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Abstract 

 
Time series analysis and forecasting is an active research area over the last few decades. There are various 

kinds of forecasting models have been developed and researchers have relied on statistical techniques to 

predict the future. This paper discusses the application of Least Square Support Vector Machine 
(LSSVM) models for Canadian Lynx forecasting. The objective of this paper is to examine the flexibility 

of LSSVM in time series forecasting by comparing it with other models in previous research such as 

Artificial Neural Networks (ANN), Auto-Regressive Integrated Moving Average (ARIMA), Feed-
Forward Neural Networks (FNN), Self-Exciting Threshold Auto-Regression (SETAR), Zhang’s model, 

Aladang’s hybrid model and Support Vector Regression (SVR) model. The experiment results show that 

the LSSVM model outperforms the other models based on the criteria of Mean Absolute Error (MAE) 
and Mean Square Error (MSE). It also indicates that LSSVM provides a promising alternative technique 

in time series forecasting. 

 
Keywords: Time series forecasting; support vector regression; least square support vector machine; 

canadian lynx data 

 

Abstrak 

 

Analisis dan ramalan siri masa adalah kawasan penyelidikan yang aktif sejak beberapa dekad yang lalu. 
Terdapat pelbagai jenis model ramalan yang telah dibangunkan dan penyelidik telah bergantung pada 

teknik statistik untuk meramalkan masa depan. Kertas ini membincangkan penggunaan model Kurang 

Persegi Mesin Sokongan Vektor (LSSVM) untuk peramalan Lynx Kanada. Objektif kertas ini adalah 
untuk mengkaji fleksibiliti LSSVM dalam peramalan siri masa dengan membandingkannya dengan 

beberapa model lain dalam kajian sebelumnya seperti Rangkaian Neural Buatan (ANN), Auto-Regresif 

Bersepadu Purata Bergerak (ARIMA), Rangkaian Neural Suap-Kehadapan (FNN), Auto-Regresif 
Ambang Sendiri-Menarik (SETAR), Model Zhang, model hibrid Aladang dan model Sokongan Vektor 

Regresi (SVR). Keputusan eksperimen menunjukkan bahawa model LSSVM melebihi performa model 

lain berdasarkan kriteria Ralat Min Mutlak (MAE) dan Ralat Min Kuasa Dua (MSE). Ia juga 
menunjukkan bahawa LSSVM menyediakan teknik alternatif yang memberangsangkan dalam peramalan 

siri masa. 

 
Kata kunci: Peramalan siri masa; sokongan vektor regresi; kurang persegi mesin sokongan vektor; data 

lynx Kanada 
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1.0  INTRODUCTION 
 

Time series forecasting, or time series prediction, takes an 

existing series of data and forecasts the data values. The goal is 

to observe or model the existing data series to enable future 

unknown data values to be forecasted accurately. The accuracy 

of time series forecasting is fundamental to many decision 

processes and hence the research for improving the 

effectiveness of forecasting models has never been stopped11.  

The reason that forecasting is so important is that prediction of 

future events is a critical input into many types of planning and 

decision making. In time to time, time series forecasting 

becomes an active research area over the last few decades. 

Various kinds of forecasting models have been developed and 

researchers have relied on statistical techniques to predict time 

series data.  

  Artificial neural network (ANN) has found increasing 

consideration in forecasting theory, leading to successful 

applications in various forecasting domains including economic 

and many more. In the last decade, ANN is being used more 

frequently in the analysis of time series forecasting, pattern 

classification and pattern recognition capabilities8,12. ANN 

provides an attractive alternative tool for both forecasting 

researchers and has shown their nonlinear modeling capability 
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in data time series forecasting15. The ANN can learn from 

examples (pass data), recognize a hidden pattern in historical 

observations and use them to forecast future values. In addition 

to that, they are able to deal with incomplete information or 

noisy data and can be very effective, especially in situations 

where it is not possible to define the rules or steps that lead to 

the solution of a problem. However, there are some 

disadvantages of the ANN. The network structure is hard to 

determine and it is usually determined by using a trial–and– 

error approach7.  

  Other than ANN, the Support Vector Machine (SVM) 

model which was first suggested by Vapnik10, have become 

state–of–the–art tools for linear and nonlinear input–output 

knowledge discovery10,17 and it can be employed for solving 

pattern recognition, regression estimation problems, data 

mining, classification, and time series forecasting9,11. Several 

studies showed that SVM is a powerful methodology and has 

become the most wanted in studies due to ability to solve most 

nonlinear regression and time series problem. The ability of 

SVM to solve nonlinear regression estimation problems makes 

SVM successful in time series forecasting. SVM are very 

specific types of learning algorithms characterized by the 

capacity control of the decision function and the use of the 

kernel function. Established on the unique theory of the 

structural risk minimization principle to estimate a function by 

minimizing an upper bound of the generalization error, SVM is 

shown to very resistant over-fitting problem, eventually 

achieving high generalization performance in solving various 

time series forecasting problems9.  
  An SVM are divided into two types: SVM for classification 

or also known as SVC and SVM for regression also known as 

SVR. SVR are applied to solve the regression problems with the 

introduction of an alternative loss function13,17. Detailed 

discussions of SVMs and SVRs have been given in several 

literature13,16,17,18. Another key property of SVM is that training 

SVM is equivalent to solving a linearly constrained quadratic 

programming problem so that the solution of SVM is always 

unique and globally optimal, unlike other networks’ training, 

which requires non-linear optimization with the danger of being 

stuck into local minima3. The numerical results indicated that 

the SVM is superior to the multi-layer back propagation neural 

network in financial time series forecasting9. However, the 

standard SVM is solved using complicated quadratic 

programming methods, which are often time consuming and has 

higher computational burden because of the required 

constrained optimization programming. 

  On the other hand, LSSVM is a modification from existing 

SVM, which has been successfully applied to solve various 

problems, among others in data mining, classification, 

regression and time series forecasting3,11. The ability of SVM to 

solve nonlinear regression estimation problems makes SVM 

successful in time series forecasting. The LSSVM‘s 

reformulation greatly simplifies the problem in such a way that 

the solution is characterized by a linear system, more precisely a 

Karush-Kuhn-Tucker (KKT) liner system, which takes a similar 

form as the linear system that one solves in every iteration step 

by interior point methods for standard SVM. 

  LSSVM encompasses similar advantages as SVM, but its 

additional advantages is that it requires solving a set of only 

linear equations, which is much easier and computationally 

more simple. The method uses equality constraints instead of 

inequality constraints and adopts the least squares linear system 

as its loss function, which is computationally attractive. An 

LSSVM also has better convergence and high precision. Hence, 

this method is easier to use than quadratic programming solvers 

in SVM method. Extensive empirical studies17 have shown that 

LSSVM is comparable to SVM in terms of generalization 

performance. 

  In this paper, LSSVM model is proposed in order to  

improve the accuracy of time series forecasting. With the 

capability of LSSVM, the proposed model is expected to be 

useful for time series forecasting. The prediction results of 

LSSVM model are compared with others forecasting models 

developed by the previous researcher such as Aladang, Kajitani, 

Khashei and Zhang2,5,6,11.  

 

 

2.0  FORECASTING MODELS 

 

This section, we present the SVR and LSSVM models used in 

Canadian lynx forecasting. The choice of these models in this 

study was because these models have been widely and 

successfully used in time series forecasting.  

 

2.1  Support Vector Regression (SVR) 

 

SVR is closely related to SVM classifiers in terms of theory and 

implementation. The loss function must be modified to include a 

distance measure. The regression can be linear and non-linear. 

Similar to classification problems, a nonlinear model is usually 

required to adequately model data. In the same manner as the 

non-linear SVC approach, a non-linear mapping can be used to 

map the data into a high dimensional feature space where linear 

regression is performed. 

  Vapnik10,14 introduced the  -insensitive zone in the error 

lost function. From a theoretical point of view, this zone 

represents the degree of precision at which the bounds on the 

generalization ability apply. Training vectors that lie within the 

zone are deemed correct, whereas those outside this zone are 

deemed incorrect and contribute to the error loss function. These 

incorrect vectors become the support vectors (see Figure 1).  

Vectors lying on and outside the dotted lines are support 

vectors, whereas those within the  -insensitive zone are not 

important in terms of the regression function. The regression 

surface then can be determined only by support vectors. 

 

 
 
Figure 1  One-dimensional non-linear regression with epsilon intensive 
band  

 

 

  Fundamentally, SVR is linear regression in the feature 

space. Although it is simple and not very useful in real-world 

situations, it forms a building block for understanding complex 

SVRs. The goal of SVR is to find a function )(xf that 

deviates not more than   from the targets ky for all the 

training data, and at the same time, is as flat as possible. Let 

linear function )(xf takes the form: 

bxwxf T )(                   
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The optimization problem in the primal weight space becomes: 
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  Here the kernel trick has been applied with 

)()(,( l

T

klk xxxxK   or Nlk ,...,1,  . Kernal 

trick is a technique to write a nonlinear operator as a linear one 

in a space of higher dimension. The dual representation of the 

model becomes the following equation, where 
*, kk   are the 

solution to the QP problem. 
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2.2  Least Square Support Vector Regression 

 

Least Square Support Vector Machine (LSSVM) is a 

modification of the standard Support Vector Machine (SVM) 

was develops by Suykens and Vandewalle14. The basic LSSVM 

is used for the optimal control of non-linear Karush-Kuhn-

Tucker systems for classification as well as regression. 

  Consider a set data 

)},(),...,,(),,{( 2211 nn yxyxyxD  , 
p

ix  , 

iy , x is the input vector, y is the expected output and n 

is the number of data. The LSSVM has been developed to find 

the optimally non-linear regression function 

bxwxy T  )()(     (1) 

By combining the functional complexity and fitting error, the 

optimization problem of LSSVM is given as: 
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This formulation consists of equality instead of inequality 

constraints. To solve this optimization problem, Lagrange 

function is constructed as 
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where i are the Langrange multipliers, which can be positive 

or negative. The solution of (4) can be obtained by partially 

differentiating with respect to ,, bw  i  and i  
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After elimination of the variables w  and i  one obtains the 

following matrix solution. 































 y

b

IT

v

T

v 0

1

10
1 

    (6) 

with ],...,,[ 21 lyyyy  , ]1,...,1,1[1 T

v ,

],...,,[ 21 l   and Mercer’s condition is applied 

within the   matrix; 
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The fitting function namely the output of LSSVM Regression is, 
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where bi , are the solutions to the linear system and 

),( ji xxK  is a kernel function. The most popular kernel 

function is Radial Basis Function (RBF)20, as shown in Equation 

(9).  
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3.0  DATASET 

 

The lynx data sets are one of the most frequently used time 

series. The lynx series contains the number of lynx trapped, per 

year in the Mackenzie River, Northern Canada. The data show a 

periodicity of approximately 10 years, corresponding from 

1821–1934 containing 114 observations (see Figure 2). For the 

experiment's purpose, we divided the whole data into a training 
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set containing 100 data points and the testing set containing the 

rest of 14 data points. The training set is used for model 

development while the testing set is used to evaluate and 

established the model. 

 

 
 

Figure 2  Canadian lynx data series (1821–1934) 

 

 

3.0  PERFORMANCE CRITERIA 

 

The performances of the each model for both the training data 

and forecasting data are evaluated and were selected according 

to the mean absolute error (MAE) and mean square error 

(MSE), which are widely used for evaluating results of time 

series forecasting. The MAE and MSE are defined as 
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where ty  and tŷ  are the observed and  the forecasted rice 

yields at the time t. The criterions to judge for the best model 

are relatively small of MAE and MSE in the modeling and 

forecasting.  

 

 

4.0  APPLICATION 

 

In this study, RBF was employed as a kernal for both of the 

models. Dibike20 employed some diverse kernel functions for 

their modeling and demonstrated that the RBF kernel has 

superior efficiency than other kernel4. The advantage of the 

RBF kernel is that it nonlinear maps the training data into a 

possibly infinite dimensional space. This can effectively handle 

situations when predictors and predicted is non-linear and is 

computationally simple than the polynomial kernel. Therefore, 

RBF kernel was chosen in this study because it performs well 

under general smoothness assumptions. 

 

4.1  Testing Using SVR 

 

It is well known that SVR generalization performance 

(estimation accuracy) depends on a good setting of hyper-

parameters C ,   and the kernel parameters. The problem of 

optimal parameter selection is further complicated by the fact 

that SVR model complexity (and hence its generalization 

performance) depends on all three parameters. Existing software 

implementations of SVM regression usually treat SVM hyper-

parameters as user-defined inputs. In order to better evaluate the 

performance of the proposed approach, the parameters C ,  , 

and  in the range of search was set up to [1, 10] at increment 

of 1.0 for C , and [0.1, 0.5] at increment of 0.1 for  , with 

 fixed as 0.5. For each hyper-parameter pair ( C ,  ) in the 

search space, 10-fold cross validation on the training set is 

performed to predict the prediction error where it will repeated 

ten times to increase the reliability of the results.  

 

4.2  Testing Using LSSVM 

 

In order to better evaluate the performance of the proposed 

approach, we consider a grid search of ),( 2  with  in the 

range 10 to 1000 and 
2  in the range 0.01 to 1.0. For each 

hyper-parameter pair ),( 2 in the search space, 10-fold cross 

validation on the training set is performed to predict the 

prediction error.  

 

 

5.0  RESULT AND COMPARISON 

 

In this section, the predictive capabilities of the proposed model 

are compared with artificial neural networks (ANNs), auto-

regressive integrated moving average (ARIMA), and Zhang’s 

hybrid ANNs/ARIMA model11, Khashei’s ANN model6, 

Aladang’s hybrid Elman's Recurrent Neural Networks (ERNN) 

and ARIMA model2 and Kajitani’s (Self-Exciting Threshold 

Autoregression) SETAR and Feed- Forward Neural Networks 

(FNN) model5 using well-known real data sets: the Canadian 

lynx data. The mean absolute error (MAE) and Mean Squared 

Error (MSE), which are widely used for evaluation of time 

series forecasting’s result were used as a performance 

measurement in this study. The usage of MAE and MSE in this 

study are suitable as the previous studies were conducted using 

the same evaluation performances. The MAE and MSE values 

for the last 14 observations of the models are summarized in 

Table 1.  

  By considering these results, our proposed model has 

yielded a slightly better result, were the MSE and MAE values 

of the proposed model is the smallest among others. Thus, the 

SVR model results perform slightly better than using other 

models. Figure 3 showed the forecasting values for the last 14 

observations used in this study. The solid line represents the 

actual time series data while the dot line represents the forecast 

values. 

 
Table 1  The comparison of the performance of SVR with other 

forecasting models of Canadian Lynx Data 
 

Model log10  (lynx)  

Max=3.844539, F=14 

MSE MAE 

Zhang’ ARIMA 0.0205 0.1123 
Zhang’ ANN 0.0205 0.1121 

Zhang’ Hybrid 0.0172 0.1040 

Khashei & Bijari’ ANN 0.0136 0.0896 
Kajitani’ SETAR 0.0140 - 

Kajitani’ FNN 0.0090 - 

Aladag’ Hybrid 0.0090 - 
SVR 0.0085 0.0746 

LSSVM 0.0030 0.0418 
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Figure 3  The SVR prediction of Canadian lynx 

 

 

6.0  CONCLUSION 

 

Time series forecasting is very important for future forecasting 

because it is involved in the decision making process. Previous 

data and information need in order to forecast the future. In 

summary, the main steps for forecasting are to analyze the 

historical or past time series data to identify the patterns that can 

be used. This pattern was further expanded to provide a forecast.  

  In this paper, we present a LSSVM model for Canadian 

lynx forecasting. From the experimental results comparing the 

performance of SVR, LSSVM and seven other models done by 

previous researchers, it indicates that LSSVM significantly 

outperform other models and it can be concluded that LSSVM 

provides an alternative technique for time series forecasting. In 

the future work, we hope to increase the forecasting accuracy by 

employing the forecasting and clustering models together. 
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