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Abstract 

 

The proportional hazard model is the most general of the regression models since it is not based on 

any assumptions concerning the nature or shape of the underlying survival distribution. The model 

assumes that the underlying hazard rate is a function of the covariates (independent variables) and 

there are no assumptions about the nature or shape of the hazard function. Proportional hazards 

model in survival analysis is used to estimate the effects of different covariates which was 

influenced by the survival data. This paper proposes the new multiplicative piecewise gamma in 

the hazard function using OpenBugs Statistical Packages. The proposed model is a flexible 

survival model for any types of non-informative censored data in estimating the parameters using 

Bayesian approach and also an alternative model to the existing model. We used the Markov Chain 

Monte Carlo method in computing the Bayesian estimator on leukemia data. The results obtained 

show that the proposed model can be an alternative to the existing multiplicative model since it can 

estimate the parameters using any types of survival data compared to the existing model that can 

only be used for leukemia data.   
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1.0  INTRODUCTION 

 
Survival analysis techniques are important tools for analyzing 

the data that belongs to field of medicine, engineering, 

marketing etc. Survival analysis is dealing with models, 

methods and is used for analyzing data of life times. Survival 

data are generally dealt with lifetimes from some initial event at 

time zero to some terminal event of interest and the data is 

basically would be an independent non-negative random 

variable, say T. In the era of the 1950's, a major advancement in 

survival analysis took place where Kaplan and Meier [1] 

proposed their famous estimator of the survival curve. David 

Cox [2] introduced the proportional hazards model which 

incorporates covariates later in 1972. 

  A general class of semi-parametric hazards regression 

model for survival data have been proposed by Chen and Jewell 

[3] which include Cox proportional hazards model, the 

accelerated failure time model and the accelerated hazards 

model. Their new models can yield more accurate prediction of 

an individual’s survival process and are flexible. While a 

covariate’s effect can be identified by separating two 

components namely a time scale change on hazard progression 

and a relative hazard ratio.   

  Semi-parametric Bayesian analyses of proportional hazard 

models recently have become computationally feasible due to 

modern technology and advancement in computing techniques 

such as the Gibbs sampler and other Markov Chain Monte 

Carlo (MCMC) methods. Arjas and Gasbarra [4] considered 

simple right censored data with a common unknown hazard rate 

in which the hazard rate is modelled nonparametrically. Gibbs 

Sampler is used in their study to generate the sample paths of 

the hazard rate from the posterior distribution. 

  An overview of Bayesian semiparametric methods for the 

Cox model has been provided by Sinha and Dey [5]. The 
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Bayesian method gives an advantage where we can join the 

baseline hazard and the regression coefficients that can be used 

accurately to compute the target posterior quantities using 

MCMC simulation techniques. Based on either the hazard or 

the intensity function, they investigated the potential of Bayes 

methods for the analysis of survival data using semiparametric 

models. The nonparametric part of every model is assumed to 

be a realization of a stochastic process while the parametric part 

is assumed to have a prior distribution with possibly unknown 

hyperparameters which may include a regression parameter or a 

parameter quantifying the heterogeneity of a population. 

  Ibrahim and Chen [6] developed a class of semi-parametric 

informative prior distributions for the Cox model. They 

specified a non-parametric prior for the baseline hazard rate and 

a parametric prior for the regression coefficients via the 

development of novel MCMC techniques for sampling from the 

posterior distribution of the parameters. Their approach seems 

to be a useful approach to this problem since it is difficult to 

specify meaningful prior distributions for the parameters in 

each model task and requiring contextual interpretations of a 

large number of parameters. 

  Proportional hazards model is modelled from a classical 

perspective by obtaining the partial likelihood approach to 

estimate the unknown parameters but recently, the model has 

become the most common from a Bayesian perspective ever 

since Sinha and Dey [5] had proposed an excellent paper in this 

area. It has been widely used in survival analysis for such 

realistic models. Fully Bayesian computations of multi-level or 

hierarchical model are now possible using simulation 

techniques. This new development has motivated the use of 

Bayesian methods in survival analysis and Gibbs Sampling is 

one of the new numerical algorithms which allow the obtaining 

of samples from posterior of interest. Gibb Sampling or Gibbs 

Sampler is commonly used as a means of statistical inference, 

especially in Bayesian inference, for obtaining a sequence of 

observations which are approximated from a specified 

multivariate probability distribution when direct sampling is 

difficult. Specialized software packages called BUGS [7, 8] are 

created for implementing MCMC-based analyses of full 

probability models. These packages will treat all unknowns as 

random variables.  

  In this paper, we used the proportional hazards model that 

has been used extensively since 1972. In a fully parametric 

model, the lifetime distribution has been assumed to belong to a 

family of parametric distributions and reducing the regression 

problem of estimating the parameters from the data. This paper 

describes the use of freely available software for the analysis of 

complex statistical models using MCMC techniques, called 

OpenBUGS [9]. 

  The proposed baseline hazard function in Cox model is 

slightly different compared to the original Cox model which has 

been proposed by Kalbfleisch [10]. He proposed gamma 

process prior as the baseline hazard function in Cox model and 

he fixed the value of c (a specification of the weight attached to 

a guess) and r (a guess at the failure rate per unit time). In this 

paper, we extend our previous work using both c and r having 

gamma and uniform distributions, respectively by setting the 

shape parameter in gamma process prior to the baseline hazard 

function to have a piecewise function that has a Gamma 

distribution. The purpose of this extension is to make the model 

more useful and flexible using hyperparameters instead of using 

non-informative prior, and the most important it can be used to 

any types of survival data in estimating the parameters. 

 

 

2.0  INFERENCE PROCEDURE 

 

A random variable for the survival time of an individual, T with 

vector covariates x follows a multiplicative Piecewise Gamma 

model if its hazard function has the following form 

𝜆(𝑡|𝐱) = 𝜆0(𝑡) exp(𝛽′𝐱(𝑡)),                                      (1) 

 

where  𝜆0(𝑡) is an unknown baseline hazard function that 

follows the Gamma distribution with mean, 𝜛

𝜃
 and variance, 𝜛

𝜃2. 

  Usually, the counting process analysis is based on the 

modeling of the intensity function in survival data.  The 

counting process, 𝑁𝑖𝑗(𝑡) which is observed in the ith individual 

(𝑖 = 1,2, … , 𝑁) and in the jth cluster (𝑗 = 1,2, … , 𝐾), is counting 

the number of failures which have occurred up to time t. 

𝑑𝑁𝑖𝑗(𝑡) is the counting process increments in the time interval 

[𝑡, 𝑡 + 𝑑𝑡) and assumed to be independent Poisson random 

variables with means, 𝐼𝑖𝑗(𝑡)𝑑𝑡, where 

 

𝑑𝑁𝑖𝑗(𝑡)~ Poisson(𝐼𝑖𝑗(𝑡)𝑑𝑡). 

 

The new failure rate is then seen to be an interval and defined 

as 

𝐼𝑖𝑗(𝑡)𝑑𝑡 = 𝑌𝑖𝑗(𝑡)𝜆(𝑡|𝐱𝑖𝑗) = 𝑌𝑖𝑗(𝑡)𝑑Λ(𝑡|𝐱𝑖𝑗), 

 

where 𝑌𝑖𝑗(𝑡) is an observed process and will take the value 1 or 

0 according to whether or not subject or individual i is observed 

at time t. 

  The multiplicative intensity model which was adopted by 

Cox's model is given by 

 

𝐼𝑖𝑗(𝑡)𝑑𝑡 = 𝑌𝑖𝑗(𝑡)exp(𝛽𝐱𝑖𝑗)𝑑Λ0(𝑡), 

 

where 𝑑Λ0(𝑡) is the increment or jump in the integrated 

baseline hazard function occurring during the time interval 

[𝑡;  𝑡 +  𝑑𝑡). 
  Kalbfleisch [10] proposed gamma process prior for the 

baseline hazard function by assuming 𝑑Λ0(𝑡) having a gamma 

distribution with mean 𝑑Λ0
∗ (𝑡) and variance 𝑑Λ0

∗ (𝑡)/𝑐, which 

can be written as 

 

𝑑Λ0(𝑡) ~ Gamma(𝑐𝑑Λ0
∗ (𝑡) , 𝑐). 

 

  We use the same baseline hazard function which is having 

a gamma distribution but with different mean and variance. We 

proposed our model using the gamma distribution with mean 

𝑑Λ0
∗ (𝑡)/𝑐 and variance 𝑑Λ0

∗ (𝑡)/𝑐2 which can be written as 

 

𝑑Λ0(𝑡) ~ Gamma(𝑑Λ0
∗ (𝑡) , 𝑐). 

 

  The original Cox model is proposed by Kalbfleisch which 

used a gamma process prior as the baseline hazard function 

with both c and r are fixed values. Later Ismail et al. [11] 

proposed an alternative to make it more flexible assuming that 

both c and r are having their own distributions. Ayman and 

Anis [12] proposed the baseline hazard function as the non-

parametric part of the model to be a non-negative polygonal 

function with the vertices located at times 𝑎0 = 0 < 𝑎1 < ⋯ <
𝑎𝑇 < 𝑎𝑇max+1, where the polygonal takes the values 𝜏0 = 0 <

𝜏1 < ⋯ < 𝜏𝑇 < 𝜏𝑇max+1, respectively and becomes constant 

over time 𝑎𝑇max
. Ismail et al. [13] once again proposed an 

alternative which suggested a combination of both parametric 

and nonparametric functions as the baseline hazard function by 

adopting the idea of Beamonte and Bermudez [14].  

  Once again we adopt both ideas and proposed the 

piecewise gamma baseline hazard function for Cox model, 

slightly different from the original proposed by Kalbfleisch. 

Since the conjugate prior for the Poisson mean is the gamma 

distribution, it would be convenient if Λ0( ) were a process in 

which the increments 𝑑Λ0(𝑡) are assumed to be the conjugate 

independent increments prior. 

  In this paper, we assume the mean, 𝑑Λ0
∗ (𝑡) to have a 

piecewise function,  

http://en.wikipedia.org/wiki/Multivariate_distribution
http://en.wikipedia.org/wiki/Probability_distribution


127                                          Noraslinda, Zarina & Norhaiza / Jurnal Teknologi (Sciences & Engineering) 70:1 (2014), 125–129 

 

 

𝑑Λ0
∗ (𝑡) =  {

𝜏𝑗−1 +
(𝜏𝑗 −  𝜏𝑗−1)(𝑡 −  𝑎𝑗−1)

(𝑎𝑗 −  𝑎𝑗−1)
  if 𝑎𝑗−1 ≤ 𝑡 ≤ 𝑎𝑗 ; 𝑗 = 1,2, … , 𝑘 

     𝜏𝑗−1                            if  𝑡 > 𝑎𝑘

  

that will take the values 𝜏0, 𝜏1, … , 𝜏𝑘 with the vertices that will 

be located at times 𝑎0, 𝑎1, … , 𝑎𝑘 and it will become constant 

over time 𝑎𝑘 .    
 

 

3.0  RESULTS AND DISCUSSION 

 

Leukemia data will be used in this analysis, where the effect of 

6-MP (6-Mercaptopurine) therapy for the duration of 

remissions induced by adrenal corticosteroids has been studied 

as a model for testing of new agents in leukemia patients. 

Patients in remission were assigned randomly to maintenance 

therapy with either 6-MP or placebo.  

In our previous work, other than proposing a new model, 

analysis was also made on other existing models using 

Leukemia data and some comparisons are made on it. We do 

the analysis for four different types of the baseline hazard 

function in Cox regression, namely gamma prior baseline 

hazard function, modified gamma baseline hazard function, 

polygonal baseline hazard function and gamma polygonal 

baseline hazard function. In this paper, the same approach is 

used to justify that the proposed model can be an alternative to 

the existing models in estimating the parameter. We extend our 

previous work by extending the baseline hazard model to have a 

piecewise gamma model. The aim of this paper is to introduce 

the new piecewise gamma baseline hazard function as an 

alternative to the existing multiplicative model using the BUGS 

software program.  

 

Table 1  Summaries of parameter estimation for Cox Regression with different baseline hazard function. 

 

Baseline Hazard 

Function 

Mean 

 𝜷̂ 

Standard 

Deviation 
MC Error 95% CI DIC - Log Likelihood  

Gamma process 1.545 0.4189 0.001847 (0.7571, 2.402) 232.6 106.35 

Modified gamma 1.538 0.4121 0.002079 (0.7611, 2.385) 209.2 102.40 

Polygonal 1.520 0.4143 0.002920 (0.7378, 2.370) 211.2 101.75 

Gamma polygonal 1.576 0.4056 0.003602 (0.8055, 2.399) 208.3 102.15 

Piecewise gamma 1.532 0.4134 0.002294 (0.7466, 2.370) 215.0 102.45 

 

 

  The analysis started by choosing three parallel chains with 

different starting values for each model and they were carried 

out simultaneously. Each chain performed 100,000 iterations 

after 5,000 iterations for burn-in to obtain convergence to the 

posterior distribution. One out of every 100th values is used to 

reduce the autocorrelation of the chain. The convergence of the 

chains can be monitored via the Brooks-Gelman-Rubin (BGR) 

convergence-diagnostic graph.  

  Table 1 shows the summaries of parameter estimation for 

Cox regression using different types of baseline hazard 

functions including the proposed model. The parameter 

estimation for all types is quite similar including the log-

likelihood and deviance information criterion. Figure 1(a) to (e) 

show the posterior trace plots for 100,000 iterations for each of 

three generated samples while Figure 2(a) to (e) show the 

density plots associated with the coefficient of the covariate. 

The convergence of the parameters has been achieved since 

auto-correlations decreases only after considering a lag equal to 

50 and this indicates a good convergence of the parameter space 

with a reasonably small number of iterations. This can be seen 

in Figure 3(a) to (e). 

 

   
(a) Gamma prior (b) Modified gamma (c) Polygonal 

  

 

(d) Gamma polygonal (e) Piecewise gamma  
 

Figure 1  Different baseline hazard functions - estimated predictive history plots associated with the coefficient of the covariate 
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(a) Gamma prior (b) Modified gamma (c) Polygonal 

  

 

(d) Gamma polygonal (e) Piecewise gamma  

 

Figure 2  Different baseline hazard functions - estimated predictive density plots associated with the coefficient of the covariate. 

   
(a) Gamma prior (b) Modified gamma (c) Polygonal 

  

 

(d) Gamma polygonal (e) Piecewise gamma  

 

Figure 3  Different baseline hazard functions - estimated predictive auto correlation plots associated with the coefficient of the covariate 

 

   
(a) Gamma prior (b) Modified gamma (c) Polygonal 

  

 

(d) Gamma polygonal (e) Piecewise gamma  

Figure 4  Different baseline hazard functions-estimated predictive Brook-Gelman-Rubin diagnostic graphs associated with the coefficient of the 

covariate 
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The BGR convergence diagnostic graphs in Figure 4(a) to (e) 

show the line converted into one for stability indicating the 

convergence of the algorithm. This shows that our proposed 

model can be a good model as the existing models in the 

analysis of survival data. Apart from that, our model is eligible 

to become an alternative model that has great potential in 

applications involving survival data in the future. 

 

 

4.0  CONCLUSION 

 

Bayesian inference has several advantages particularly in the 

flexibility of model building for complex data over the 

frequentist approaches. The Bayesian approach enables us to 

make exact inference for any sample size based on the posterior 

distribution. OpenBUGS is a tool for analyzing survival data in 

a Bayesian framework using MCMC and provides the 

summaries of inferences and convergence in a table and graph. 

  We proposed a multiplicative piecewise gamma model 

using Bayesian approach to fit more flexible survival models 

for non-informative censored data using a Bayesian approach. 

Using OpenBUGS, we can see the performances of the 

proposed multiplicative piecewise gamma intensity models. We 

used the MCMC method in computing the Bayesian estimator 

on Leukemia data. The results obtained show that in analyzing 

paired survival data, the proposed model is as good as the 

existing multiplicative model. The proposed model shows a 

flexibility survival model for non-informative censored data 

and also can be a good model as existing multiplicative models.  
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