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Abstract 

 

Planning of Container Terminal equipment has always been uncertain due to seasonal and fluctuating 

throughput demand, along with factors of delay in operation, breakdown and maintenance. Many time-
series models have been developed to forecast the unforeseen future of container throughput to project the 

needed amount of port equipments for optimum operation. Conventionally, a "ratio" method developed 

by port consultants at early port design stage is adopted for equipment planning, giving no consideration 
to the dynamic growth of the port in terms of improved layout and technological advancement in 

equipments. This study seeks first to enhance the empirical approach of the equipment planning at the end 

of planning time horizon by including assumed coefficient of port capacity parameters. The second is to 
compare the size of equipment purchase by receiving different terminal's future throughput demand from 

two univariate forecasting models at planning time horizon. The empirical method of equipment planning 

will be tested against the conventional yard equipment per quay crane ratio after deriving the throughput 
demand from forecasting models of Holt-Winter's exponential smoothing and seasonal ARIMA 

(autoregression integrated moving average) model. Results in the form of graphs and tables indicate 

similar forecasting pattern by two models and equipment estimation proofs to avail more redundancy for 
optimum operation. Suggestions for better estimation of equipments are also made for future models. 
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1.0  INTRODUCTION 

 

Containerization has been an important key in the rapid growth of 

international trade, particularly for Malaysia as a strategic mid-

way-point of the east and west. So, demand has been high on 

terminals logistics, management and technological breakthrough 

to be able to service the immense growth of container shipment 

[1], transshipment or inbound container service. Malaysian ports 

capacity is one of the most important determinants of meeting the 

increasing trade.  

  Port capacity refers to the ability of the port to provide a 

minimum queuing time, berthing and efficient operation of 

handling container transfer. An optimum capacity can be defined 

by various approaches such as economical, theoretical, empirical, 

operational, engineering or integrated [2]. 

  Container terminals planning is a dynamic system with 

multiple-aspect consideration to fit for an optimum operation the 

staggering array of container handling equipment (CHE) that is 

available. In general, CHE can be categorized into fixed 

equipments (container conveyer, automated stackers and container 

lifts), rail-mounted equipments (ship-to-shore cranes, gantries, 

transtainers and trains) and free-running equipments (rubber-tire-

gantry, forklifts, reachstakers, straddle carriers and prime-

movers). Inability to match equipment capacity to the handling of 

throughput demand may result in long queuing time long after the 

estimate time of arrival (ETA) and possible hiccups in the loading 

and unloading process of container from vessel to the respective 

storage area [3]. Failure to provide service at ETA will impose 

additional cost and time that may devastate the port's reputation 

and drive ship-liners away to the nearest adjacent port for a more 

swift and reliable service. Not only does this cause irreversible 

investment loss but also the withdrawal of many stakeholders for 

future investment. [4]. 

  Therefore, substantial planning for additional port 

equipments, whilst not giving high redundancy that incur high 

investment, is of crucial importance for optimum operation of 

container movement [5]. Traditionally, the number of free-

running equipments required is selected based on a crane/berth 

ratio. This ratio is predetermined by port consultants [6] at early 

port establishment as a function of the specific layout of the port. 

This ratio is non-sustainable as the port expands and cannot stand 

as a optimum equipment ratio at all time. There is an obvious lack 

of general empirical estimation to account for the current 

crane/berth ratio to execute optimum operation in the container 

transfer process. 

  In order to plan for equipments as well as port expansion, 

prior long term forecast of container throughput is an essential 

reference to gauge the throughput growth size .Monitoring 
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throughput changes of seasonal growth pattern aides planning 

activity involving the acquisition of additional equipment and 

even arrangement of the port's transportation system. However, 

permutation of transport system is not the focus point of this 

paper. This paper highlights the activity of equipment acquisition 

based on the forecasted throughput demand at the end of the long-

term planning, also known as planning time horizon (PTH). There 

are a vast discipline of forecasting techniques that include time-

series projection, simulation of one or more variables, input-

output analysis and qualitative forecasting by expert opinion [7]. 

As of this paper, time-series projection is chosen as a forecasting 

tool for equipment planning – a total empirical approach.  

  In short, this paper has a twofold objective, first, to enhance 

the existing empirical formula for not only the number of quay 

crane needed but also to for other major equipments namely RTG 

and prime-movers. This follows the previous work on equipment 

estimation [2], [8], [9] with differing parameters and 

consideration to amend the existing algorithms. Second, to 

investigate the influence of different forecasting models [10], 

[11], [12] projecting the required number of equipments for 

optimum operation. The methodology adopted is to compare the 

significant difference of the enhanced empirical method to 

conventional equipment estimation methods from a set of sample 

data (undisclosed port name) by forecasting the future throughput 

from Holt-Winters method and seasonal ARIMA (0,1,1)(0,1,1)12 – 

Box-Jenkins method. The results will be analyzed for accuracy 

and significant increase in numbers of equipment required at the 

end of the planning time horizon, set to be 5 years. 

 

 

2.0  LITERATURE REVIEW ON EQUIPMENT 

ESTIMATION APPROACH AND FORECASTING 

METHODS 

 

2.1  UNCTAD and Other Empirical Models 

 

One of the first reference for port expansion points to the 

UNCTAD model [13]. Equipment expansion is one of the four 

elements in UNCTAD development and expansion model, others 

being the container park area, container freight station and berth-

day requirement. The determined number of container handled per 

crane, number of cranes per ship and moves are in function of per-

berth requirement. UNCTAD model provides no empirical 

formula except but a simplistic graphical chart to estimate future 

demand support based on the four variables mentioned. However, 

it lacks control in terms of uncertainty and has a short range of 

parameter which cannot accommodate designs of larger terminal 

size. While others who followed after UNTCAD came up with 

various numerical models to analyze the handling capacity 

demands [7], [14], [15], [16], [17], [18], [47]. Loke (2012) 

equipment estimation formula is as below: 

 

∆𝑛𝑖,𝑝𝑡ℎ  =  (
∆𝑄𝑝𝑡ℎ

𝑀𝑃𝐻𝑖 . 24 . 𝑢𝑡𝑖  . 365 
) 

 

2.2  Costing Models 

 

From the economical-feasibility stand-point, costing is also a 

basis of determination of equipment procurement size that became 

the focal point of researchers [19], [20]. Dekker's model for 

equipment expansion is based on a marginal approach  that 

analyzes the need of expansion at intervals according to the 

current capacity of the terminal [8]. The basic approach is to 

calculate the optimal expansion by economical-order-purchase at 

steady-state-demand growth of each equipment [21]. Cost model 

provides specific terminal equipment expansion with relative 

control in the financial costing of equipment procurement. 

 

2.3  Queuing Theory 

 

Queuing theory is a time definition of an entrance units queue in 

an immediate service of unloading or loading containers at the 

container berths and leave the system when the service has been 

performed [22]. Queuing theory holds on to the criteria that it is 

possible to accurately predict servicing time of ships rather than 

the estimated time of arrival of ships at terminal. Therefore, the 

objective is to ensure the handling capacity is equal or greater 

than the number of arriving ships, and so estimate the required 

number of port equipment. Consequently, queuing theory 

expressed itself in the form of berth occupancy rate . 

 

    

 

Where,  1 tarr , ( tarr
 being the consecutive ship arrivals) and  

1 tserv  ( tserv
 being the reciprocal value of the service rate) 

 

  Based on parameters of consideration, the queuing problems 

are solved by iterating parameters of users preference such as 

probability of occupied berth, at service or unoccupied; average 

time of queue, time of service, number of ship queue, etc. 

Changes in values of terminal indexes and its impact on other 

parameters are largely computed by using Poisson's distribution. 

Advance simulation language based on queuing theories are such 

as PORTSIM [23], Modsim III [24],, SIMPLE++ [25], ARENA 

and SLX [26], Visual SLAM [27], AweSim [28], etc. 

  Queuing theory not only models the required port parameters 

for sufficient support for optimum operation, it also provides a 

basic model for queuing cost which is of great interest optimize 

the service demand whilst not oversupplying equipment which 

leads to an uneconomical operation. 

 

2.4  Conventional Way & Practices By Industry 

 

By common practice, port authority's planning for equipment size 

is in accordance to a predetermined yard equipment to ship-to-

shore crane designed by port consultant firms [6] in the early 

stage of the port development. This ratio is in function of the 

yard's physical layout, therefore, the ratio value differ for each 

distinct port due to their varying design of layout–parallel by RTG 

terminal or perpendicular by RMG terminal [29], and the 

demanded service rate. The assumption of this ratio estimation is 

that the horizontal transport capacity must be at least equal to the 

maximum quay handling capacity. 

 

2.5  Forecasting Methods 

 

Frankel [7] elaborates a series of forecasting methods in 

predicting container throughput  demand that includes prospective 

economic over a time period of interest and other development 

such as the economical and social effect, specified port, 

modernization of existing port facilities, maintenance and 

investment implications.  

  In response to varying aspects of forecasting influence, 

forecasting projections are often done with the input of at least 

one input of data to multiple sources of input. Even so, forecasting 

can be classified into several approaches for example, model 

building and simulation, qualitative forecast and time series 

projection [7]. 
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Historical data is the most reliable source of data to be interpreted 

for forecasting purposes. Models and simulation processes the 

data by techniques of trend extrapolation, pattern and probabilistic 

forecasting producing arrays of forecasts and decision tree 

matrices. Numerous algorithms and formulas developed are 

combined and adopt multivariate regression model [30] 

assumption to iterate the interrelationship between sets of 

variables. The relationship is then used to forecast the future 

throughput by fitting the characteristic observed by the model. An 

attribute theory, a new artificial intelligence [31], developed a 

fourfold attribute for throughput prediction. The influence of 

GDP, cargo throughput, foreign trade and total import and export 

volume are amongst the relevant analysis with distinct pattern that 

when merged give a multi-spectrum of forecast of throughput 

which can be more reliable [32]. 

  For qualitative forecasting, it deals with trades which are not 

susceptible to extrapolation and analysis or any methods that 

heavily builds on existing data. Expert surveys are main source of 

information to predicting future throughput with their rich 

experience as technologist, operators, planners and others. 

 

 
Table 1  Previous researches scope on unvariate forecasting for container throughput 

 

Authors Subject of Forecast Model of Univariate Forecasting Technique Findings 

Li, X. and Xu, 

S. (2011) [32] 

Container Throughput 

- Shanghai Port 

-Cubic exponential smoothing, 

-Grey Model, 

-Multiple regression analysis 

Optimization by dual 

combined technique 

 
 

Exponential smoothing and 

regression model prove better 

prediction 

Xie, G., et al. 
(2013) [34] 

Container Throughput 
– Hybrid Approach 

- SARIMA model 

- X-12 ARIMA model 
- Classical Decomposition Model 

 

Hybrid combination with 

"least quares support 

vector regression" model 

Highlighting the importance of 

capturing seasonal and non-linearity 

for better forecasting 

Chen, 2010 

[35] 

Container Throughput 

– Comparative Study 

- Genetic Programming 
- ARIMA (X-11) 

- SARIMA 

Comparison of few 

approaches 

Suggesting Genetic Programming as 

optimum forecasting method 

Chou, C.-C., 
et al. (2008) 

[36] 

Container Throughput 

– Taiwan Port 
- Regression model 

Generate a new modified 

regression model 

Results proposed modified 
regression model for higher 

prediction accuracy 

Seabrooke, 
W., et al. 

(2003) 

[37] 

Container Throughput 

–  Hong Kong Port 
- Conventional Regression model 

Forecasting with other 

affecting factors. 

Results yield more reliable  pattern 

of throughput growth 

Peng, W.-Y. 
and C.-W. 

Chu (2009) 
[38] 

Container Throughput 

– Comparative Study 

- Decomposition 

- Trigonometric       regression 
- Regression with seasonal dummy 

- Hybrid grey model, 

- Sarima model 

By applying monthly data 
input and evaluation of 

error profile 

classical decomposition 

model appears to be the best model 
for forecasting container throughput 

with seasonal 

variations. 
Gosasang, V., 

et al. (2011) 

[39] 

Container Throughput 
– Comparative Study 

- Neural Network 
- Linear Regression 

By measurement of 
RMSE, MAE 

Neural Network as being the best 
application for forecasting 

DuanXueyan, 

XuGuanglin, 

Yu Siqin 
(2012) 

[31] 

Container Throughput 

– Application Study 

Attribute Theory (artificial 

intelligence forecasting) 

By applying mapping 

theory and conversion 
degree function 

Attribute theory is effective and 

feasible with comprehensive 
consideration of influencing factors 

 
 

  Delphi method [33] is one of the popular approach by well-

defining questionnaires to specific parties that yields a consensus 

of factors and opinions on future container throughput. 

  In the spectrum of time-series forecast, also called the 

univariate forecasting model, is particularly useful when little is 

known about the underlying revolution of the history of container 

throughput pattern. From a simple linear regression extrapolation 

to neural network analysis [40], time-series forecasting models 

has become complex and detail in finding the most fitting 

function to the real variable in order to forecast according from 

past trends and pattern. Researchers today developed better 

forecasting models by comparing with other models through 

varies application and techniques like ACF, PACF, MAPE, etc. 

Table 1 shows the recent researches and its findings of superior 

performing models for specific applications. 

  The basic forecasting approach are mostly regression-based 

and highlights the importance of placing weightage on seasonal 

pattern consideration and the analysis of error (RMSE, MAE, 

MAPE). 

 

 

 

2.6  Holts-Winter's Exponential Smoothing 

 

Some of the most successful forecasting methods are based on the 

concept of exponential smoothing. Exponential smoothing 

techniques are simple tools for smoothing and forecasting a time 

series that is, a sequence of measurements of a variable observed 

at equidistant points in time. Smoothing time series aims at 

eliminating the irrelevant noise and extracting the general path 

followed by the series. The first exponential smoothing originated 

from the work in the US Navy in 1944, Robert G. Brown 

developed the algorithm when tracking the velocity ad angle used 

in firing at submarines as a research analyst. He further developed 

it in 1950s to discrete time series handling trend and seasonality 

[10]. Later Charles Holts in the US office of the Naval Research, 

developed a different smoothing trend and seasonal component 

with the novelty of incorporating the additive ad multiplicative 

component [11]. Soon, his student Peter Winters [42] provided 

empirical test on Holts method and, therefore, the seasonal 

version of Holt's method is called Holt-Winters' method. 

  There are two variations to this method which differ is in the 

seasonal component. The additive method is preferred when the 

seasonal variations are roughly constant through the series, while 
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the multiplicative method is preferred when the seasonal varia-

tions are changing proportional to the level of the series [43].  

 

2.7  Seasonal ARIMA (SARIMA) 

 

The AutoRegressive Integrated Moving-Average (ARIMA) 

procedure analyzes and forecasts equally spaced univariate time 

series data, transfer function data, and intervention data. This 

univariate time series model was first popularized by George Box 

and GwilymMeirion Jerkins, frequently called “Box–Jenkins 

models” because it [12] proposed a complete methodology for 

modeling time series which consists of three phases: 

identification, estimation and testing, and application. It is suitable 

for use with a stationary time series. However, ARIMA and 

SARIMA are built on linear assumptions and they cannot capture 

the nonlinear patterns hidden in the original data, which leads to 

poor forecasting performance [41]. 

 

 

3.0  METHODOLOGY 

 

This section explains the framework of calculating and comparing 

the outcome from forecast data derived from the Holts-Winter and 

SARIMA method. The empirical method of calculation is tabled 

against the conventional equipment ratio estimation, whilst the 

actual planning figures from port data will be compared. The 

empirical calculation is done by adopting the parameters like 

equipment capacity, coefficient and handling rates [6], [7], [39] 

and equipment profiles. Equipment ratio estimation is simply 

taken from planning practice figures to extrapolate equipment size 

by number of projected throughput. Figure 1 below is a general 

flow-chart describing the framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1  The overall process of the comparative forecasting model for 
equipment estimation 

 

 

3.1  Equipment Estimation 

 

The equipment planning time frame selected here is 5 years, 

which is a common practice in port expansion. Tt represents the 

total number of years, that is set as planning time horizon as 

below: 

 

  T𝑡 = ( T𝑝𝑡ℎ) 

  T𝑝𝑡ℎ = 5 years 

 

  To match the capacity of the various equipments in support 

of the increased throughput, the following equation determines the 

additional number of equipments need for the new expansion 

phase. 

 

∆𝑛𝑖,𝑗 = 𝑛𝑖,𝑗– 𝑛𝑖,𝑗−1  ---(1) 

 

  ∆ ni , n i,j , n i,j-1 represents the additional equipment needed, 

number of equipment needed at expansion, number of equipment 

available since previous expansion. Function i is numbered by  

1,2,3 as 1= qc (quay crane); 2 = rtg (rubber-tire gantry); 3 = pm ( 

prime-mover); j represents the expansion year phase (j = 1, 2, 

3,…, pth). To derive the number of equipments need for the entire 

planning time horizon (pth), the equation (1) is adjusted by setting 

in the planning time phase and the initial available number of 

equipments.  

 

∆𝑛𝑖,𝑝𝑡ℎ = 𝑛𝑖,𝑝𝑡ℎ– 𝑛𝑖,0  ---(2) 

 

  Point of interest after forecasting the throughput is the 

number of equipment, which is calculated empirically by the 

following equation (UNCTAD, 1976; Loke et al., 2004). The 

basic algorithm by Loke is enhanced by including additional 

factors from earlier reference, TEU factor, handling ratio, 

maintenance period and the breakdown of equipments move per 

hour (Equation 3) is added. 

 

𝑛𝑖,𝑝𝑡ℎ  =  (
𝑄𝑝𝑡ℎ

𝑓 . 𝑀𝑃𝐻𝑖 . 𝑡𝑠 . 𝑟 . 𝑢𝑡𝑖  .  365 
) 𝑥 (

1

1 − 𝑚𝑏𝑡𝑖
) 

 ---(3) 

 

∆𝑛𝑖,𝑝𝑡ℎ =
𝑄𝑝𝑡ℎ

𝑓 .𝑀𝑃𝐻𝑖.𝑡𝑠  .𝑟 .𝑢𝑡𝑖 .365 .(1−𝑚𝑏𝑡𝑖)
– 𝑛𝑖,0 ---(4) 

 

ni,pth =total number of equipment i, at the end of planning 

time horizon 

ni,o = number for addition equipment i at initial planning 

phase t=0 

∆n i,pth = number for addition equipment i, at planning time 

horizon from planning time, t=5 

Qpth = throughput amount at the end of planning time 

horizon (TEU) 

f  =TEU factor 

MPH i = Moves per hour for equipment i (move/hr) 

Ts = time of service of berth (hr/day) 

nb = number of berth  

ri  = time handing ratio for equipment i (%) 

uti = utilization rate of equipment,  

mdt = maintenance & breakdown time (%) 

 

𝑀𝑃𝐻𝑖 =
3600𝑠

𝑑𝑖
𝑣𝑖

+ 𝑡𝐷𝑖 + 𝑡𝑇𝑖

  --(5) 

 

di = average distance traveled per move of equipment i 

vi = velocity of equipment i 

tDi = time delayed  

tTTi = time of transfer 

 

 

Time Series Data 

Port TEU History 

Holts-Winter 
Exponential 

Smoothing 

SARIMA 

Conventional 
Equipment Ratio 

Estimate 

Equipment Empirical 
Calculation 

Results of Estimated 

Equipments 

Comparative 

Analysis 

Comparative 

Analysis 
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3.2  Additive Holt-Winters Model 

 

The "h-step ahead forecast" for the multiplicative Holts-Winter's 

equation is a combination of an estimate of trend level (ℓ𝑡), 

growth rate (b𝑡) and seasonal factor (sn𝑡)as below: 

 

Ǭ
𝑡+ℎ

= ℓ𝑡 + ℎ𝑏𝑡+ 𝑠𝑛𝑡+ℎ−𝐿 (h = 1,2,3,…)   --(6) 

 

  Each estimate factor formula of ℓ𝑡, b𝑡 and sn𝑡 can be 

expressed as 

 

ℓ𝑡 = 𝛼(𝑦𝑐𝑡 − 𝑠𝑛𝑡−𝐿) + (1−∝)(ℓ𝑡−1 + 𝑏𝑡−1)--(7) 

 

b𝑡 = 𝛾(ℓ𝑡 − ℓ𝑡−1) + (1 − 𝛾)𝑏𝑡−1  --(8) 

 

sn𝑡 = 𝛿(y𝑡 − ℓ𝑡) + (1 − 𝛿)𝑠𝑛𝑡−𝐿  --(9) 

 

  Where α,, and 𝛾 are smoothing constants between 0.02< α,𝛽, 

𝛾< 0.9. And L is the number of seasons (e.g. L=4, for quarterly 

data). (reference for constant range) 

 

3.3  Seasonal ARIMA Model 

 

Example of an ARIMA(1,1,1)(1,1,1)s model (without a constant) 

for s-lag data and can be written as: 

 

(1 − ∑ ∅𝑖

𝑝

𝑖=1

𝐵𝑖) . (1 − ∑ Φ𝑗

𝑃

𝑡=1

𝐵𝑖) . (1 − 𝐵)𝑑  . (1 − 𝐵𝑠)𝐷𝑦𝑡 = (1 − ∑ 𝜃𝑖

𝑞

𝑖=1

𝐵𝑖) (1 − ∑ Θ𝑗

𝑄

𝑗=1

𝐵𝑠) 𝑎𝑡 

 
--(10) 

 

  Basic steps to fitting ARIMA model to the forecast data can 

be divided into a simple 5-step-procedure. First, plot the data 

accordingly to its axis which may reveal some features that 

indicates the pattern of seasonal and stationary. Second, choose to 

transform the data by performing the natural logarithm function to 

minimize the standard deviation. Then, the crucial step of 

identifying the order (p,d,q) and (P,D,Q), if seasonal ARIMA is 

used, must be done with care. The data plot may aide in 

identifying the differencing order, d (beware of overdifferencing). 

While inspection of the autocorrelation (ACF) and partial 

autocorrelation function can help identify the AR order and MA 

order. Fourth, estimation for the model parameter can be 

performed using Yule-Walker equation or any time series 

software such as SAS, Minitab and Statistica. However, the 

maximum likelihood and method of least squares must be 

observed. Lastly, the residual diagnosis must be done by 

reviewing non-residuals' ACF and PACF, histogram that indicate 

Gaussian white noise, else iteration has to be done by estimating 

another set of orders (p,d,q). 

  Since the "ARIMA (0,1,1)(0,1,1) 12" is used, which denotes 

a zero order autocorrelation, 1st order difference, 1st order 

moving average, zero order seasonal autocorrelation, 1st order 

seasonal difference, 1st order seasonal moving average. The 

seasonal analysis period is 12, which is a monthly interval in a 

year's period. Therefore, ARIMA(0,1,1)x(0,1,1)12 can be 

expressed as: 

 

(1 − 𝐵)1 . (1 − 𝐵12)1𝑦𝑡 = (1 − 𝜃1𝐵1 − Θ1𝐵12 + 𝜃1Θ1𝐵13)𝑎𝑡 

--(11) 

 

Where, B, B12, B13 are coefficients of the ARIMA model (0,1,1) 

(0,1,1)12. 

 

3.4  Accuracy Model Diagnostics 

 

The issue of measuring the accuracy of forecasts from different 

methods has been central of attention. Error is described in a 

similar fashion as forecasting by one-step ahead forecast error, 

which is simply et = Yt - Ýt, regardless of how the forecast was 

produced. Therefore, the forecast h-step-ahead forecast error 

iset+h= Yt+h - Ýt+h. 
  Common practice uses the basic scale-dependent measures 

are based on absolute error or squared errors. Comparing mean 

absolute error (MAE) and mean squared error (MAE), it is easier 

to understand and compute the accuracy on the same scale. On the 

other hand, percentage error have advantage of being scale 

independent and is frequently used to compare performance 

between different data sets. Below are the empirical expression of 

the errors:  

 

Mean Square Error 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑡 − 𝑦̂𝑡)2𝑛

𝑡=1   ---(12) 

 

Mean Absolute Error 

𝑀𝐴𝐸 =
1

𝑛
∑ (𝑦𝑡 − 𝑦̂𝑡)𝑛

𝑡=1   ---(13) 

 

Mean Percentage Error 

𝑀𝑃𝐸 =
1

𝑛
∑ (

𝑦𝑡−𝑦̂𝑡

𝑦𝑡
) 𝑥 100𝑛

𝑡=1  ---(14) 

 

Mean Absolute Percentage Error 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ (

|𝑦𝑡−𝑦̂𝑡|

𝑦𝑡
) 𝑥 100𝑛

𝑡=1  ---(15) 

 

  However, the most favored measure is the Mean Absolute 

Percentage Error (MAPE) proposed by Makridakis (1993) [44].  

 

 

4.0  RESULTS 

 

4.1  Holts-Winter Result 

 

Parameter grid search is performed by iterating for the least error 

for the parameter chosen for the set of data. The above Table 2 

shows that at 406th iteration, the mean absolute error(MAE), sum 

of squared error (SSE), mean squared error (MSE) are the least 

with other error indicators at relative low, hence, the parameter 

alpha, delta and gamma is chosen. Then, Holts-Winter method is 

performed using "Minitab". 

 
Table 2  Iteration of parameter 
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Figure 2  TEU throughput of Holt-Winters forecast 

 

 

  The forecast (Figure 2) predicts a strong increase of 

throughput in the coming years, based on unknown external 

factors but only based on the information from the data set. 

 

 
 

Figure 3  Normal probability, histogram and goodness of fit of results' 
residual 

 

 

  The probability plot and histogram of residual-frequent 

(Figure 3) indicates a healthy set of skewed and normally 

distributed pattern for the set of data. The residuals versus fits 

graph indicates nonconstant variance which spreads unevenly 

across the fitted values. Residual versus order also fluctuates 

around zero except the middle -end section fans, which is still 

acceptable.  

 

4.2  Seasonal ARIMA (0,1,1)(0,1,1)12 

 

Data is analyzed by checking autocorrelation (ACF) and partial 

autocorrelation (PACF) before carrying out ARIMA order 

assignment. After analysis, function of natural logarithm and 

difference in lag 1 and lag12 is required to ensure desirable ACF 

and PACF pattern. Then, SARIMA (0,1,1)(0,1,1) model is 

performed using "Statistica". 

 

 

Forecasts; Model:(0,1,1)(0,1,1) Seasonal lag: 12

Input: TEU Throughput (ln) (-D1)(-D12)

Start of Year: 1995        End of Year: 2017
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Figure 4  TEU throughput of SARIMA forecast 

 

 

  Result (Figure 4) also shows a steady increasing pattern for 

the TEU throughput forecast for 2012 to 2016. Below, Table 3 

shows the parameter for seasonal and non-seasonal moving 

average coefficient, also the indication of errors ensuring best fit 

of model. 

 
Table 3  Parameter iteration results of least error 

 

 
 

 

  Following are the probability plot and histogram of residual-

frequent (Figure 5, 6 & 7) which indicate a healthy set of skewed 

and normally distributed pattern for the set of data. ACF and 

PACF of the data residual (Figure 8 & 9) are also shown, 

indicating acceptable trend, with only one spike at lag 3 for both 

functions. 

 

Normal Probability Plot: TEU Throughput

ARIMA (0,1,1)(0,1,1) residuals;
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Figure  5  Normal probability plot of SARIMA residual 
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Histogram; variable: TEU Throughput

ARIMA (0,1,1)(0,1,1) residuals;
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Figure 6  Histogram of SARIMA residual 
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Figure 7  SARIMA residual plot 

 

Autocorrelation Function

VAR7    : ARIMA (0,1,1)(0,1,1) residuals;

(Standard errors are white-noise estimates)

 Conf. Limit-1.0 -0.5 0.0 0.5 1.0
0

 50 -.001 .0618
 49 +.074 .0621
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Figure 8  Autocorrelation function for residual 

 

 

  For comparative Analysis of Holt-Winters and SARIMA 

Forecast, both forecast are plotted on the same chart (Figure 10) 

for seasonal trend observation. The results shows a closely fitted 

pattern of forecasting by both models having only slightdifference 

in the maximum throughput forecast in August (Table 4). The 

maximum throughput will be the targeted service throughput for 

the fulfillment of equipment capacity.  

 

Partial Autocorrelation Function

VAR7    : ARIMA (0,1,1)(0,1,1) residuals;

(Standard errors assume AR order of k-1)

 Conf. Limit-1.0 -0.5 0.0 0.5 1.0

0
 50 +.038 .0724
 49 +.034 .0724
 48 -.055 .0724
 47 +.107 .0724
 46 -.091 .0724
 45 +.016 .0724
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Figure 9  Partial autocorrelation function for residual 
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Figure 10  Comparative TEU throughput forecast (HW vs SARIMA) 

 
Table 4  TEU Forecast at Planning Time Horizon (2016) 

 

Time SARIMA Forecast Holt-Winters Forecast 

Jan-16 729111 741943 

Feb-16 645650 643221 

Mar-16 703509 703077 

Apr-16 740580 738655 

May-16 785465 799407 

Jun-16 770994 784006 

Jul-16 804231 819898 

Aug-16 844711 857469 

Sep-16 818067 826333 
Oct-16 848105 845243 

Nov-16 803020 803711 

Dec-16 753527 746766 
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4.3  Results of Empirical and 'Ratio' Method for Equipment 

Estimation  

 
Table 5  Estimation of equipment planning 

 

Method/Time Series 

Model 
STS Crane RTG 

Prime 

Mover 

2011 (Actual) 74 97 933 

2011 (Empirical) 69 153 306 

Empirical – HW (2016-

PTH Forecast) 
80 179 358 

Empirical – SARIMA 

(2016-PTH Forecast) 
81 181 363 

Ratio – HW   (2016-PTH 

Forecast) 
80 160 400 

Ratio – SARIMA (2016-

PTH Forecast) 
81 162 405 

 

 

  Using the formulas and information on the equipment-crane 

ratio, the numbers of required equipment estimation at planning 

time horizon is tabulated in Table 5. 

 

 

5.0  DISCUSSION 

 

Though both the forecasting model proofed to be giving close 

similarity in results, we note the superiority of the SARIMA model 

for its flexibility of transforming and eliminating spikes in ACF 

and PACF analysis. Since the set of TEU throughput history data is 

a steady increase, both the forecasting model is considered as 

having same prediction capability, though differing in concept.  

  Noting that the actual number of RTG and prime mover far 

exceeds the empirical method, the factor in play here is the 

equipment dynamics adopted by the specific port. The green and 

sustainable trend of [45] equipment combination are mainly STS 

crane with the support of RTGs and Prime Mover, which produce 

lesser CO2 emission as compared to those which substitute RTGs 

for forklifts, side-loaders , reachstackers, etc. Substituting 56 

RTGs, the unnamed port compensated with 10 rail-mounted 

gantries (RMG), 127 forklifts, 147 top-stackers and 37 side-

stackers. However, possible varying consideration of parameter 

assumption [46] has slight influence over the estimation of 

equipment, nonetheless, the major reference for equipment 

planning is the requirement of the STS crane. 

  The empirical method for equipment estimation has provided 

a means to account for the conventionally ratio-determined 

equipment profile. The 'check and balance' shows only a small 

acceptable margin difference. Results also prove that the use of 

more RTG can reduce the use of smaller equipment such as 

forklifts, stackers and prime-mover, which are major contributors 

of environmental waster. With the technology of electrification of 

RTG should all the more drive port authorities to the use of 'state-

of-the-art' technology for environmental purposes. 

  Since the TEU throughput forecast yields only a small margin 

of 12758 TEU difference, the effect on equipment empirical 

estimation has but little influence with differing 1 STS crane; 2 

RTGs and 5 prime movers. At planning time horizon, the ratio 

method of estimation yields about 10% less in deviation from the 

empirical method. Hence, empirical method may provide for 

redundancy that could be utilized in case of massive equipment 

breakdown. 

Since, the specific port has huge amount of prime-movers, the 

planning ahead is to merely procure RTGs, or even eRTGs (fully-

electric or hybrid) to facilitate operation whilst slowly scraping 

small equipments such as forklifts and top-stacker, etc as they wear 

off. Not only will this reduce environmental waste but also greatly 

reduce the operators of the many equipments reduced. 

 

 

6.0  CONCLUSION 

 

Though Holt-Winter and SARIMA (0,1,1)(0,1,1)12 methods yield 

close results of forecasting, they are still univariate methods only 

considering trends in the data set assuming no known factors 

influencing it. Future equipment estimation should incorporate 

multivariate models evaluating factors such as GDP, import-export 

trend, population growth, immigration, inflation, etc [32]. 

  For future consideration of equipment planning, it will be 

interesting to incorporate a green and sustainable planning system 

to perform equipment profile estimation with integration with other 

elements of the port planning such as its hinterland, container park 

area, container freight area, berthing zone and other terminal area, 

etc [13]. 

  Last but not least, an in-depth investigation on yard layout 

area and equipment profile dynamics and operation parameters 

should be evaluated properly or even a standard value for specific 

type of port should be proposed. The effects on equipment costing 

will be significant and will be of great concern to stakeholders in 

the planning process. 
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