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Abstract. The purpose of this study is to compare results obtained from three methods of
assigning letter grades to students’ achievement. The conventional and the most popular method
to assign grades is the Straight Scale method (SS). Statistical approaches which used the Standard
Deviation (GC) and conditional Bayesian methods are considered to assign the grades. In the
conditional Bayesian model, we assume the data to follow the Normal Mixture distribution where
the grades are distinctively separated by the parameters: means and proportions of the Normal
Mixture distribution. The problem lies in estimating the posterior density of the parameters which
is analytically intractable. A solution to this problem is using the Markov Chain Monte Carlo
approach namely Gibbs sampler algorithm. The Straight Scale, Standard Deviation and Conditional
Bayesian methods are applied to the examination raw scores of two sets of students. The
performances of these methods are measured using the Neutral Class Loss, Lenient Class Loss and
Coefficient of Determination. The results showed that Conditional Bayesian outperformed the
Conventional Methods of assigning grades.

Keywords: Grading methods, educational measurement, Straight Scale, Standard Deviation method,
Normal Mixture, Markov Chain Monte Carlo, Gibbs sampling

Abstrak. Kajian dijalankan untuk membanding keputusan yang didapati daripada tiga kaedah
penggredan terhadap pencapaian pelajar. Kaedah konvensional yang popular adalah kaedah Skala
Tegak. Pendekatan statistik yang menggunakan kaedah Sisihan Piawai dan kaedah Bayesian bersyarat
dipertimbangkan untuk memberi gred. Dalam model Bayesian, dianggapkan bahawa data adalah
mengikut taburan Normal Tergabung di mana setiap gred adalah dipisahkan secara berasingan
oleh parameter; min dan kadar bandingan dari taburan Normal Tergabung. Masalah yang timbul
adalah sukar untuk menganggarkan ketumpatan posterior bagi parameter tersebut secara analitik.
Satu penyelesaiannya adalah dengan menggunakan pendekatan Markov Chain Monte Carlo iaitu
melalui algoritma pensampelan Gibbs. Kaedah Skala Tegak, kaedah Sisihan Piawai dan kaedah
Bayesian bersyarat diaplikasikan untuk markah mentah peperiksaan bagi dua kumpulan pelajar.
Pencapaian ketiga-tiga kaedah dibandingkan melalui nilai Kehilangan Kelas Neutral, Kehilangan
Kelas Tidak Tegas dan Pekali Penentuan. Didapati keputusan dari kaedah Bayesian bersyarat
menunjukkan penggredan yang lebih baik berbanding kaedah Skala Tegak dan kaedah Sisihan
Piawai.

Kata kunci: Kaedah penggredan, pengukuran pendidikan, Skala Tegak, kaedah Sisihan Piawai,
Normal Tergabung, Markov Chain Monte Carlo, pensampelan Gibbs
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1.0 INTRODUCTION

Assigning grades is a compulsory part in education. By the time, the instructor is
responsible to assign grades meaningfully where they can apply the Norm Referenced
or Criteria Referenced in assigning the letter grades. For students, grade may vary
due to differences in the willingness to trade off leisure for study or in the ability to
learn a subject, which generates a direct relation between student grades and student
learning. For that reason, understanding the relationship between grading practices
and student evaluation is important in higher education. Grade is defined as the
instructor’s assessment and evaluation of student’s achievement relative to some
criteria. It also describes the student’s level of educational progress and universally
means of documenting student achievement.

In assigning marks to a student by administering the mid term test, project or
examination, by transforming their performance into a form of numbers of letter
grades, the instructors should know the procedure to measure the students
performance. There are many schemes to assign grades either followed the norm or
criterion-referenced which all seem to have their advantages and disadvantages.

There is a classification scheme on various sorts of score that may be used to
report the student’s achievement. If the instructor decides to assign the grades to
the norm group of a class then the instructor must define the mean and standard
deviation of the class’s scores precisely. Then the instructor needs to transform
the score into linear standard scores such as z-scores and T-scores. Note that the
variance from each graded component must have the same variance as the composite
scores.

Generally, the educators often wish to give weight to some components more
heavily than others. For example, quizzes scores might be valued at the same weight
as a project. A number of studies indicate that the key for proper weighting is by
testing the variability of the scores. A practical solution to combining several weighting
components is first to transform raw scores to standardized scores; z-score or McCall
T-scores [1 – 4 ]. This grading method, called “grading on the curve” or “grading on
the normal curve” became popular during the 1920’s and 1930’s. Grading on the
curve is the simplest method to determine what percentage of the class would get
A’s (say the top 10% get an A), what percentage for B’s, and so on [5]. Grading on
curve is a straightforward grading method, but it has serious drawbacks. The fixed
percentages are nearly determined arbitrarily. In addition, the used of normal curve
to model achievement in a single classroom is generally inappropriate, except in
large required course at college or university level [6]. Grading on curve is efficient
from an educator point of view.

A relative method called Standard Deviation Method implicitly assumed the data
comes from a single population and is the most complicated computationally but is
also the fairest in producing grades objectively. It uses the standard deviation which
tells the average number of n students differ from their class average. It is a number
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that describes the dispersion, variability or spread of scores around average score.
Unlike grading on curve, this method requires no fixed percentage in advanced.

In moving from scores to grades, educators can grade on an absolute grading
scale (say 90 to 100 is an A). Given that the students only care about their relative
rank, which kind of grading is better? Works by Pradeep and John [7] have shown
that if the students are disparate identical, then absolute grading is always better
than grading on a curve. This shows that when all the students are disparate identical,
it is always better to grade according to an absolute scale.

2.0 MATERIAL AND METHODS

The students’ raw scores from the selected courses are the subject of interest and are
given by the senior instructor. The documents of the students’ raw score are used as
evidence. Two sets of student of a small and a large class size are considered. We
have assume that every student in a particular class differs to some degree in their
psychology and sociology traits.

(i) Measurement

From the definitions, a measurement is the process of assigning numerals to object,
events, or people using rule. Ideally the rule assigns the numerals to present the
amounts of specific attribute possessed by the objects, events, or people being
measured [3]. In this research, we precisely define measurement as the grading
process of assigning raw score and a letter grade to a student. Thus the illustration in
Figure 1 shows that the grades in mathematical terms of measurement is a functional

Weighted and standardized
raw score

Figure 1 A functional mapping of letter grades
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mapping from the set of objects (i.e. students) {si ; i is the ID of each student}to the
set of real numbers of the standardized raw score {xi; xi ∈¡} and i, n ∈ ‚ starting
from 1 until n finite number of students.

First, the standardized raw scores are ranked in descending order that is
x1 > x2 > ... xn. The point of this study is to define the probability set function of the
raw scores that belong to the letter grades accordingly. A probability set function of
raw score tells us how the probability is distributed over various subsets of raw score
in a sample space G.

In addition, a measure of grades is a set function, which is an assignment of a
number µ (g) to the set g in a certain class. If G is a set whose points correspond to
the possible outcomes of a random experiment, certain subsets of G will be called
“events” and assigned a probability. Intuitively, g is an event if the question “Does w
(say 85) belong to g (say A)?” has a finite yes or no answer. After the experiment is
performed and the outcome should correspond to the point  85 ∈ G [8].

We denote G as a sample space of grades g1 = E, g2 = D, g3 = D +,. . . ,
g11 = A; {gL ∈ G} and the subscript L = 1, 2, …, 11 denotes the eleven components
of letter grades. We defined the eleven letter grade components as the set of
{A, A–, B+, B, B–, C+,C, C-, D+, D, E} corresponding to the set of grade point
averages {4.0, 3.7, 3.3, 3.0, 2.7, 2.3, 2.0, 1.7, 1.3, 1.0, 0.0 }.

2.1 Methodology

In this study, the methodology used is known as Bayesian Grading (we denote as
GB). In general, GB is applying Bayesian inference through Bayesian network in
classifying a class of students into several different subgroups where each of them
corresponds to possible letter grades.

The method has been developed according to Distribution-Gap grading method
in finding the grades cutoffs. This is formed by ranking the composites score of
students from high to low that is in the form of a frequency distribution. The frequency
distribution is cautiously observed for gaps where for several short intervals in the
consecutive score range there are no students obtained. A horizontal line is drawn at
the top of the first gap which gives an As’ cutoff and a second gap is required. This
process continues until all possible letter grade ranges (A-E) have been recognized.

(i) Bayesian methods for mixtures

The Bayesian approach of statistics is an attempt made to utilize all available
information in order to reduce the amount of uncertainty present in making the
decision of assigning grades. As new information is obtained, it is combined with
any previous information (raw scores) to form the basis for statistical procedures.
The formal mechanism is known as Bayes’ Theorem [9]; this explains why the term
“Bayesian’ is used to describe this general approach in grading.
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The earlier understanding and experience of the instructor’s belief in assigning
the letter grade is called the “prior belief” and the new belief that results from
updating the prior belief is called the “posterior belief”. Prior probabilities are the
degree of belief the instructor has prior to observing any raw scores. The posterior
probabilities are the probabilities that results from Bayes’ theorem. The posterior
probabilities of mutually exclusive and exhaustive events must sum to one for them
to be reliable probabilities [10].

In this study, we consider a finite mixture model in which raw scores data X =
{x1, x2,..., x3} are assumed to be independent and identically distributed from a
mixture distribution of g components. Equation (1) is called the mixture density
which the mixture proportion constrained to be non-negative and sum to unity. In
other words, Equation (1) is the probability that a particular raw score belongs to a
component of the mixture proportional to the ordinate of that component at the raw
score. Simplifying, we say that p(x1) is the probability density function of particular
raw score. Therefore for all raw scores we have a mixtures density of normal
distribution. Our interests are to find the probability that a particular raw score
belongs to a component of the mixture normal. The raw scores are independently
and identically with the mixture normal distribution. The mixture density has mixed
probabilities of πg as follows:

( ) ( )2

1

,
G

i g g g
g

p x π φ µ σ
=

= ∑ for i = 1,2,...,n (1)

where xi is the raw score of student, g is the indicator of G = 11 components of the
mixture, πg  is the component probability of component g and it can be written as
π = {π1, π2,..., πg} that cannot be negative and ( )1.π φ= ⋅∑  denotes the parametric
component density function where µg and 2

gσ are mean and variance of component

g and written in the form of vectors µ = {µ1,µ2,...,µg}and { }2 2 2 2
1 2, , , gσ σ σ σ= " .

We denote { } { } { }2 2 2
1 1 1 1 2 2 2 2, , , , , , , , ,g g g gθ π µ σ θ π µ σ θ π µ σ= = ="  and therefore,

we simplify the sets of θ as equal to { }1 2, , , .gθ θ θΘ = "

The eleven components of letter grades are ordered by their means. The mean
for grade E is the lowest significance to other letter grades, the mean for grade D is
higher than E and lower than D+, and so on. Therefore, the grade A has the highest
ranking and having a short interval belongs to A’s grade, that is µ1 < µ2 < . . .< µg. In
grading application, one may specify that one mixture probability is always greater
than another. Depending on grading assignment problem, one sort of constraint
may be more appropriate to a particular raw score data set; which the inequality
mean of each subgroups are well identified. This is mainly caused by the
nonidentifiability of the components under symmetric priors [11].
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(ii) Prior and posterior distributions

In this study, we have chosen the conjugate prior implementation to the posterior

distribution. The distribution ( ) ( )2,f Nθ µ σ=x x  is a normal density with

parameter µ and σ 2 and the mean is normally distributed with parameter ν  and δ 2

(i.e. µ ∼ N (ν, δ 2)), the variance is inverse Gamma distributed with parameter α and
β (i.e. σ 2 ∼ IG (α, β ) and the component probability is Dirichlet distributed with
parameter η (i.e. π ∼ Di(η)). We may refer to such distribution as a noninformative
prior for Θ. The posterior distribution is proportional to the product of likelihood
and prior distribution. That is:

f{π, µ, σ 2|G, xxxxx}α L {xxxxx| G, π, µ, σ 2} h {π, µ, σ 2}  (2)

The conditional distribution for posterior µg is ( )1,g g g gN V M Vµ −"∼ where

1

2 2 2 2

1
, i

i
g g x g

g g
g g g g

x
n

V M
ν

δ σ δ σ

−
∈ 

= + = + 
  

∑
 that is νg and δ 2

g  are the mean and variance

for each of component g. The conditional distribution for posterior 2
gσ  is

( )
1

22 1/ 2, 1 2 .
i

g g g g i g
x g

IG n xσ α β µ
−

−

∈

   + + −     
∑"∼

(iii) Markov Chain Monte Carlo (MCMC) and Gibbs sampler

In letter grades assigning problem, we are interested to find the optimal mean values
for each well defined grades component. Herein, we would like to find the unknown
parameter θ  of the posterior density. Suppose θ ∼ p(θ ) and if we seek

( ) ( ) ( )

( )
1

, , , , , , , ,

1
, ,

G
t t t

g

E p p d

p
N

θ

µ σ π µ σ π µ σ π µ σ π

µ σ π
=

  =    

≈

∫

∑

x x

 (3)

which converges to ( )E p θ  xxxx  with probability 1 as N → ∞. This integral cannot

be computed analytically since the parameter for the integration exceeds three. In
other words, we must integrate the expected values of Equation (1) with respect to
the means, variances and the component probabilities simultaneously. To solve
these difficulties we can compute the integral by Monte Carlo (MC) sampling methods.
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One problem with applying the Monte Carlo integration is in obtaining samples
from one complex probability distribution p(xxxxx). This problem is overcome by Markov
Chain Monte Carlo methods (MCMC). The objectives of MCMC are to generate a
sample from a joint probability distribution of posterior and to estimate expectation
of parameters. The most general MCMC approach is called the Metropolis-Hasting
algorithm (M-H algorithm) [12]. A second technique for constructing MCMC is by
Gibbs sampling algorithm.

Gibbs sampling is defined in terms of subvectors of θ. Suppose the parameter θ
from raw scores have been divided into g components or subvectors, Θ = {θ1,θ2,. . . ,θg}
of the iteration. The Gibbs sampler is cycles through the subvectors of Θ, in which
the subset conditional on the value of all the others. There are g steps in iteration t.
At each iteration t, an ordering of the g subvectors of Θ is chosen and, in turn, each

t
jθ  is sample from the conditional distribution of the mixture normal distribution

given all the other components of ( )1: , t
g jp θ −

−Θ ΘXXXX  where 1t
j

−
−Θ  represent all of the

parameters except for θj and X is the vector of raw score for the students. The Gibbs
sampling algorithm is:

For t = 1,2,...,B + T, construct Θ(t) as follows

( )
( )
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1 1 2 2

1
22 1
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for all t ≤ B where B = T is the burn-in period of overall iterations, 

1
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1 g
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2 2
g g g

g
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n x
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δ σ

= + ; Vg and Vg Mg is the variance and the mean of µg respectively, and

: i

i
g

i z g g

x
x

n=
= ∑ , ng is the number of students assigned to gth letter grade or simply the

number of raw score allocated to group g.νg and 2
gδ are the means and variances,

that is the parameter used to determine the prior for component means.

2.2 Instrumentation and Data Analysis

In this study, a grading method that statistically based has been adjusted to the
conventional grading method. We are interested to convert the scores to the letter
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grades. The raw scores are from the test, exam, project, portfolio, laboratory or
studio works in a semester of studies. The scores must be in the interval of [0,100].
Here we would like to find a probability density function of raw score that it tells us
how the probability is distributed over various subsets of raw score in a sample
space G.

The Gibbs sampling is implemented using WinBUGS software package. In
WinBUGS, we use precision instead of variance to specify a normal distribution.
This is because of the programming language used in WinBUGS itself [13]. Therefore

lets denote 2

1τ
σ

=  or 1 /σ τ= . Since the data of raw scores are always put into

the interval of [0,100], we approximate the prior of component means equidistantly
on that interval. Thus, for, G = 11, νg ≈ 9g. The prior variance of component means
should be set to some high value since the prior means νg is very uncertain and
corresponds to the true component means. Therefore, we set the prior standard
deviation to be of 20. We can also set the variance to be high value such as 500, 600,
and so on. But, the end result is the same. We set the expected value of the prior to
be non-informative E[σ ] = 5, Var [ σ ] = 4. Then the expected value of the standard
deviation of prior variance is E[σ 2 ] = 29.

In setting the initial parameter values, Θ(0), we first sort the raw scores data to the
descending order and subdivided into G = 11 group of equal size. The lowest
observations are in group one, the lowest observations which are not in group one
are in group two and so on. The initial parameter estimates for the computations are
easily obtained by estimating µg as gx that is the average of the observations in the
gth group, for each g = 1,2,...,G, and estimating 2

gσ as the average of the G within
group sample variance, 2

gs .

3.0 RESULTS AND DISCUSSION

In this section, we present two simulation results. We decided to choose a class with
the number of students less than 100 as the first sample, and a class which has more
than 100 students as the second sample. We have assumed that the final scores are
transformed to the composite score. In addition, we compare the letter grades assigned
from GB, SS and GC to the letter grades actually assigned by instructors. Therefore,
the reader can judge how well GB does by visual inspection.

3.1 First Case

We have a class of 62 students that attend a course for a given semester. The mean
of the raw score is 75.9, the median is 74.5 and the standard deviation is 12.88.
Table 1 shows WinBUGS output of the marginal moments and quantiles for means
of each letter grade upon sampling. Time for 150,000 Gibbs sampling was less than
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50 s for computer on 3.0 GHz of Pentium 4. At least 500 updates are burn in and
followed by a further 75,500 updates gave the parameter estimates.

We can see the MC error and Mean for µ1 is too large that is over 0 to 100 of
score’s interval. We conclude such case in which no students should be assigned to
grade E. Besides, we have µ2 (i.e. mean for grade D) with lower bound of α / 2 =
0.025 is 37.87. Therefore, the instructor would decide to assign grade E if the raw
scores of their students is less than 37. Conversely, grade D should be assigned for
the scores between 37 and 43, grade D+ for scores greater than 43 and less than 53
and so on.

Furthermore, we have the probability of the raw scores belongs to the respective
grades. For example, probability of the raw scores 96 are probably to be assigned
grade A is about 0.0743 (or 7.43%), the raw scores of 70 will be assigned grade B- by
the instructor with probability 0.1756 (or 17.56%) and so on as shown in Table 1. In
addition, Table 2 demonstrates the minimum and maximum score for each letter
grade and the percentage of students in the respective letter grade. We have about
25.81% of the students assigned to grade B- and approximately 79% of the students

Table 1 Optimal estimates of component means for first class

Node Mean Std. MC 2.5% Median 97.5% Start Sample
dev. error

π1 0.0135 0.009429 2.57E-5 0.001647 0.01139 0.03707 501 150000
π2 0.03374 0.01476 3.706E-5 0.01117 0.03166 0.06801 501 150000
π3 0.03378 0.01476 4.052E-5 0.01118 0.03172 0.06816 501 150000
π4 0.05401 0.01855 4.707E-5 0.02371 0.05197 0.09575 501 150000
π5 0.05403 0.01846 4.61E-5 0.02393 0.05203 0.09541 501 150000
π6 0.08111 0.02243 5.829E-5 0.04297 0.07916 0.13 501 150000
π7 0.1756 0.03105 8.129E-5 0.1192 0.1741 0.2404 501 150000
π8 0.1756 0.03114 7.68E-5 0.1189 0.1742 0.2407 501 150000
π9 0.1893 0.03208 8.16E-5 0.1306 0.1879 0.256 501 150000
π10 0.1149 0.02622 6.407E-5 0.06869 0.1132 0.1709 501 150000
π11 0.07433 0.02148 5.709E-5 0.03788 0.07238 0.1213 501 150000

µ1 1.435E+6 3.2E+6 8863.0 –4.843E+6 1.43E+6 7.698E+6 501 150000
µ2 38.0 0.06298 1.609E-4 37.87 38.0 38.13 501 150000
µ3 45.0 0.05662 1.454E-4 44.89 45.0 45.11 501 150000
µ4 55.67 0.8745 0.005166 53.93 55.66 57.43 501 150000
µ5 60.0 0.02515 6.647E-5 59.95 60.0 60.05 501 150000
µ6 65.6 0.3317 9.094E-4 64.94 65.6 66.26 501 150000
µ7 69.5 0.1071 2.751E-4 69.29 69.5 69.71 501 150000
µ8 75.0 0.4676 0.001335 74.08 75.0 75.93 501 150000
µ9 84.0 0.5011 0.001446 83.01 84.0 84.99 501 150000
µ10 92.56 0.2583 6.781E-4 92.05 92.56 93.07 501 150000
µ11 95.33 0.1076 2.735E-4 95.12 95.33 95.55 501 150000
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are passed. For comparison with the grades assigned by Straight Scale method and
Standard Deviation method, see Table 3. Take an example of the pass grade is to be
B-, that is approximately 86% of the student are passed. If the instructor applies the
Straight Scale then the pass scores is 65 and above. While, if the instructor has
decide to grade the student by the Standard Deviation method, then the pass score
is 76.84 and 45.16% of the students will be passed.

Table 2 Minimum and maximum score for each letter grade, percent of students and probability
of raw score receiving that grade for GB in the first class

Letter GB Number of Percentage Cumulative Probability
grades  From To student % percentage %

 A 95 100 3 4.84 4.84 0.0743
 A- 92 94 7 11.29 16.13 0.1149
 B+ 83 91 10 16.13 32.26 0.1893
 B 74 82 13 20.97 53.23 0.1756
 B- 69 73 16 25.81 79.03 0.1756
 C+ 64 68 5 8.06 87.1 0.0811
 C 59 63 3 4.84 91.94 0.054
 C- 53 58 2 3.23 95.16 0.054
 D+ 44 52 2 3.23 98.39 0.0338
 D 37 43 1 1.61 100 0.0337
 E 0 36 0 0 100 0.0135

Table 3 Straight scale and standard deviation methods for the first class

Letter Straight scale Standard deviation

grades Number Cumulative Number Cumulative
Score  of percentage Score  of percentage

students %  students  %

 A 085 – 100 17 27.4 095.57 – 100.00 1 1.61
 A– 80 – 84 8 40.3 90.89 – 95.57 9 16.13
 B+ 75 – 79 6 50.0 86.21 – 90.89 5 24.19
 B 70 – 74 12 69.4 81.52 – 86.21 7 35.48
 B– 65 – 79 10 85.5 76.84 – 81.52 6 45.16
 C+ 60 – 64 4 91.9 72.16 – 76.84 6 54.84
 C 55 – 59 2 95.2 69.48 – 72.16 15 79.03
 C– 50 – 54 1 96.8 62.79 – 67.48 5 87.10
 D+ 45 – 49 1 98.4 58.11 – 62.79 3 91.94
 D 40 – 44 – – 53.53 – 58.11 2 95.16
 E 00 – 39 1 100.0 00.00 – 53.43 3 100.00
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3.2 Second Case

Now we have a class of 498 students. The mean is 71.53, the median is 73 and the
standard deviation is 12.58. Table 4 shows WinBUGS output of the marginal moments
and quantiles for means of each letter grade upon sampling. The updates for 150,000
Gibbs sampling took less than 2.5 minutes.

Table 4 shows the optimal estimate of component means and component
probabilities of each letter grade. From Table 4, the instructor should assign grade
A for the raw scores between 91 and 100, grade A- for the raw scores between 84
and 90, and so on. The corresponding grades intervals are decided from the credibility
interval of 2.5% to 97.5% and with α = 0.05 (or α / 2 = 0.025). In addition, Table 6
shows the letter grades along with its score range for Straight Scale and Standard
Deviation methods.

Compare Table 5 with Table 6 to the grades assigned by instructor. If the instructor
decided the pass grade is B-. Then the percent of the students to be assigned for at

Table 4 Optimal estimates of component means for second class

Node Mean Std. MC error 2.5% Median 97.5% Start  Sample
dev.

π1 0.03145 0.00547 1.44E-5 0.02163 0.03115 0.043 501 150000
π2 0.03927 0.006077 1.514E-5 0.02825 0.03896 0.05204 501 150000
π3 0.0334 0.00563 1.509E-5 0.02323 0.03309 0.04527 501 150000
π4 0.04322 0.006361 1.651E-5 0.03159 0.04292 0.05644 501 150000
π5 0.05497 0.007151 1.911E-5 0.0418 0.05468 0.06973 501 150000
π6 0.09038 0.009001 2.303E-5 0.07356 0.09012 0.1088 501 150000
π7 0.2593 0.01372 3.658E-5 0.2327 0.2591 0.2866 501 150000
π8 0.1945 0.01238 3.078E-5 0.1708 0.1943 0.2193 501 150000
π9 0.1297 0.01053 2.718E-5 0.1098 0.1294 0.151 501 150000
π10 0.08255 0.008611 2.247E-5 0.06646 0.08226 0.1002 501 150000
π11 0.04125 0.006233 1.621E-5 0.02987 0.04096 0.05433 501 150000

µ1 33.73 0.5143 0.001466 32.72 33.73 34.74 501 150000
µ2 43.37 0.374 9.542E-4 42.63 43.37 44.11 501 150000
µ3 51.75 0.2213 5.475E-4 51.31 51.75 52.19 501 150000
µ4 59.29 0.2298 5.945E-4 58.83 59.29 59.74 501 150000
µ5 64.04 0.1606 4.145E-4 63.72 64.04 64.35 501 150000
µ6 67.44 0.1117 3.01E-4 67.23 67.44 67.66 501 150000
µ7 71.89 0.07132 1.775E-4 71.75 71.89 72.03 501 150000
µ8 76.48 0.08646 2.315E-4 76.31 76.48 76.65 501 150000
µ9 80.54 0.0997 2.724E-4 80.34 80.54 80.73 501 150000
µ10 84.32 0.151 3.633E-4 84.02 84.32 84.61 501 150000
µ11 92.55 0.5138 0.00135 91.54 92.55 93.56 501 150000
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least grade B- are 25.81%, 85.5%, and 45.16% respectively to the GB, Straight Scale
and Standard Deviation method.

 The results indicate that the grading plan via GB, Straight Scale and Standard
Deviation method vary to the grades interval and the number of student getting the
respective grade.

The implementation by WinBUGS package needs the instructor to decide the
stopping point of the iterations. The stopping point shows an optimal parameter

Table 5 Minimum and maximum score for each letter grade, percent of students and probability
of raw score receiving that grade for GB in the second class

Letter GB Number Percentage Cumulative Probability
grades From To  of percentage

student %   %

 A 91 100 13 2.6 2.6 0.04125
 A– 84 90 32 6.4 9.0 0.08255
 B+ 80 83 64 12.9 21.9 0.1297
 B 76 89 84 16.9 38.8 0.1945
 B– 71 75 143 28.7 67.5 0.2593
 C+ 67 70 53 10.6 78.1 0.09038
 C 63 66 32 6.4 84.5 0.05497
 C– 58 62 23 4.6 89.2 0.04322
 D+ 51 57 16 3.2 92.4 0.0334
 D 42 50 18 3.6 96.0 0.03927
 E 0 41 20 4.0 100.0 0.03145

Table 6 Straight scale and standard deviation methods for the second class

Letter Straight scale Standard deviation

grades Number Cumulative Number Cumulative
Score  of percentage Score  of percentage

students  students  %

A 085 – 100 34 6.8 93.46 – 100.0 9 1.81
A– 80 – 84 75 21.9 89.01 – 93.46 6 3.01
B+ 75 – 79 115 45.0 84.44 – 89.01 19 6.83
B 70 – 74 131 71.3 79.86 – 84.44 60 18.88
B– 65 – 79 60 83.3 75.29 – 79.86 99 38.76
C+ 60 – 64 24 88.2 70.71 – 75.29 112 61.24
C 55 – 59 9 90.0 66.14 – 70.71 84 78.11
C– 50 – 54 16 93.2 61.56 – 66.14 32 84.54
D+ 45 – 49 6 94.4 56.99 – 61.56 23 89.16
D 40 – 44 12 97.0 52.54 – 56.99 9 90.96
E 00 – 39 15 100.0 000.0 – 52.54 45 100.00
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updates. One of the issues is at which updates the expected values converge to the
optimal? Generally, there are three convergence tests; autocorrelation functions,
Gelman-Rubin and traces diagnostics. For example see Figure 2. When the updates
shows convergence, it means the expected values of parameter θ of the posterior
density converges to E [p(θ/x)] with probability 1 as figured in Equation (3).

Figure 2(a) indicates that the traces diagnostics found the chains of sampling
cover the same range and not shows any trend or long cycle, and in Figure 2(b)
shows the 95th percentile of Gelman-Rubin scale reduction factor which measure
between chain differences and rapidly approach to 1 if the sampler is close to the
target distribution. Finally, we look at the autocorrelation function as in Figure 2(c).
A long-tailed autocorrelation graph suggests that the model is ill conditioned and
that the chains will converge more slowly [13]. The figure suggests convergences for
all means and proportions of each letter grade. Results in Tables 1 and 4 show the
stopping point or the convergence took 150 000 sampling.

Figure 2 a) Sampled values of means from one component, b) Gelman-Rubin convergence
diagnostics and c) Autocorrelation of sample values
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Figure 3 shows the plots of grade cumulative density function for Small Case and
Large Case. The dotted line represents the cumulative distribution of Straight
Scale and Standard Deviation methods and the smooth line is for grade according
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to GB, whereas Figure 4 demonstrates the cumulative density plots for each letter
grades along with its histograms.

3.3 Performance Measures

In measuring the performance, there are two measures to determine the performance
of the grading methods. Refering to asymmetric loss and the absolute loss, we have
decided to design the loss function in assigning letter grades as follows:

 ( ) ,
,

,
i i i i

i i i
i i i i

c y y y y
C y y

y y y y

 − ≤=  − >
(4.3)

Figure 3 Cumulative distribution plots for SS, GC and GB grading methods
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Figure 4 Density plots with histogram for the first and second class of GB method
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where y is the numeric equivalent of the letter grade that the student truly deserves;
y is the numeric equivalent of the letter grade that the instructor assigned; and c is
the positive constant that reflect instructor’s preference. This signify that, when c = 1,
the instructors think equally badly about underestimating and overestimating the
grade and when c > 1, the instructors think worse about underestimating than they
think about overestimating and conversely if 0 < c < 1, the instructors think worse
about overestimating than they think about underestimating. We introduce the class

loss (CC) as 
1

1 n

i
i

CC C
n =

= ∑ . The lower CC means that the alternative grading methods

assign grade closer to those actually assigned by the instructor. Another method in
evaluating grading plan performance is by the raw coefficient of determination. Raw
coefficient of determination is given by

2

2 1

2

1

1

n

i
i

r n

i
i

e
R

y

=

=

= −
∑

∑

where ei = yi – yi and 20 1rR≤ ≤ . Raw coefficient of determination is a measure of
the variation of the dependent variable that is explained by the regression line and
the independent variable. The value of R2 is usually expressed as a percentage and
so it ranges from 0% to 100%. Thus, the closer the value is to 100%, the better the
model is representing the data.

Table 7 shows that 2
rR      for GB is higher than SS and GC. Therefore, a GB

method gets closer to the grades actually assigned by the instructor as compared to
SS and GC method. However, between GB and SS, we can say there are no significant
differences. But we can say GB and GC have significance difference of the high
different in 2

rR      value. In addition, the CC values for both lenient and neutral class
loss of GB are the lowest as compared to SS and GC. These results indicate that
utilizing of GB method is better in assigning the letter grades instead of SS and GC
methods.

^

Table 7 Performance of GB, straight scale and standard deviation methods

Neutral CC Lenient CC 2
rR (%)

Straight scale (SS) 0.7903 1.2677 98.98
Standard deviation (GC) 1.4839 1.4839 93.71
GB 0.1935 0.3097 99.66
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4.0 CONCLUSION

The conditional Bayesian method is the method that allows for screening students
accordingly to their performance relative to their peers and is useful for competitive
circumstances where the feedback allow the students to compare their performance
to their peers. Moreover, GB requires no fixed percentages in advance. Basically
this method removes the subjectivity from Distribution Gap, making it more
applicable. The conditional Bayesian grading reflects the common belief that a class
is composed of several subgroups, each of which should be assigned a different
grade. In this study, we have showed that conditional Bayesian grading successfully
separates the letter grades. In applying conditional Bayesian method, the instructor
needs to determine their own Leniency Factor. This is a spontaneous measure that
reflects how lenient the instructor is when he or she grades their students performance.
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