
AN ACTIVE LEARNING APPROACH FOR
RADIAL BASIS FUNCTION NEURAL NETWORKS

S. S. ABDULLAH1 & J. C. ALLWRIGHT2

Abstract.   This paper presents a new Active Learning algorithm to train Radial Basis
Function (RBF) Artificial Neural Networks (ANN) for model reduction problems. The new
approach is based on the assumption that the unobserved training data y at input x, lies

within a set 
    
F x y f x y f x( ) : ( ) ( )= ! !" #  where F(x) is known from experience or past

simulations.  The new approach finds the location of the new sample such that the worst case
error between the output of the resulting RBF ANN and the bounds of the unknown data as
specified by F(x) is minimized.  This paper illustrates the new approach for the case when
x " R1.  It was found that it is possible to find a good location for the new data sample by
using the suggested approach in certain cases.  A comparative study was also done indicating
that the new experiment design approach is a good complement to the existing ones such as
cross validation design and maximum minimum design.

Key words:   Artificial neural networks, radial basis functions, model reduction, active learning,
experiment design, metamodeling

Abstrak.   Kertas kerja ini membentangkan satu kaedah Pembelajaran Aktif yang baru
untuk melatih Jaringan Saraf Buatan ( JSB) yang berasaskan Fungsi Asas Jejarian (FAJ) apabila
JSB tersebut digunakan untuk menyelesaikan masalah Penurunan Model. Kaedah baru ini
berasaskan andaian bahawa data yang diperlukan, y, pada input x, berada dalam sebuah set

    
F x y f x y f x( ) : ( ) ( )= ! !" #  di mana F(x) boleh dibentuk menggunakan pengalaman atau

pengetahuan awal tentang satu masalah. Kaedah baru ini akan mendapatkan lokasi data
baru dengan meminimumkan ralat kes paling buruk antara keluaran JSB dengan had data
seperti yang telah ditakrifkan oleh set F(x). Adalah didapati bahawa kaedah yang dicadangkan
ini mampu memberikan kedudukan data baru yang baik pada kes-kes tertentu, berbanding
dengan data yang diperolehi daripada kaedah sedia ada. Hasil kajian perbandingan antara
kaedah yang dicadangkan dengan kaedah yang sedia ada juga disertakan dalam kertas kerja
ini yang menunjukkan bahawa kaedah pembelajaran aktif yang dicadangkan merupakan
satu penambahan yang baik kepada kaedah pembelajaran aktif yang sedia ada seperti kaedah
reka bentuk maksimum minimum atau kaedah cross validation.

Kata kunci:   Jaringan saraf buatan, fungsi asas jejarian, penurunan model, kaedah pembelajaran
aktif, reka bentuk eksperimen, metamodel
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1.0 INTRODUCTION

An Artificial Neural Network (ANN) needs to ‘learn’ before it can be effectively
used to perform useful tasks.  Learning refers to the modification of the ANN
parameters so as to bring the map implemented by the ANN as close as possible
to a desired map. Three main learning paradigms have emerged: supervised
learning, unsupervised learning and reinforcement learning (Bishop, [1]).  The
focus of this paper will be on Active Learning (a special case of Supervised
Learning) for Radial Basis Function (RBF) ANN.  In supervised learning, the
training examples consist of given inputs and given desired outputs.  This means
that for every given input pattern, a desired or target output pattern is known
and used in the training algorithm.

In this work, the target output pattern is noiseless which is different from
typical regression problems where normally there is an assumption of
measurement noise corrupting the output.  Cases where the output pattern is
not corrupted by noise are called model reduction or metamodeling problems
[2 - 6]. These problems occur when the training samples are coming from
computer simulations in which case no noise is present.  Metamodeling involves
the determination of simpler models to approximate actual computer simulation
models.  A simpler model is usually needed when the computational time to
simulate the actual model is long and thus it becomes impractical to rely
exclusively on simulation for the purpose of design optimization.

Simulations of models involving finite element and fluid dynamics analysis
are typical examples of computer programs that require a significant amount
of execution time.  As an example, a finite element simulation program solving
a microwave passive/active circuit problem took about 8 hours execution time
on a Pentium-based PC, as reported by Tsai, et al. [7].  With the availability of
a simpler model, several design issues such as what-if analysis, prediction of a
system output, optimization and verification and validation of simulation models
can be done using significantly less time since computing the output of an
optimized simple model (say a neural network for example) will just be in a
matter of minutes, using an equivalent PC.  As an example, in a test model
reduction for optimization problem in Rashid, et al. [8], training a Fuzzy-Neuro
simple model on 130 measurement data and the search for its global minimum
took only 5.62 minutes of execution time using a similar Pentium-based PC.
Hence, although the output of the simple model is only an approximation of
the actual output of the complex model, evaluation of this output value is fast
and it usually provides enough information especially during the design phase
of a project.

In conventional supervised learning, the parameters of an RBF ANN are
tuned by minimizing an objective function based on a set of training data.  This
training paradigm is passive in the sense that the neural network only learns
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from the training patterns presented to it by the environment or a teacher.  It
would be more useful if the ANN could ‘suggest’ additional training samples
itself by using the information on its environment and the existing data samples.
Methods of selecting training data from input space have long been studied
under the names of Experiment Design [9], Response Surface Methodology
[10] and Active Learning (AL) [11].  Here, we will suggest a new AL approach
for RBF ANN that takes into consideration the use of important information
that is almost always available in real world experiments and that is the range
of possible values of the output (or response) of the actual model that one
would expect or predict, as a function of the input, based on knowledge and
experience.

Among the existing works on active learning for model reduction that have
been found, none seem to take into consideration this important factor in the
selection of the new samples.  Here, we have found that it is possible to utilize
this information to find a good location for a new data sample when training an
RBF ANN for model reduction or metamodeling.

This paper is organized as follows.  Section 2 gives basic terminology and
definitions of the RBF ANN.  In Section 3, we briefly review existing active
learning algorithms.  Section 4 formulates the definition of the region of
uncertainty within which the output of the actual model is assumed to lie using
a set theoretic approach.  In Section 5, we present a new active learning
algorithm, which uses the definition in 4 to find the location of a new data
sample for an RBF ANN.  Section 6 is an example showing the performance of
the new approach relative to existing deterministic active learning algorithms.
Finally, Section 7 concludes this paper.

2.0 RADIAL BASIS FUNCTION NEURAL NETWORKS

The architecture of an RBF ANN is illustrated in Figure 1. The network consists
of three layers: an input layer, a hidden layer and an output layer.  If the number
of output, Q = 1, the output of the RBF ANN in Figure 1 is calculated according
to

    
# $( , )x w w x ck k k

k

S

= %$ %
=

& 1 2
1

1

(1)

where x " 'R&1 is an input vector, $k(.) is a basis function, ||.||2 denotes the
Euclidean  norm, w1k are the weights in the output layer, S1 is the number of
neurons (and centers) in the hidden layer and ck " 'R&1 are the RBF centers in
the input vector space.  Equation (1) can also be written as:

    # $( , ) ( )x w x wT= (2)
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where

      $ $ $ $T
S Sx x c x c x c( ) = %$ % %$ % %$ %' (1 1 2 2 1 1      K (3)

and

      w w w wT
S= ' (11 12 1 1      K (4)

The output of the neuron in a hidden layer is a nonlinear function of the
distance between its input and the center, ck.  Some typical choices for the
functional form of  $k(.)  are as follows [12]:

$k(x) = x (5)

$(x) = x3 (6)

$(x) = e–x2/( 2 (7)

where the parameter ( controls the “width” of the RBF and is commonly referred
to as the spread parameter [12].  The centers ck are defined points that are
assumed to perform an adequate sampling of the input space.  Common practice
is to select a relatively large number of input vectors as the centers to ensure an
adequate input space sampling.  After the network has been trained, some of
the centers may be removed in a systematic manner without significant
degradation of the network mapping performance [12].  Once the centers ck
and the parameter ( have been set, the output layer weights can be found as
follows:

Figure 1   An RBF ANN
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(i) Given a set D having N initial input and output training pairs:

    
D x y x y x yi i i i iN iN= )$ % $ % $ %)

*
+

,
-
.1 1 2 2, , , , , , (8)

where and ij " K and K = {1,2,…,J} with J the number of all possible
samples in a discrete input space.  Consider the case when the input space
is '1&1 and the number of outputs Q = 1, equation (1) can be written in a
vector matrix form as follows:

      

#

#

$ $

$ $

( , )

( , )

( , ) ( , )

( , ) ( , )

x w

x w
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(9)

or

  # =5w (10)

(ii) A common optimization criterion to use is the quadratic error between
the actual and desired ANN outputs

      E w w wD
T( ) ( ) ( )= % %y y5 5 (11)

where y is the vector of existing output values given by

        y = ' (y y yi i i

T

N1 2
         K (12)

The vector of weights that minimizes (12) can be found [12] and is given
by:

      ̂ ( ) †w T T= =%5 5 5 51   y y

where 5† denotes the pseudo-inverse of the nonlinear mapping matrix 5.

3.0 RELATED WORKS

Existing methods to sequentially select data samples from an environment for
non-linear models can be divided roughly into three:
(1) Deterministic methods

Experiment design approaches that fall into this category include the maximum
minimum distance (MD) approach [13] and the methods based on Optimum
Experiment Design (OED) theory.  Examples where methods from optimum
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experimental design theory are used to select training data samples for non-
linear models can be found in [9, 11, 14, 15]. In Cohn [11], the prediction variance
equation of a neural network was calculated, while Choueiki [14] uses the
prediction variance of a second order polynomial, instead of that of the neural
networks, to guide in sampling new data.

Mackay [15] looks at the sampling problem from the Bayesian perspective.
Using Taylor expansion of a neural network’s output, he derives the equation
of the output prediction variance.  He also proved that if the additional training
data point is taken where this variance is largest, then the rule will be the same
as that using the D-optimal criterion.

Similarly in Atkinson, et al. [9] the D-optimal design was extended to non-
linear models by linearizing the model by Taylor series expansion and using
the linearized model to compute the standardized variance (SV) equation.  The
steps that they have suggested for OED when the model is non-linear are as
follows:
(i) Start with a preliminary estimate
(ii) Linearize the model by Taylor expansion
(iii) The optimum locations of the new data samples for the linearized model

are determined and new measurements are obtained at the optimum
locations

(iv) Analyze (iii).  If sufficient, stop.  Otherwise repeat step (ii) until sufficient
accuracy is achieved

(2) Probabilistic or stochastic method

Methods belonging into this category are gradient free methods that rely largely
on random search where the new samples are obtained from either a certain
probability distribution function [16] or using genetic algorithms to generate
the location of the samples [17].

(3) Neural Networks Optimized on Different Data Sets

This involves training various neural network models on different sets or pseudo
replicates of the original training data samples. A measure of discrepancy or
ambiguity of the different optimized networks is defined and used to obtain
new training samples from the input space.  These methods are also called
“cross-validation” (CV) ( Jin, et al. [2]) or “bootstrapping” by some researchers.

In this paper, only the deterministic methods and the cross-validation
approach of active data selection will be compared with the new AL approach
suggested in Section 5.
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4.0 REPRESENTING THE UNCERTAINTY OF THE
UNOBSERVED DATA

In this section, the uncertainty in the knowledge of the complex function is
defined to facilitate the active data selection process. The function to be
approximated by the neural network has the form     f

n m:' 6'  and we are
interested in approximating on a domain 7 of 'n.  Experiment design are
facilitated by defining a set-valued map     f

n m:' 6'  such that f(x) " F(x) for all
x " 7.  The set F(x) defines the uncertainty in the knowledge of the value of f(x).
We usually suppose that F(x) has the form:

    
F x y f x y f x( ) : ( ) ( )= ! !" #

for appropriate     f f R Rn m, : 6  where     f x y f x( ) ( )! !  means

    f x y f x i mi i i( ) ( ) ,! ! = )1

Suppose initially, before carrying out any experimental measurements, that
we make the guesstimate f(x) " F$(x) 8 x " 7, where the symbol $ indicates that
no experimental results have been used.  And we assumed that F$ has the form

    
F x y f x y f x x$ $ $ 7( ) : ( ) ( )= ! !" #8 "

for appropriately specified     f f n m
$ $, :' 6' . A basic problem is that of modifying

F$ to take account of any experimental measurements that have been made to
reduce the amount of uncertainty in F$. A set-theoretic approach is developed
next.

Assume f(x) has the uniform k-Lipschitz property that for any finite k > 0
there exists an "k > 0 so that for all   x " 7

    
f x f x k x x x x Bk( ) ( ) ,% ! % 8 " *

"
2

where     
B x x= !" #: 1  and 

    
x x Bk" *

"
2

.  We shall use this idea by assuming

that, using prior knowledge, a k and "k can be chosen such that for any input
value x near a past measurement, the value of f(x) lies within the cone shown in
Figure 2.  Taking each data samples xi (i = 1 : N) to be an, this yields

  f x f x k x xi i$ % % $ % ! % (13)
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for all x such that 
    
x xi

k% +
"
2

.  As a refinement of this, a different k and "k can

be used for different parts of the input space but this will cause further
complications, which will be avoided here.

This formulation provides information regarding the function f that can be
used to modify the initial set valued map F$(x).  We shall treat the simple scalar
case first.  For this case, condition (13) implies that f(x) " Li for all x such that

    
x xi

k% +
"
2

, where

  
L y y f x k x xi i i= % $ % ! %" #: i = 1:N (14)

Li is illustrated with the shaded area in Figure 2.
If we have more than one existing data samples, define

  
L L

i i=9     i =1:N (15)

Figure 2   Li showing the initial set value map when N=1

This is illustrated by the grey shaded areas in Figure 3. Next, define  to be the

points (y, x) " Rm x Rn that have 
    
x x Bi

k" *
:
2

 so

    
L

y
x

y f x k x x x x Bi
C

i i i
k=

;

<
=
>

?
@ % , % % +

)
*
+

,
-
.

: ( ) , :
2

(16)
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Figure 3   L showing the initial set value map if N>1

Figure 4   Lc
i is the region where the function should not be in for the case when N=1

where i = 1 : N.  This is illustrated by the shaded area in Figure 4.  Consequently,
for several data samples, define

  
L Lc

i
i
c=9 (17)

The shaded areas in Figure 5 illustrate Lc.  Suppose D is the set of measured
experimental data in that

D = {(xi , f(xi)),  i = 1 : N}
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Then we shall next shown how to take account of D to generate FD(x) with
(ideally) FD(x) A F$ (x) indicating that there is less uncertainty.  This will be
done in a set theoretic way.

Now

Graph (F$) = {(x, y) " 7 & Rm : y " F$ (x)}

This is illustrated in Figure 6.  We shall try to use the data to generate a set FD
with a “smaller graph”.  We will choose

FD = (F$ - F$ B Lc) 9 L (18)

as the updated graph.  Here, (F$ - F$ B Lc) removes the part of F$ that is to be
replaced by all the Li’s and so FD = (F$ - F$ B Lc) 9 L yields the updated graph.
If each Li is consistent with F$ in that Li A F$ 8 i, then L A F$ and consequently
FD is ‘smaller than’ F$ since its “area” is reduced.  Figure 7 is an example to
illustrate the updated graph FD for the case when L A F$  or L B F$ = L (i.e.
when all region of L lies within F$).  The initial set F$ is as illustrated in Figure
6.  Since FD has the form

    
F x y f x y f x xD D D( ) : ( ) ( )= ! !" #8 " 7

Figure 5   Lc (shaded area) is the region where f(x) should not be in when N>1.
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then in this case,   f D (x) is indicated by the — line while   f D (x) is indicated by the
-.- line in Figure 7.  From this figure, it can be observed that FD A F$ in this case
and the “area” of F$ has been reduced, reflecting the fact that we are more
“sure” of f(x) after obtaining the data samples.  Note that formula (18) also
works for other cases such as when (L B F$) C L (i.e. when some region of L lies
outside F$) and Bi Li C D.  For details, refer to [6].

Figure 6   F$ representing the initial set value map.

Figure 7   Example, FD = (F$ - F$-B Lc) 9 L
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5.0 A NEW ACTIVE LEARNING ALGORITHM FOR RBF ANN

Here we propose a new sequential Active Learning approach for RBF ANN
utilizing the bounds of the unknown data.  We will call the approach, the Worst
Case (WC) approach. Let the new data point to be added to the vectors x and

y be 
    
x yi i

~ ~
,$ % .  Since the centers ck of the RBF ANN are set to be equal to the

value of the available input data, i.e.

    c x c x c xi i S iN1 2 11 2
= = ) =, , , (19)

then the arrival of 
    
x yi i

~ ~
,$ %  implies a new center     

˜
~

c xi=  will be added to the existing

ones.  To facilitate the derivation, define the matrix   ̃5  as the matrix that takes
into account the additional new data sample and the new center:

      

˜

, , , ˜

, , , ˜

, , , ˜

~

~

~ ~ ~

5 =

$ % $ % $ %

$ % $ % $ %
$ % $ % $ %

/

0

1
1
1
1
1

2$ $ $

$ $ $

$ $ $

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

1

x c x c x c

x c x c x c

x c x c x c

i S i S i i

i S i S i i

i S i S i i

N N N

K

M M M M

K

K 33

4
4
4
4
4

(20)

where $(x) can be any of the radial basis functions (5)-(7).  Also define

      
˜( ) ˜$ $ $ $ $x x c x c x c x cT

S S= %$ % %$ % %$ % %$ %' (1 1 2 2 1 1K (21)

and

      ̃ ˜w w w w wS= ' (11 12 1 1 1K (22)

Next, the errors when additional data at 
    
x yi i

~ ~
,$ %  is added to the existing data set

D for the RBF ANN are defined as

    

E w

y x w y x w p

y x w y x w p

y x w
y

D p

i i
T

i i
T

j

N

i i
T

i i
T

j

N

j N

i i
T

i

j j

j j

j j

˜

[ , ]

( ˜ )

˜( ) ˜ ˜( ) ˜

˜( ) ˜ ˜( ) ˜

max
˜( ) ˜

~ ~

~ ~

= % * % =

= %$ % * %$ % =

=
%

=

=

" )

&

&

$ $

$ $

$

1

2

1

1

1

2

if

if

jj
x w

p
i

T%
=E

)

*

F
F
FF

+

F
F
F
F ˜( ) ˜

~
$

if

(23)
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Hence the weights 
    
˜

~

wxi
 that minimize     E wD p˜ ( ˜ )  are found by

    
˜ min max ( ˜ )

~

~ ~ ~

˜ ( ), ( )
˜w E wx

w y f x f x
D pi N

i D i D i

"
"' /

01
2
34

*

"

arg   
1

(24)

Therefore the new data will be obtained at location     xi
~
 that has the minimum

worst case error which can be defined as

    
x E wi

x
x q

i
i

~
~

~

arg min ( ˜ )G

"
"

7
(25)

where 
    
E wx qi

( ˜ )
~

 are worst case errors defined by

    
E wx qi

( ˜ )
~

      

= %
"' (
"' (

=

&max ( ) ˜( ) ˜
( ) ( ), ( )

( ) ( ), ( )

~f x f x f x

f x f x f x

i i
T

x

i

J

D D

J D J D J

i
f x x w

1 1 1 1
M

$ if q = 1 (26)

      

= %$ %
"' (
"' (

=

&max ( ) ˜( ) ˜
( ) ( ), ( )

( ) ( ), ( )

~f x f x f x

f x f x f x

i i
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i

J

D D

J D J D J

i
f x x w

1 1 1
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M

$ if q = 2 (27)

      

= %
"' (
"' (

max ( ) ˜( ) ˜
( ) ( ), ( )

( ) ( ), ( )

~f x f x f x

f x f x f x

i i
T

x
D D

J D J D J

i
f x x w

1 1 1

M

$ if q = E (28)

The WC AL algorithm can then be summarized as follows:
(i) Define the bounds F$ using existing knowledge of the unknown function

f(x).
(ii) Use existing samples x and y to form FD.
(iii) Obtain the location of the new sample     xi

~

G  using Equation (25).

(iv) Obtain a new measurement     yi
~
 (i.e. f(    xi

~

G ) ).

(v) Update FD using the existing samples and the new sample 
    
x f xi i

~ ~
, ( )G G$ %.

(vi) Repeat steps (iii) - (v) until the desired amount of new data has been
obtained.
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6.0 CASE STUDY

Consider the case when f(x) is given by

f(x) = excos (2Hx)

The initial input vector x is given by

x = [ -3.0   -1.5   0    1.5    3.0]T (29)

and the initial output measurements are

y = [ 0.05   -0.22   1.00   -4.48   20.09]T (30)

Define the error, E(w)E, which can be computed assuming f(x) known as:

    E w f x x wi i
T$ % = %

E
max ( ) ˜( ) ˜$ (31)

#(x, I) is the RBF ANN as defined in equation (1) with     $
(

k
xx e( ) /= % 2 2

. The
parameter ( for the RBF ANN was set to 1.0.  The centers are set equal to the
available input samples as given in Equation (19).  The input space is given by

7 = [–3,3].  The optimized #, the data samples,     f xD ( ),     f xD ( ) and the location
for the new sample that minimized E(w)E and E(w)2 (assuming f(x) known) are
shown in Figure 8.  The details of the colours and symbols used in Figure 8 are
provided in Table 1.  The initial bounds where formed assuming the exponential
property of f(x) is known and ensuring that f(x) " F$.  Cases when f(x) J F$will
not be covered here.

Figure 8   A Model Reduction Problem
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Table 1   Symbols used in Figure 8 describing the problem

Quantity Symbol

f
—
$-and   

f $ Black solid lines

  f D  and   
f

D Grey solid lines
#(x, I) Labeled solid line

f(x) Dash-dot line
Initial xi Black asterisks

Figure 9   E(w~xi~
)E(Worst case error)

E(w)E in this case is shown in Figure 10 showing a minimum at x = 2.3 which
is close to the location suggested by the WC approach.  This defines the location
of the new data that if sampled will cause the greatest reduction of error (E(w)E).
Other Active Learning approaches reviewed in Section 3 were also used to
find the new location.  The results are summarized in Table 2.  Here only the
CV approach manages to find the optimum location for the new sample (at x =
2.3).
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Table 2   E(I)E for different experiment design approaches

Methods of Experiment Design

WC MD CV SV

Location of new xi = 2.4 -2.3, -0.8 2.3 Initial xi

0.8 or 2.3
E(I)E after sampling the new point 22.3 26.6 or 17.8 17.8 26.6
Reduction of E(I)( = 4.3 0 or 8.8 8.8 0
(Initial E(I)E = 26.6)

Figure 10   (Actual error)

The experiment was repeated 15 times using different locations for the initial
data samples. The error E(w)E was calculated after obtaining the new sample
using the different experiment design methods. The results were recorded in
Table 3 and summarized using the box diagram in Figure 11. The cases when
the WC approach perform better than the other AL methods are highlighted
using bold numerals in the table. The box diagram shows the highest, the lowest,
the median, the upper quartile and the lower quartile E(w)E values (see Figure
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Table 3   E(I)E  after sampling the new point (the lower the better)

E(I)E after sampling the new point

Initial xi locations WC MD CV SV

-3.0, -0.8, 0.8, 2.3, 3.0 20.6 18.3 17.3 26.7
-3.0, -2.3, 0.3, 2.6, 3.0 31.6 39.3 25.7 45.4
-3.0, -0.8, 0.0, 2.0, 3.0 20.3 28.0 39.8 28.0
-3.0, -1.7, 0.6, 0.6, 3.0 21.2 27.1 18.4 28.0
-3.0, -2.6, 1.7, 1.9, 3.0 47.2 33.4 35.0 37.9
-3.0, -1.3, 0.6, 2.5, 3.0 51.0 34.8 22.6 43.9
-3.0, -0.8, 1.1, 2.5, 3.0 36.8 31.7 16.7 31.4
-3.0, -2.7, 0.1, 1.3, 3.0 19.3 27.7 17.8 27.7
-3.0, -1.7, 1.7, 1.7, 3.0 14.7 26.4 18.2 26.4
-3.0, -1.4, 2.6, 2.9, 3.0 46.1 59.3 43.0 46.1
-3.0, -1.3, 0.5, 1.2, 3.0 17.8 28.2 17.6 28.8
-3.0, -1.4, 0.5, 0.8, 3.0 19.0 27.1 17.9 25.8
-3.0, -2.0, 0, 2.0, 3.0 20.3 28.0 39.9 28.0
-3.0, -1.5, 0, 1.5, 3.0 22.3 26.6 17.8 26.6
-3.0, -1.8, 1.1, 2.0, 3.0 15.1 27.7 25.5 27.6

Figure 11   Box diagram of Table 3.

12).  The median E(w)E for the 15 trials was lowest using the CV approach and
the highest using the MD approach. For this RBF example, the approach that
has the lowest median is the CV approach, while the SV approach have the
lowest deviation from the median for the 15 trials and the WC approach has
the lowest error for a particular trial.
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This is a good example to show that there is no particular sequential
experiment design approach that is the best for all types of problem. The
performance of the experiment design approaches are dependent on several
factors which include the actual f, the simple model  and the initial location of
the data samples xi.  However this example demonstrated that it is possible to
use the suggested WC approach to find a good location for a new data sample
for model reduction using RBF ANN and hence the approach is a good
complement to the existing ones.

7.0 CONCLUSIONS

This work suggests a new AL algorithm for RBF ANN used in a metamodeling
problem.  The new approach takes into consideration the actual physical
constraints of the problem. Among the four methods investigated, only the
WC approach takes into consideration the actual physical information available
of the unknown model. Hence this method is a good complement to the other
approaches where the estimates are based only on the existing data distribution
and the structure of the simple model #.  Also in certain cases as shown in the
case study, the WC approach managed to outperform the existing methods.
This indicates the advantage of the proposed approach on certain types of
problems.  However, further investigations have to be conducted to identify
the type of problems that are most suitable for the WC approach.

Figure 12   Descriptions of a box diagram
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