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Abstract 

 

In an attempt to obtain a 2D floating breakwater model with high performance in wave reflection, genetic 

algorithm (GA) was combined with boundary element method (BEM) in the previous study. The 

performance of the obtained model was verified with numerical relations as well as an experiment in 
towing tank. Moreover, its performance and characteristics in 3D case were also evaluated in the 

subsequent study. However, because the 3D model is formed by simply extruding the 2D shape in 

longitudinal direction, it only produces a model with uniform transversal shape which is considered to be 
less effective and efficient in terms of technical and economical points of view. Consequently, it is needed 

to modify the model to obtain a more realistic and efficient design without reducing significantly the high 

performance obtained previously. In the present study, several modifications of the original 3D model are 
performed which include placing moonpools inside the body. The performance and characteristics of the 

modified models in terms of wave elevations on the free surface are evaluated at various wavelengths by 

using higher order boundary element method (HOBEM). The accuracy of the computed results is 
confirmed with Haskind-Newman and energy conservation relations. From the modifications and 

evaluations of the models, it could be realized that the moonpools inside the body could be used to obtain 

a more realistic model without reducing the optimum performance of the original model shape.   
 

Keywords: Floating breakwater; moonpools; higher order boundary element method (HOBEM); realistic 

model; transmission coefficient; wave elevation 
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1.0  INTRODUCTION 

 

It is known that near-shore area has become an increasingly 

important place for people to conduct activities nowadays. 

Consequently, it is necessary to protect it from wave attack and 

other harsh environment conditions. Protectingthe area would 

enable people to conduct activities in this area conveniently which 

consequently could increase their productivity as well asthe 

economic growth around the area.The methods of protection 

ranging from simple structures such as rubble mound 

breakwaters1,2,3 to more complicated structures such as caisson 

type breakwaters4,5,6. However, one of the increasingly popular 

methods recently is to install a floating-type breakwater7,8. This 

type of floating breakwater has several advantages such as low 

construction cost, installation flexibility, fresh water preservation, 

easy repair, etc. 

  Some of the important matters to consider when choosing a 

floating breakwater model to be installed are its performance and 

construction cost. Consequently, less volume models are more 

preferable since it will be cheaper for construction. Therefore it is 

important to obtain a model which has less volume without 

reducing significantly its performance. Moreover, from technical 

point of view, less material model tends to be lighter. It is known 

that being lighter is also one of the desirable properties of a 

floating breakwater. 

In a previous study conducted by Mahmuddin and Kashiwagi9, 

genetic algorithm (GA) was combined with boundary element 

method (BEM) to obtain a 2D floating breakwater model shape 

which has a high performance in wave reflection. The 

performance of the model in 3D case was also evaluated in a 

subsequent study10. In the present study, the optimized model is 

modified to obtain a more realistic and efficient floating 

breakwater model in terms of model volume. It is common that a 

model with less volume relatively will have less material and 

weight in constructing the real model.  

  The original model to be modified was constructed by 

extruding an optimized 2D shape obtained from a study carried 

out by Mahmuddin and Kashiwagi9 into horizontal direction. 

Consequently, the model has uniform transversal shape which can 

be considered to be less effective and efficient. Therefore, it is 

needed to modify this shape to obtain a more realistic and 

efficient model without reducing significantly the performance 

obtained previously.  

  In order to obtain a more realistic model, moonpools will be 

placed inside the floating breakwater. With the moonpools inside 

the body, the incident wave would enter the moonpool and make 

interaction with the water inside the body. Motions and 

interaction of the incident waves inside the moonpool could be 

expected to reduce the energy of incident wave which 

consequently reduce the transmitted wave11,12. In order to 

compare the performance of models withmoonpools, a model with 



/B=/Kb

A
m

p
li

tu
d

e
/

a

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

y/b= 0

y/b= L/6

y/b= 2L/6

Avg Model 3

Avg Model 2

Transmission Coefficient

Free Motions Case



136                                                 Faisal Mahmuddin & Rahimuddin / Jurnal Teknologi (Sciences & Engineering) 69:7 (2014), 135–141 

 

 

the same volume reduction in the midst of the model will also be 

evaluated.  

  In order to analyze the performance of the modified models, 

higher order boundary element method (HOBEM) is employed. 

HOBEM which is based on the potential flow theory divides the 

body into certain number of panels and represents both 

quadrilateral panels and unknown velocity potentials with 

quadratic representation. The hydrodynamic forces, body motions 

and wave elevations on the free surface around the body can be 

computed and analyzed with this method. 

  The accuracy and correctness of the computation results are 

confirmed with Haskind-Newman and energy conservation 

relations. In the present study, computations and analysis will be 

performed only in beam wave case. 

 

 

2.0  SOLUTION METHOD 

 

2.1  Mathematical Formulations 

 

The present study is concerned with the development an optimal 

floating breakwater by optimizing the body shape. Therefore, in 

order to be able to analyze a model with arbitrary shape, the body 

shape is assumed to be asymmetric in all directions. The 

coordinate system adopted is shown in Figure 1, where the body 

shape isarbitrary and asymmetric with respect tox, y and z-axes. 

 

 

Figure 1  Coordinate system and normal vector definitions 

 

 

  The origin of the coordinate system is placed at the center of 

the body and on the undisturbed free surface, and the z-axis is 

taken positive vertically downward. The water depth is assumed 

to be infinite. The regular wave is considered to be incoming with 

incident angle with respect to the negativex-axis as shown in 

Figure 1. Thus =180 deg. means the wave incoming from the 

positive x-axis(beam wave case) which is considered in the 

present study. 

  Under the assumption of incompressible and inviscid flow 

with irrotational motion, the velocity potential can be introduced, 

satisfying Laplace’s equation as the governing equation. The 

boundary conditions are linearized and all oscillatory quantities 

are assumed to be time-harmonic with circular frequency. 

Applying superposition principle, the velocity potential can be 

expressed as a summation of the incident-wave potential 0 and 

the disturbance potential as follows: 

 

 0( , , , ) Re ( , , ) ( , , ) i tx y z t x y z x y z e     
 

 (1) 

 

where 0 can be given explicitly as 
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With g the acceleration of gravity, a the amplitude of incident 

wave, and K the wavenumber given by
2 /K g . 

Furthermore, the disturbance potential  can be decomposed in 

the following form 
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  where 7 denotes the scattering potential in the diffraction 

problem, and j is the radiation potential in the j-th mode of body 

motion with complex amplitude jX . In 3D problems, we 

consider six degrees of freedom in general as shown in (3) which 

are surge ( 1)j  , sway ( 2)j  , heave ( 3)j  , roll ( 4)j  , pitch 

( 5)j  , and yaw ( 2)j  . For the diffraction problem, the sum of 

0 7   is denoted as D , which is referred to as the diffraction 

potential in this paper. 

  The governing equation and boundary conditions to be 

satisfied can be summarized as follows: 
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and also an appropriate radiation condition of outgoing waves 

must be satisfied for 1~ 7j  . Here HS denotes the body wetted 

surface and jn the j-th component of the normal vector, defined 

as positive when directing out of the body and into the fluid. 

  By using Green’s theorem, the governing differential 

equations of the present problem are turned into integral equations 

on the boundary. That boundary surface can be only the body 

surface HS by introducing the free-surface Green function, and the 

resulting integral equations can be written in the form 
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  where ( )C P  is the solid angle, ( , , )P x y z  is the field point, 

( ', ', ')Q x y z  is the integration point on the body surface. 

( ; )G P Q is the free-surface Green function satisfying the linearized 

free-surface and radiation conditions, which can be expressed as 
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  Here 0( )K kR  denotes the second kind of modified Bessel 

function of zero-th order and 
(2)
0 ( )H KR  the second kind of Hankel 

function of zero-th order. 

 

2.2  Higher-order Boundary Element Method 

 

In order to attain high accuracy, the integral equation shown 

above was numerically solved by the Higher-Order Boundary 

Element Method (HOBEM), described in Kashiwagi13. The body 

surface is discretized into a number of quadrilateral panels. 

According to the concept of iso-parametric representation, both 

body surface and unknown velocity potential on each panel are 

represented with 9-point quadratic shape functions 

( , ) ( 1~ 9)kN k    as follows: 
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  where ( , , )k k kx y z  are local coordinates at 9-nodal points on a 

panel under consideration, and likewise k denotes the value of 

the velocity potential (which is to be determined) at 9-nodal 

points of a panel. 

The shape functions in (12) and (13) for a quadrilateral panel 

can be expressed in the form 
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  where index k denotes the local node number ( 1~ 9)k  , as 

shown in Figure 2. 

 

Figure 2  Quadrilateral 9-node Lagrangian element 

 

 

  The normal vector on the body surface (each panel) can be 

computed with differentiation of the shape function as follows: 
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  Through a series of substitution, finally the boundary integral 

equations can be recast in a series of algebraic equations for the 

velocity potentials at nodal points consisting of panels. The results 

can be expressed in the form 
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and index n denotes the serial n-th panel, index m the global serial 

number of nodal points, and ( , )n k  is also the serial number of 

nodal points associated with (to be computed from) the k-th local 

node within the n-th panel. ( , )J   in(17) and (18) denotes the 

Jacobian in the variable transformation. NT denotes the total 

number of nodal points and thus (16) is a linear system of 

simultaneous equations with dimension of NT NT for the 

unknown velocity potentials at nodal points. The solid angle mC

in (16) is computed numerically by considering the equi-potential 

condition that a uniform potential applied over a closed domain 

produces no flux and thus zero normal velocities over the entire 

boundary. 

  The free-surface Green function, given by(11), can be 

computed efficiently by combining several expressions such as 

the power series, asymptotic expansions, and recursion formulae; 

its subroutine is available in Kashiwagi et al.14 

 

2.3  Hydrodynamic Forces 

 

Once the velocity potentials on the body surface are determined, it 

is straightforward to compute the hydrodynamic forces. The 

results are written in the form 
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  where ijF  is the radiation force in the i-th direction due to 

the j-th mode of motion  and its real and imaginary parts are the 

added mass ijA  and damping coefficient .ijB jE  in (20) denotes 

the wave-exciting force. These quantities are expressed with 

respect to the origin of the coordinate system shown in Figure 1, 

and can be combined to obtain corresponding quantities expressed 

with respect to the center of gravity; which will be used in 

establishing the motion equations. 

  The equations of body motion with respect to the center of 

gravity can be established in a matrix form as follows: 
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  Superscript G means quantities with respect to the center of 

gravity. ijM denotes the generalized mass matrix, ij  is the 

Kroenecker’s delta, and 
G
ijC is the restoring-force coefficients due 

to the static pressure. By solving these coupled motion equations, 

the complex motion amplitude 
G
jX  can be determined and then 

the corresponding complex amplitude with respect to the origin of 

the coordinate system  ( 1~ 6)jX j   can be obtained from 
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  where jkl  denotes the alternating tensor for the outer 

product of vectors and ( )  ( 1~ 3)G kx k   the ordinates of the center 

of gravity. 

  The numerical accuracy can be confirmed by checking the 

Haskind-Newman relation for the wave-exciting force and the 

energy-conservation relation for the damping coefficient. These 

relations are expressed as 
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  where ( , )jH K   denotes the so-called Kochin function in the 

radiation problem, expressed as  
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  where θ is the angle of radiated wave with respect to minus 

x-axis. 

 

 

 

 

2.4  Wave Elevation on Free Surface 

 

The wave elevation on the free surface in the linear theory can be 

computed from 
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  where the velocity potentials due to disturbance by a floating 

body can be computed from 
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  where ( , ,0)P x y  is a point on the free surface. 

  In HOBEM, these velocity potentials can be computed by 

using the shape function and the solutions of the velocity 

potentials at nodal points. The integrals in (27) and (28) can be 

evaluated by summation over all panels, on which element 

computations can be done using the same scheme for the 

coefficients shown in Equations (17) and (18), with P placed on 

the free surface. 

  In this paper, we are concerned with the transmission and 

reflection waves by a floating breakwater. The transmission wave 

is defined by the wave in the lee side, propagating in the same 

direction as that of the incident wave. On the other hand, the 

reflection wave must be defined as the wave in the weather side, 

propagating to the opposite direction. Thus the incident-wave 

term 0( , ,0)x y  in Equation (26) is subtracted from Equation (26) 

in numerical computations for the reflection wave. 

 

 

4.0  RESULTS AND DISCUSSION 

 

From the previous study conducted by Mahmuddin and 

Kashiwagi9, an optimal 2D shape had been obtained. Based on 

this shape, a 3D model is constructed by extruding it into 

longitudinal direction. The performance of the 3D model is found 

to be similar to the 2D one when the body dimension is quite 

long10. The determined 2D shape and its dimension are shown in 

Figure 3 and Table 1, respectively.  

  Table 1 also shows geometrical parameters which need to be 

assumed before computation which are center of gravity (OG) and 

roll gyrational radius (Kzz). The same values of these parameters 

are used in all 3D models computations in this study. The exact 

value of these parameters can only be known once the real model 

is constructed. 

 

 
 

Figure 3  Optimized 2D model shape 
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Tabel 1  Dimension of 2D model 

 

Notations Unit 

Maximum breadth (B=2b) 2.0 

Draft (d) 1.0 

Center of gravity (OG) 0.82 
Roll gyrational radius (Kzz) 0.614 

 

 

  The corresponding 3D model shape and its dimension 

notations are shown in the Figure 4. As it can be seen from the 

figure, the transverse sections of the model are uniform. The main 

goal of the present study is to obtain a realistic model by reducing 

certain amount of model volume. Reducing the model volume is 

carried out by removing some portions of the uniform part 

without significantly reduced the performance of the original 

model which has been obtained previously. 

 

 
 

Figure 4  Original 3D model shape 

 

 

  In 2D case, the wave reflection and transmission are easily 

defined because their magnitudes are same at any position of 

measurement. However, in 3D computations, the wave elevations 

will depend on the measurement positions because the wave field 

around the body will also be in 3D form.  

  Therefore, in order to compare the wave transmission of 2D 

and 3D cases, 3 different positions along negative x-axis are 

defined for waves measurement in 3D case which are at /x b = 

4, 10 and 18 as illustrated in the Figure 5.  

 

 
 

Figure 5  Wave measurement positions in 3D case 

 

 

  The performance of the optimized 2D model compared to 

original 3D model for body length L/b=40, are found to be similar 

as shown in the Figure 6. Theoretically, computing much longer 

body length will make the computed results of 2D and 3D are 

even more similar. 

 

 
 

Figure 6  Transmission coefficients of 2D and original 3D models 
 

 

  However, from body shape shown in Figure 4, the original 

3D model could be considered to be less efficient in terms of 

technical and economical points of views due to uniform 

transversesection as previously explained. Therefore, some 

modifications of the original 3D model are performed in this 

study.  

  In the previous 3D computations, the transmitted waves are 

only defined by 3 points along x-axis line because the 

computation results need to be compared with 2D ones. However, 

because the next modification will be performed in several 

positions inside the body, the waves will be more complicatedthan 

in the previous case. Therefore, in order to fairly evaluate the 

wave transmission, the transmitted wavesare measured in 9 

different positions which are 3 positions along y-axis and 3 

positions along x-axis as illustrated in Figure 7. 

  However, only wave transmissions in positive part of x-y 

plane which will be measured because all models evaluated in this 

study are symmetric with respect to x-axis so the wave 

transmission in the negative x-y plane will be same.  

 

 
 

Figure 7  New wave measurement positions 

 

 

  In the analysis, the problem is divided into fixed motions 

(diffraction) case and free motions case (diffraction + radiation). 

However, only computation results of free motions case which 

will be discussed in the present study. 

  The first modification is performed by reducing the volume 

of the model in the midst of the model which will be named as 

Model 1. The shape and dimension notations of Model 1 are 

shown in the Figure 8. 
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Figure 8  Model 1 shape 

 

 

  The dimensions of reduced part are /e b   10.667 and 

/f b  1.6. The performance for this model is shown in Figure 9. 

In this figure, only wave transmission along y-axis which will be 

shown. The computation results in each y-axis position are taken 

as the average of the wave transmission at 3 positions alongx-axis. 

 

 
 

Figure 9  Transmission coefficients of Model 1 and original model 

 

 

  In Figure 9, besides the wave elevations measured in 3 

defined positions, the average wave amplitude from these 3 wave 

amplitudes are also calculated and shown by a delta markedsolid 

line. Besides that, the average of wave transmission from original 

model measured in 9 positions (using new measurement 

definition) is also shown by a rectanglemarkedsolid line.  

  By comparing the transmitted waves of the original model 

and Model 1, it is obvious that the performance of the Model 1 is 

still poor especially in the wavelength ∞/B=2.2~5.2. The 

performance reduction can be attributed to the shape change of 

the original model. The reason can be justified by observing high 

transmission coefficient in the measurement position y/b=0. 

  In the second modification named as Model 2, a moonpool is 

placed inside the body. The shape and dimension notations of the 

model are shown in the Figure 10. 

 

 
 

Figure 10  Model 2 shape 

The value of e and f are same with the previous computation. This 

means that the volumes reduced in Model 1 and 2 are relatively 

similar. The computation results for Model 2 are shown in Figure 

11. 

 

 
 

Figure 11  Transmission coefficients of Model 1 and 2 

 

 

  As can be seen from Figure 11, the model performance for 

this case is significantly improved as compared with the 

performance of Model 1. The performance improvement could be 

expected from motions and interaction of the incident wave inside 

the moonpoolwhich would reduce its energy thus reducing the 

transmitted waves. 

  However, several peaks in Figure 11 in shorter wavelength 

region can be noticed which are caused by the lack of number of 

panel used in computing this region.It is known that large 

numbers of panels are needed for computing high frequencies 

region. Another reason of the peaks could be what so-called 

irregular frequencies. In the previous study10, an attempt to 

remove these frequencies are considered by placing some 

additional field points on the interior free surface of the body 

which is a method adopted by Haraguchi and Ohmatsu15. 

However, this technique seems not effective on removing these 

frequencies. Therefore, other methods should be implemented.  

  In order to obtain a more optimum performance model, the 

moonpool of the same volume is separated into two smaller 

moonpools. The shape and notations of the modified model for 

this case which is named as Model 3 are shown in Figure 12. 

 

 
 

Figure 12  Model 3 shape 

 

 

  Computation results for Model 3 as compared to Model 2 

computation results are shown in the following figure. 
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Figure 13  Transmission coefficients of Model 2 and 3 

 

 

  As shown in Figure 13, the performance of Model 3 is 

slightly better than performance of Model 2 especially in the 

wavelength range of ∞/B=3.8~4.6. However, it could also be 

noted that performance of Model 2 is slightly better than Model 3 

in longer wavelength region. The smallchange of the performance 

is caused by the difference position of wave absorption due to 

change of the moonpools position. Consequently, in order to 

further optimize the model, it is important to evaluate the 

optimum size and locations of the moonpools. However, this topic 

is not discussed in the present study and will be left as a future 

work. 

 

 

5.0  CONCLUSION 

 

Based on an original model which has an optimal performance, 

several models are constructed and computed in this study. 

Computation results show that a more realistic and efficient model 

for construction can be obtained by placing moonpools inside the 

body which allows reduction of model volume and material. Even 

though placing moonpools could negatively affect the model 

performance due to model shape change, motions and interaction 

of incident wave inside the moonpools could reduce the incident 

wave energy thus reducing the transmitted wave.  
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