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Abstract  

 
This paper proposed a hybrid wavelet-least square support vector machines (WLSSVM) model that 

combine both wavelet method and LSSVM model for monthly stream flow forecasting. The original 

stream flow series was decomposed into a number of sub-series of time series using wavelet theory and 

these time series were imposed as input data to the LSSVM for stream flow forecasting. The monthly 

stream flow data from Klang and Langat stations in Peninsular Malaysia are used for this case study. 
Time series prediction capability performance of the WLSSVM model is compared with single LSSVM 

and Autoregressive Integrated Moving Average (ARIMA) models using various statistical measures. 

Empirical results showed that the WLSSVM model yield a more accurate outcome compared to 
individual LSSVM, ANN and ARIMA models for monthly stream flow forecasting. 

 

Keywords: Wavelet, least square support vector machines, artificial neural network, ARIMA, SVM 
 

 

© 2015 Penerbit UTM Press. All rights reserved. 

 

 
1.0  INTRODUCTION 

 

Stream flow forecasting is an important issue in hydrologic 

engineering where it provides basic information on a wide range of 

problems for the optimal management of water resources related to 

the design and operation of a river system. In Malaysia, short-term 

forecasting like hourly and daily forecasting is crucial for flood 

warning and defense while medium- to long-term forecasting, at 

weekly, monthly, seasonal, or even annual time series stream flow 

data, is particularly useful in reservoir operation and irrigation 

management decisions such as  drought mitigation and managing 

river treaties. However, accurate time series forecasting is one of 

the greatest challenges in operational hydrology because 

hydrological systems are dynamic with time varying system for 

inputs and outputs, large temporal variability, and commonly 

demonstrate non-linear responses to system inputs. It is relevant to 

note that it can established better models by using meteorological 

and hydrological variables such as precipitation, 

evapotranspiration, temperature and geomorphologic 

characteristics data as input parameters for the applied models. 

Although incorporating other variables may improve the prediction 

accuracy, in practice, especially in developing countries like 

Malaysia, such information is often either not available or difficult 

to obtain. Owing to the complexity of this process, many 

researchers are beginning to focus on stream flow forecasting 

which only considers past stream flow data. Therefore, the current 

work applies the stream flow values as inputs for the models used. 

In general, the stochastic models such as autoregressive integrated 

moving average (ARIMA) is widely used for hydrologic time series 

forecasting.1-6 The popularity of ARIMA models is due to its 

statistical properties, such as the well-known Box-Jenkins 

methodology, forecasting capabilities and richness of information 

on time-related changes. However, ARIMA models are basically 

linear models using data that are assumed to be stationary, and have 

a limited capability to capture non-stationarities and non-linearities 

in hydrologic data.  

  In data-based forecasting, artificial neural network (ANN) 

model is probably the most common method for modeling and 

forecasting non-linear hydrologic time series. Recently, ANN has 

been introduced for modeling complex hydrologic system as it has 

been successfully employed in the modeling of various aspects of 

hydrologic processes.6-13 Although ANN has the advantages of 

generating accurate forecasting, their performance in some specific 

situation is inconsistent.  The network structure of ANN is hard to 

determine and usually done by using a trial-and-error approach. In 

addition, the ANNs do have some drawbacks, such as over-fitting, 

convergence to local minimum and learning slowly, which make it 

difficult to gain satisfactory performance when dealing with 

complex hydrological processes.14 

  A more advanced Artificial Intelligence (AI) approach is the 

least square support vector machines (LSSVM) method which is a 

new universal learning machines proposed by Suykens and co-

workers.15 The LSSVM algorithm provides a computational 

advantage over standard support vector machines (SVM) by 

converting quadratic optimization problem into a system of linear 
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equations. This method uses equality constraints instead of 

inequality constraints and adopts the least squares linear system as 

its loss function, which is computationally attractive. Furthermore, 

LSSVM also has good convergence and high precision. It is one of 

the soft computational techniques with a powerful methodology 

and has been successfully applied to solve various case studies.16-

18 In the water resource field, the LSSVM method has received very 

little attention and only a few applications of LSSVM in modeling 

environmental and ecological systems such as water quality 

prediction19 rainfall-runoff modeling20 and stream flow 

forecasting18,21,22 have been carried out. 

  Wavelet transform has been studied for many years by 

mathematicians and has become a useful technique for analyzing 

variations, periodicities and trends in different areas of hydrology 

and water resources.23-27 Recently, new hybrid models on wavelet 

transform process have been improved for forecasting.25-36 They 

observed the use of wavelet techniques to pre-process time series 

data into decomposed wavelet coefficients of different 

decompositions produced significant results than the original time 

series when used as input. Such hybrid models show significant 

advantages over the traditional AI models. This indicates that the 

wavelet can be a promising tool in the decomposition of time series.  

  In this paper, a hybridization of wavelet and LSSVM model 

(WLLSVM) has been proposed to forecast monthly stream flow. 

This paper aims to demonstrate the ability of WLLSVM model to 

forecast stream flow based on previously measured flow values. To 

show the application of this model, the stream flow data from 

Klang and Langat stations in Peninsular Malaysia is chosen as the 

case study. Finally, this study also aims to evaluate the proposed 

model’s ability based on its performance by comparing with other 

models’ performance, such as the performance of single LSSVM 

and ARIMA models. 

 

 

2.0  THE LEAST SQUARE VECTOR MACHINES 

 

LSSVM is a new version of SVM modified by Suykens et al.15  

Furthermore, LSSVM involves the solution of a quadratic 

optimization problem (QOP) with a least squares loss function and 

equality constraints instead of inequality constraints. Instead of 

solving a QOP problem as in SVM, LSSVM can obtain the 

solutions of a set of linear equation. In this section, we briefly 

introduce the basic theory of LSSVM in time series forecasting. A 

training sample set ),( ii yx  with input 
n

i Rx   and output Ryi 

are used. The following regression model can be constructed by 

using non-linear mapping function 

 

 bxwxy T  )()(          (1) 

              

where w is the weight vector, b is the bias terms and the nonlinear 

mapping )(x maps the input data into a higher dimensional 

feature space. LSSVM introduces a least square version to SVM 

regression by formulating the regression problem as  
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subject to the equality constraints 
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where ie  represents error variables and   is a regularization 

parameter. To solve this optimization problem, Lagrange function 

is constructed as 
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where i  is Lagrange multipliers. The solution of (2) can be 

obtained by partially differentiating with respect to iebw ,, and i  
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Then the weight w can be written as a combination of the Lagrange 

multipliers with the corresponding training data ix . 
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Putting the result of Eq. (9) into Eq. (1), then the following result 

is obtained: 
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where a positive definite kernel is defined as follows: 
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The   vector and b can be found by solving a set of linear 

equations: 
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where  
nyyy ...;;1 ,  1...;;11 ,  

n ...;;1 . This finally 

leads to the following LSSVM model for function estimation: 
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where i , b  are the solution to the linear system. Kernel function, 

),( xx iK represents the high dimensional feature space that is 

nonlinearly mapped from input space x.  The selection of an 

appropriate kernel function plays an important role during LSSVM 

modeling. Types of kernel have been developed such as linear 

kernel, polynomial kernel, Radial basis function (RBF) kernel and 

multi-layer perception kernel. The RBF kernel has received more 

attention from the machine learning community.38-39 The RBF 

kernel is defined as 

0),/exp()( 22
 xxx,x iiK

                                (13) 



91                                                            Ani Shabri / Jurnal Teknologi (Sciences & Engineering) 73:1 (2015) 89–96 

 

 

where 
2  is a positive real constant.

 
 

 
3.0  WAVELET ANALYSIS 

 

Wavelet analysis is a multi-decomposition analysis, which provide 

information for both time and frequency domains of the signal and 

it is the important derivative of the Fourier transform. Wavelet 

transforms provide useful decompositions of the original time 

series, so that the wavelet-transformed data will improve the ability 

of a forecasting model by capturing useful information on various 

decomposition levels.40  

  Wavelet will become an important tool in time series 

forecasting. The basic objective of wavelet transformation is 

analyzing the time series data, both in time and frequency domain 

by decomposing the original time series in different frequency 

bands using wavelet functions. Compared to the Fourier transform, 

time series are analyzed using sine and cosine functions. Wavelet 

transformations provide useful decomposition of the original time 

series by capturing useful information on various decomposition 

levels.  

  Assuming a continuous time series )(tf , ],[ t , a 

wavelet function can be written as  
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where t  stands for time,  for the time step in which the window 

function is iterated, and ],0[ s  for the wavelet scale. )(t

called the mother wavelet can be defined as 0)( 



dtt . The 

continuous wavelet transform (CWT) is given by  
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where )(t represents the complex conjugation of )(t . ),( sW   

represents the overall sum of the time series multiplied by scale and 

the shifted version of wavelet function )(t . The use of 

continuous wavelet transform in forecasting is not practically 

possible because calculating wavelet coefficient at every possible 

scale is time consuming and it generates abundance of data. 

  Therefore, discrete wavelet transformation (DWT) is 

preferred in most forecasting problems because of its simplicity and 

ability to compute with less time. The DWT involves choosing 

scales and position on powers of 2 so called dyadic scales and 

translations, then the analysis will be much more efficient as well 

as more accurate. The DWT can be defined as 
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where m and n are integers that control the scale and time, 

respectively; 0s  is a specified, fixed dilation step greater than 1; 

and 0 is the location parameter, which must be greater than zero. 

The most common choices for the parameters 0s  = 2 and 0 = 1. 

For a discrete time series )(tf  where )(tf  occurs at discrete time 

t, the DWT becomes 
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where nmW , is the wavelet coefficient for the discrete wavelet at 

scale ms 2  and nm2 . In Eq. (17), )(tf  is the time series (t = 

1, 2, …, N-1), and N is an integer power of 2 (N= 2M); n is the time 

translation parameter, which changes in the ranges 0 < n < 2M – m, 

where 1<m<M.  

According to Mallat’s theory, the original discrete time series 

)(tf
 
can be decomposed into a series of linearly independent 

approximation and detail signals by using the inverse DWT. The 

inverse DWT is given by41  
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or in a simple format as 
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which )(tAM is called approximation sub-series or residual term at 

levels M and )(tDm ( m = 1, 2, ..., M) are detail sub-series which 

can capture small features of interpretational value in the data.  

 

 

4.0  STUDY AREA 

 

The stream flow data used in this study were obtained from the 

Department of Irrigation and Drainage Malaysia. Monthly stream 

flow data of Klang station (Station no: 3116430) and Langat station 

(Station no: 2816441) of Peninsular Malaysia. The locations of 

these stations are shown in Fig. 1.  

  Klang River flows through Kuala Lumpur and Selangor in 

Malaysia and eventually flows into the Straits of Malacca. It is 

approximately 120 km in length and drains a basin of about 1288 

square kilometers. Klang River has 11 major tributaries that the 

river flows through the capital city of Kuala Lumpur which is a 

heavily populated area of more than four million people. It is 

considerably polluted.  

  The Langat River has a total catchment area of approximately 

1815 km2. The main river length at 141 km where it is mostly 

situated about 40 km east of Kuala Lumpur. The Langat River 

catchment straddles the main urban conurbation in the Klang 

Valley forming parts of the growing urban complex in Selangor. 

The Langat River is situated south and adjacent to the Klang 

Valley, Malaysia’s highly developed urban conurbation where the 

nation’s capital Kuala Lumpur is located.  

  In this study, the data sample of Klang station consisted of 

34 years (1975-2008) of stream flow record.  The first 30 years of 

flow data (360 months, 80% of the whole data set) were used for 

training the network to obtain parameters model and another 

dataset consisting of 84 monthly records (20% of the whole data) 

was used for testing.  
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Figure 1  Location map of the study area 

 

While for Langat station, the observed contained 47 years of data 

(564 months) with an observation period between 1961 and 2007. 

In the application, the first 38 years of flow data (456 months), 80% 

of the whole data set are used for training the network to obtain the 

model parameters. Another set of data consists of 108 monthly 

records (20% of the whole data) are used for testing.  

  The performances of the presented models were evaluated 

based on their root mean-square error (RMSE), mean absolute error 

(MAE) and correlation coefficient (R) for one step ahead. The 

RMSE, MAE and R are defined as 
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where 
o

ty  and 
f

ty  are the observed  and forecasted values at time 

t , respectively and n is the number of data points.  The RMSE and 

MAE provide different types of information about the predictive 

capabilities of the model. The RMSE and MAE evaluate on how 

close the predictions match the observations. The criteria in 

deciding the best model are based on how small the MAE and 

RMSE found in both training and testing of the data. The 

correlation coefficient (R) measures how well the predicted flows 

correlate with the observed flows and shows the degree to which 

the two variables are linearly related. R value close to unity 

indicates a satisfactory result, while a low value or one that is close 

to zero implies an inadequate result.  

 

 

5.0  RESULTS AND DISCUSSIONS 

 

5.1  Fitting LSSVM To The Data  

 

The selection of appropriate input data sets is an important part in 

LSSVM modelling. In this study, five model structures were 

developed to investigate the model performance of the input 

variables. The inputs represent the previous monthly stream flows 

(at time 1t , 4,3,2  ttt  and )5t
 

and the output 

corresponds to the monthly stream flow at time t. Thus, the five 

different input models evaluated for stream flow forecasting are as 

follows: 

M1-input was monthly flow data at lags 1:  )( 1 tt yfy
 

M2- input was monthly flow data at lags 1 and 2:   

),( 21  ttt yyfy
 

M3- input was monthly flow data at lags 1, 2 and 3: 

),,( 321  tttt yyyfy  

M4-input was monthly flow data at lags 1, 2, 3 and 4: 

),,,( 4321  ttttt yyyyfy
 

M5- input was monthly flow data at lags 1, 2, 3, 4 and 5:  

),,,,( 54321  tttttt yyyyyfy  

 

Secondly, the part that needs to be considered is what values of the 

parameters ),( 2 are to be used. The parameter  controls the 

penalty degree, and the parameter 2 represents the kernel 

function parameter. There is no designated rule in choosing the 

optimal parameters of a LSSVM model. In order to obtain the 

optimal model parameters of LSSVM, a grid search algorithm and 

cross-validation method were employed. The grid search method is 

a common method that was applied to calibrate these parameters 

more effectively and systematically to overcome the potential 

shortcomings of the trails and error method.  It is a straightforward 

and exhaustive method to search parameters. In this study, a grid 

search of ),( 2  within the   range from 10 to 1000 and 2  in 

the range of 0.01 to 1.0 was conducted to find the optimal 

parameters. In order to avoid the risk of over fitting, the cross-

validation scheme is used to evaluate the model performance. The 

entire dataset was randomly partitioned into 10 equal-size subsets. 

During each run, one of the partition was chosen for testing, while 

the rest were used for training. This procedure was repeated 10 

times.  For each hyper parameter pair ),( 2  in the search space, 

10-fold cross validation on the training set was performed to predict 

the prediction error. This process achieved through a program 

written in MATLAB. The best fit model structure for each model 

is determined according to the criteria of the performance 

evaluation.  

  Table 1 below presents the performance results obtained in 

the training and testing period of the regular LSSVM approach (i.e. 

those using original data) for Klang and Langat station, 

respectively. For Klang station, the LSSVM model where the 

inputs are one previous month (M1) has the best accuracy in 

training period and M4 has the best accuracy in testing 

period.While for Langat station, the model input M5 gave the best 

performance for LSSVM model in training period and M2 in 

testing period. 

 
Table 1  Forecasting Performance Indices of LSSVM for Klang and 

Langat Stations 

 Model Training  Testing 

Station Inputs RMSE MAE R  RMSE MAE R 

Klang M1 5.706 4.016 0.789  3.980 3.263 0.759 

 M2 6.730 4.396 0.686  3.665 2.966 0.801 

 M3 6.791 4.483 0.678  3.538 2.863 0.821 

 M4 6.449 4.265 0.717  3.468 2.825 0.841 

 M5 7.274 4.713 0.615  3.660 2.941 0.824 

         

Langat M1 17.067 12.261 0.517  19.974 13.440 0.519 
 M2 16.813 11.821 0.538  19.653 13.204 0.542 

 M3 16.567 11.629 0.556  19.886 13.457 0.523 

 M4 16.652 11.705 0.551  19.901 13.628 0.523 
 M5 16.481 11.478 0.564  19.767 13.415 0.532 

 

 

 

 

 



93                                                            Ani Shabri / Jurnal Teknologi (Sciences & Engineering) 73:1 (2015) 89–96 

 

 

5.2  Fitting Hybrid Wavelet LSSVM To The Data 

 

A hybrid wavelet LSSVM (WLSSVM) model is obtained by 

combining two methods, DWT and LSSVM. Before LSSVM 

application is applied, the original time series data were 

decomposed into periodic components (DWs) by Mallat’s DWT 

algorithm.41 The observation series was decomposed into a number 

of wavelet components, depending on the selected decomposition 

levels. Deciding the optimal decomposition level of the time series 

data in wavelet analysis plays an important role in preserving the 

information and reducing the distortion of the datasets. However, 

there is no existing theory to tell how many decomposition levels 

are needed for any time series. To select the number of 

decomposition levels, the following formula is used to determine 

the decomposition level26  

   

M = log(N) 

 

where N is length of the time series and M is decomposition level. 

In this study, N = 408 and 564 monthly data are used for Klang and 

Langat rivers, respectively, which approximately gives M = 3 

decomposition levels. Three decomposition levels are employed in 

this study; similar to the studies employed by Kisi27. The 

observation time series of discharge flow data was decomposed at 

3 decomposition levels (2-4-8 months).  

  The effectiveness of discrete wavelet components (DWC) is 

determined based on the correlation between the observed stream 

flow data and the wavelet coefficients of different decomposition 

levels.32  Table 2 below shows the correlations between each 

wavelet component time series and the original monthly stream 

flow data. 

  In Table 2 above, the D1 component shows low correlations 

for both stations.  The correlation between the wavelet component 

D2 and D3 of the monthly stream flow and the observed monthly 

stream flow data show significantly higher correlations compared 

to the D1 components. The results of the correlation analysis 

showed that D2 and D3 are the most effective components to be 

considered for forecasting. According to the correlation analyses, 

the effective components D2 and D3 were selected as the dominant 

wavelet components. Afterward, the significant wavelet 

components D2, D3 and approximation (A3) component were 

added to each other to constitute the new series.  

 
Table 2  The correlation coefficients between each of sub-time series and 

original monthly stream flow data ( )tQ  

 
  Correlations between tQ and  

Statio

n 

DWC 
1tD  2tD  3tD  4tD  5tD  Mean  

Klang D1 0.079 -0.103 -0.032 0.155 -0.044 0.083 

 D2 0.248 0.092 -0.134 -0.380 -0.335 0.238 

 D3 -0.285 -0.286 -0.193 0.033 0.214 0.202 

 A3 0.358 0.402 0.451 0.497 0.540 0.450 

        

Langat D1 -0.086 0.026 0.062 0.032 -0.122 0.066 

 D2 0.405 0.182 -0.219 -0.524 -0.409 0.348 

 D3 -0.366 -0.361 -0.230 0.069 0.247 0.255 

 A3 0.135 0.192 0.240 0.294 0.349 0.242 

 

 

For the WLSSVM model, the new series (components D2, D3 and 

A3) were used as inputs to the LSSVM model. Thus, the five 

different input models for WLSSVM models for stream flow 

forecasting are as follows: 

Mw1- input was monthly flow data at lags 1:  )( 1 tt Dwfy
 

Mw2- input was monthly flow data at lags 1 and 2:   

),( 21  ttt DwDwfy
 

Mw3- input was monthly flow data at lags 1, 2 and 3: 

),,( 321  tttt DwDwDwfy  

Mw4- input was monthly flow data at lags 1, 2, 3 and 4: 

),,,( 4321  ttttt DwDwDwDwfy
 

Mw5- input was monthly flow data at lags 1, 2, 3, 4 and 5:  

),,,,( 44321  tttttt DwDwDwDwDwfy  

where )323 tttt DDADw   

 

Figure 2 shows the structure of the WLSSVM model.   

 
 

 
 

Figure 2  The structure of the WLSSVM model 

 
 

A program code that include with wavelet toolbox was written in 

MATLAB language for the development of LSSVM model. The 

forecasting performances of the WLSSVM model are presented in 

Table 3 for Klang and Langat  stations. 

  Table 3 below shows that WLSSVM model has a significant 

positive effect on stream flow forecast. From Table 3, we can see 

that in Klang station, the Mw4 model has the best accuracy in both 

training and testing period. In Langat station, the Mw5 has the best 

performance criteria in training. However, for the testing phase, the 

best RMSE (11.796) and R (0.865) was obtained from the model 

Mw4 and MAE (8.734) from model Mw5. 

 
Table 3  Forecasting Performance Indices of WLSSVM model. 

 
  For further analysis, the best performance of the LSSVM and 

WLSSVM models in terms of the RMSE, MAE and R of testing 

phase are compared. For Klang station, the best correlation 

coefficient (R) obtained by LSSVM model is 0.841, while the best 

R value of WLLSVR model increased to 0.891. The RMSE obtined 

by LSSVM model is 3.468, with WLSSVM model this value is 

decreased to 2.709. Similarly, while the MAE of LSSVM obtained 

is 2.825, the MAE value of WLSSVM model is decreased to 2.071. 

The proposed WLSSVM model improved the LSSVM forecast to 

about 28.02% and 36.41% reduction in RMSE and MAE values, 

respectively; and improvements of the R value was approximetly 

5.61%.  

  For the Langat station, the WLSSVM model reduced the 

RMSE and MAE by 66.48% and 51.18%, respectively, and 

Input time series 
(e.g. previous monthly 
streamflow)

Wavelet
Decomposition

Sum of effective Ds (details) 
and  As (approximation) 
as input for LSSVM

LSSVM 
Model

Output
(current monthly

streamflow)

 Model Training  Testing 

Station Input RMSE MAE R  RMSE MAE R 

Klang Mw1 6.795 4.453 0.677  2.969 2.275 0.872 

 Mw2 5.164 3.481 0.829  2.991 2.334 0.871 

 Mw3 6.449 4.265 0.717  3.468 2.825 0.841 
 Mw4 4.564 3.039 0.872  2.709 2.071 0.891 

 Mw5 4.708 3.151 0.867  2.978 2.305 0.867 

         
Langat Mw1 14.848 11.002 0.667  17.829 12.089 0.646 

 Mw2 10.477 7.850 0.851  13.098 10.018 0.829 

 Mw3 9.617 7.103 0.876  12.557 9.439 0.844 
 Mw4 8.847 6.524 0.896  11.796 8.947 0.865 

 Mw5 8.480 6.146 0.905  11.805 8.734 0.865 
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increased the R by 37.27% with respect to the single LSSVM 

model. This results show that the new series (DWT) have 

significance of extremely positive effect on LSSVM model results.  

  Figure 3 and 4 below show the hydrograph and scatter plot 

for the LSSVM and WLSSVM models for testing period in Klang 

and Langat stations, respectively. It can be seen that the WLSSVM 

model forecasts quite close to the observed data for both stations. 

The performance of WLSSVM in predicting the streamflow is 

superior to individual LSSVM model. As seen from the fit line 

equations (assume that the equation  is y = a + bx) in the scatterplots 

that a and b coefficients for the LSSVM and WLSSVM models, 

respectively, the WLSSVM has less scattered estimates and the R 

value of WLSSVM model close to 1 (R = 0.891 for Klang and R = 

0.864 for Langat) compared to the LSSVM model. Overall, it can 

be concluded that the WLLSVM model at both studies provided 

more accurate forecasting results than the LSSVM model for 

streamflow forecasting. 

 

  

  
 
Figure 3  Optimal LSSVM and WLSSVM models during the test period 
for monthly streamflows of Klang River 

 

 

  

  
 
Figure 4  Optimal LSSVM and WLSSVM models during the test period 
for monthly streamflows of Langat River 

 

 

In addition, the streamflow forecasting has been carried out by 

ARIMA models for the purpose of comparison. For illustration, an 

example from Klang station was described briefly. The sample 

autocorrelation function (ACF) and sample partial autocorrelation 

function (PACF) for Klang series is plotted in Fig. 5.  

 

  
 
Figure 5  ACF and PACF plots used for the selection of ARIMA model for 

Klang station. 

 

 

The ACF is damping out in exponential waves with significant 

spikes at lag 1, 2, 3, 6, 7 and 9 to 12. The PACF has significance 

values at lag 1, 3, 6, 8 and 13. This may imply the presence of 

seasonal and non-seasonal AR and MA operators for the monthly 

series. The best model from different candidate models was 

identified using the minimum Akaike Information Criterion (AIC). 

Different ARIMA models along with their Ljung-Box, Q(r) test and 

AIC values are shown in Table 4 below. It was observed that the 

selected ARIMA models passed all diagnostic checks and the 

ARIMA (3,0,3)(2,0,0)6 is the best model. The residual ACF 

(RACF) and the PACF (RACF) of the best model are demonstrated 

in Fig. 6. The RACF and RPACF lie within the confidence limits, 

which clearly supports the fact that the residuals from the best 

model are white noise. 

 

  
 
Figure 6  ACF and PACF of residuals for ARIMA (3,0,3)x(2,0,0)6 model 

 

For Langat station, three models were initially selected based on 

the AIC and the Ljung-Box statistic. The identification of the best 

model for stream flow series based on minimum AIC and Ljung-

Box statistics is shown in Table 4. The best model is based on the 

AIC shows that ARIMA(3,0,3)x(2,0,0)6 and ARIMA 

(0,0,6)(0,1,4)12 is the best model for Klang station and Langat 

station, respectively. Inspection of the Ljung-Box test confirmed 

that the best model is adequate.  

 
Table 4  Comparison of AIC and Ljung-Box Statistics for selected 

ARIMA model 
 

Station ARIMA model AIC Q(r) p-values 

Klang (3,0,0)x(2,0,0)6 2548.79 53.74 0.126 

 (3,0,3)x(2,0,0)6 2543.92 44.54 0.287 

 (3,0,3)x(2,0,2)6 2547.53 42.08 0.299 

     
Langat (1,0,6)x(4,1,0)12 3717.7 49.91 0.076 

 (0,0,6)x(4,1,0)12 3716.1 50.00 0.092 

 (0,0,6)x(0,1,4)12 3686.0 44.99 0.203 

 

 

For further analysis, the best performance of the ARIMA, LSSVM 

and WLSSVM models in terms of the MSE, MAE and R are 

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

O
b

se
rv

e
d

 (m
3
/s

)

Month

Observed

LSSVM

0

20

40

60

80

100

0 20 40 60 80 100

LS
SV

M
 (

m
3
/s

)

Observed (m3/s)

y = 0.273x + 24.478

R=0.452

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

O
b

se
rv

e
d

 (m
3
/s

)

Month

Observed
WLSSVM

0

20

40

60

80

100

0 20 40 60 80 100

W
LS

SV
M

 (
m

3
/s

)

Observed (m3/s)

y = 0.759x + 9.359

R=0.865

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

O
b

se
rv

e
d

 (m
3
/s

)

Month

Data
LSSVM

0

5

10

15

20

25

30

0 5 10 15 20 25 30

LS
SV

M
 (

m
3
/s

)

Observed (m3/s)

y = 0.592x + 6.786

R=0.841

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

O
b

se
rv

e
d

 (m
3
/s

)

Month

Data
WLSVM

0

5

10

15

20

25

30

0 5 10 15 20 25 30

W
LS

SV
M

 (
m

3
/s

)

Observed (m3/s)

y = 0.764x + 3.367

R=0.891

0 5 10 15 20 25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Series  Klang

0 5 10 15 20 25

-0
.1

0
.0

0
.1

0
.2

0
.3

0
.4

Lag

P
a

rt
ia

l 
A

C
F

Series  Klang

0 10 20 30 40 50 60

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Series  RACF

0 10 20 30 40 50 60

-0
.1

0
-0

.0
5

0
.0

0
0

.0
5

0
.1

0

Lag

P
a

rt
ia

l 
A

C
F

Series  RPACF



95                                                            Ani Shabri / Jurnal Teknologi (Sciences & Engineering) 73:1 (2015) 89–96 

 

 

compared. Table 5 represents the results of Klang and Langat 

stations study site in terms of various performance statistics.  
 

Table 5  The Performance Results of ARIMA, LSSVM and WLSSVM 

Approach During Training and Testing Period. 

 

 Training  Testing 

Data Model RMSE MAE R  RMSE MAE R 

Klang ARIMA 8.05 5.24 0.48  4.63 3.56 0.66 

 LSSVM 6.45 4.27 0.72  3.47 2.83 0.84 

 WLSSVM 4.56 3.04 0.87  2.71 2.07 0.89 

         
Langat ARIMA 14.44 9.48 0.70  16.54 10.29 0.71 

 LSSVM 16.81 11.82 0.54  19.65 13.20 0.54 

 WLSSVM 8.480 6.146 0.91  11.80 8.73 0.87 

 

 

Table 5 above clearly shows that WLSSVM model performs much 

better than the single LSSVM and ARIMA models especially for 

the long term streamflow forecasting.    

 

 

6.0  CONCLUSION 

 

The potential of wavelet least square support vector machines 

(WLLSVM) model for 1-month ahead stream flow forecast has 

been presented. The proposed model based on the WLSSVM 

model were developed by combining two methods which are 

discrete wavelet transforms (DWT) and least square support vector 

machines (LSSVM) model.  The monthly stream flow time series 

was decomposed at different decomposition level by DWT. Each 

of the decomposition carried most of the information and plays a 

distinct role in original time series. The correlation coefficients 

between each of sub-series and original series were used for the 

selection of the LSSVM model inputs and for the determination of 

the effective wavelet components on stream flow. For the input of 

LSSVM model, sum of effective details and the approximation 

component are used. The WLSSVM model were trained and tested 

by applying different input combinations of monthly stream flow 

data of Klang and Langat stations in Peninsular Malaysia. The 

performance of the proposed WLSSVM model was compared to 

individual LSSVM model, and was also compared with the 

conventional ARIMA models for monthly   stream flow 

forecasting.  

  Comparison results indicate that the WLSSVM model was 

found to be significantly superior compared to the one that obtained 

by conventional LSSVM and ARIMA models. The study concludes 

that the forecasting abilities of the LSSVM model are found to be 

improved when the wavelet transformation technique is adopted for 

the data pre-processing. Moreover, the decomposed periodic 

components that obtained from the DWT technique are found to be 

most effective in yielding accurate forecast when used as inputs in 

the LSSVM model. Thus, the accurate forecasting results for both 

stations indicate that WLSSVM model provides a superior 

alternative to LSSVM and ARIMA models, and potentially a useful 

tool for stream flow forecasting.  
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