether or not individual i will eventually
fail. The probability of eventual failure for individual i will be denoted ωi so that
P(Yi = 1) = ωi . Let Zi be a (row) vector of individual characteristics (covariates), and
let α be the corresponding vector of parameters. Then we assume a logistic model
for eventual failure as
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=
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(11)

The likelihood function for this model is
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We can now define special cases of this general model in (13). First, we consider
the ordinary model in which ωi = 1 but the scale parameter depends on individual
covariates, by substituting

λi = exp (β Tzi) (14)

into (13), and will be known as Weibull model (with covariates). This model has
been considered by Kalbflesch and Prentice [9] and Lawless [17]. Schmidt and
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Witte [6] have used a very similar model in their analysis. It is not a mixture model,
the log-likelihood function for this model is

( ) ( ), ln ,l Lβ κ β κ=

( ) ( )( ){ }κ
δ κ κ κβ β

=

 = + − + − ∑
1

ln 1 ln exp
n

T T
i i i i i

i

t z t z (15)

The result for this case can be seen in Table 1.
The second is the model in which ωi is replaced by a single parameter ω  which

will be referred to as the split Weibull model (with covariates). In this model, the
probability of eventual failure is a constant, though not necessarily equal to one,
while the scale parameter of the distribution of time until failure varies over individuals
or depend on covariates. The likelihood function for this model is
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The third model is where λi is replaced by a single parameter λ. We will consider
this model as the simple logistic Weibull model. In this model, the probability of
eventual failure varies over individual, while the distribution of time until failure
does not depend on covariates. The likelihood function for this model is form by
substituting Equation (11) into (13) and can be written as
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Finally, we consider the logistic Weibull model, where both the probability of
eventual fail and the distribution of time until failure vary over individuals. The
likelihood function for this model is obtained by substituting Equations (11) and (14)
into (13) and may be written as
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In Table 1, we can see that both the age and transplant covariates are significant
with ρ -values close to zero, while surgery is found marginally significant with
ρ -value of 0.0595.

Table 2 gives the result for the split Weibull model and the simple logistic Weibull
model. In both respects the split Weibull model dominates the Weibull model and
simple logistic Weibull model. For example, the likelihood value of –470.30 for the
split Weibull model is noticeably higher than the values for the Weibull and simple

Table 2 Split Weibull and simple logistic Weibull models

            Split Weibull   Simple logistic Weibull
Variable

Coefficient ρρρρρ -value Coefficient ρρρρρ -value

Intercept –6.498745 0.0000 –0.087700 0.9592
Age 0.064654 0.0009 0.100070 0.007
Surgery –1.243274 0.0427 –1.102607 0.1666
Transplant –2.562121 0.0000 –3.130009 0.0639

κ = 0.734900  λ = 0.006324
ω =     0.954908  κ = 0.634158
ln L = –470.30 ln L = –486.96

Table 1 Weibull model with covariates

        Weibull model
Variable

Coefficient ρρρρρ -value

Intercept –7.9722460 0.0000
Age 0.0923678 0.0000
Surgery –1.2131023 0.0595
Transplant –2.5389025 0.0000

κ = 0.6819701
ln L = –495.60
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logistic Weibull models (–495.60 and –486.96) but less than the logistic Weibull
model (–468.51). Parameter estimates for the logistic Weibull model, in which both
the probability of eventual failure and the distribution of time until failure vary
according to covariates given in Table 3. They are somewhat more complicated to
discuss than the results from previous models, in part because there are simply more
parameters, and some of them turn out to be statistically insignificant.

In Table 3, we can see that covariate age is statistically significant on the probability
of immune with ρ -value of 0.0352 but marginally significant on the Weibull regression
with ρ -value of 0.0564. Surgery just fail to be significant on the probability of immune
with ρ -value of 0.9379 but marginally significant on the Weibull regression with
ρ -value of 0.0676 and finally, transplant which is not significant on the probability of
immune with ρ-value of 0.1555 but most significant in the Weibull regression with
ρ -value of 0.0000.

Furthermore, these results are reasonably similar to the results we obtained using
a logistic exponential model [18]. They are similar on the probability of immune
where age is significant for both Weibull and exponential models with ρ -value of
0.0352 and 0.0359, respectively while surgery is not significant on both the Weibull
and exponential models with ρ -value of 0.9379 and 0.0662, respectively. However,
there is a slight disagreement for transplant which is not significant for the Weibull
model with ρ -value of 0.1555 but highly significant for the exponential model with
ρ -value of 0.0000.

On the distribution of lifetime, surgery is not significant on these two models with
ρ -value of 0.0676 and 0.8793, respectively. Age is found to be significant with a
ρ -value of 0.0184 for logistic exponential model but marginally significant with
ρ -value of 0.0564 for the logistic Weibull model, and finally, transplant is significant
with ρ -value 0.0000 for logistic Weibull model but marginally significant for logistic
exponential with ρ -value of 0.0655. It seems that the logistic Weibull model is a
better fit than the logistic exponential model (ln L = –473.33) based on the likelihood
ratio test.

Table 3 Logistic Weibull model

Equation for Equation for duration,
immune   given eventual failureVariable

Coefficient ρρρρρ -value  Coefficient ρρρρρ -value

Intercept –0.405679 0.7868 –5.406052 0.0000
Age 0.085003 0.0352  0.040808 0.0564
Surgery 2.678153 0.9379 –1.617680 0.0676
Transplant –1.700581 0.1555 –2.197031 0.0000

κ = 0.745974
ln L = –468.514
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5.0 CONCLUSION

In this section, we will summarise the results as shown in Table 4. For a split Weibull
model, all covariates are significant but not so for the logistic Weibull model where
surgery and transplant fail to be significant with ρ -value of 0.9379 and 0.1555,
respectively. Age is found to be significant with ρ -value of 0.007 in simple logistic
Weibull, but marginally significant for logistic Weibull model with ρ -value of
0.0564. However, surgery fails to be significant in simple logistic Weibull with
ρ -value of 0.1666 but marginally significant in the logistic Weibull model with
ρ -value of 0.0676. Finally, transplant is marginally significant for simple logistic
Weibull model with ρ -value of 0.0639 but most significant with ρ -value of 0.000 in
the logistic Weibull model.

The analysis suggest that for logistic Weibull model, only age is the important
covariate in determining the lifetime distribution while transplant is the only covariate
significantly contributes to fully recovery status from the heart failure.
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