

70:5 (2014) 25–33 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Full paper
Jurnal

Teknologi

Malware Behaviour Visualization

Syed Zainudeen Mohd Shaid*, Mohd Aizaini Maarof

Department of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

*Corresponding author: szainudeen@utm.my

Article history

Received :1 January 2014

Received in revised form :
1 June 2014

Accepted :10 September 2014

Graphical abstract

Abstract

The number of unique malware variants released each year is on the rise. Researchers may often need to

use manual static and dynamic analysis to study new malware samples. Manual analysis of malware
samples takes time. The more time taken to analyse a malware sample, the larger the damage that a

malware can inflict. A lot of techniques have been devised by researchers to facilitate malware analysis

and one of them is through malware visualization. Malware visualization is a field that focuses on
representing malware features in the form of visual cues or images. This could be used to convey more

information about a particular malware. Existing malware visualization techniques lack focus in

visualizing malware behaviour in such a way that could enable better analysis of malware samples. In this
paper, a new technique for malware visualization called ‘Malware Behaviour Image’ is presented. From

the test results, the proposed technique is able to accurately capture and highlight malicious behaviour of

malware samples, and can be used for malware analysis, detection and identification of malware variants.

Keywords: Malware; malware behaviour; malware visualization; malware behaviour visualization

Abstrak

Terdapat peningkatan di dalam jumlah pengeluaran sampel malware yang unik setiap tahun. Para
penyelidik kadangkala terpaksa menggunakan cara manual untuk menganalisa sampel malware menerusi

teknik analisa statik dan dinamik. Analisa malware secara manual memakan masa. Lebih banyak masa

yang diperlukan, lebih parah akan kesan penularan sesuatu sampel malware. Pelbagai teknik telah dicipta
oleh para penyelidik bagi memudahkan analisa terhadap sampel malware dilakukan dan salah satu

daripadanya adalah menerusi visualisasi malware. Visualisasi malware adalah suatu cara untuk

memaparkan malware dalam bentuk visual. Cara ini dapat memaparkan lebih banyak maklumat tentang
sesuatu sampel malware. Teknik visualisasi malware sedia ada kurang fokus di dalam visualisasi perilaku

malware yang dapat menyumbang ke arah analisa malware yang lebih baik. Di dalam kertas ini, kami

paparkan hasil kajian kami di dalam visualisasi perilaku malware ke dalam bentuk gambar yang dikenali
sebagai Gambar Perilaku Malware. Hasil ujikaji menunjukkan bahawa teknik ini mampu untuk

menggambarkan perilaku hasad malware secara tepat, dan boleh digunakan untuk analisa malware,

pengesanan dan identifikasi varian malware.

Kata kunci: Malware; perilaku malware; visualisasi malware; visualisasi perilaku malware

© 2014 Penerbit UTM Press. All rights reserved.

1.0 INTRODUCTION

Malware is software which runs much like other software. The

key difference between malware and non-malware (benign) is in

the behaviour of that particular software. If a software shows

malicious activities like stealing user data, replicating, disabling

certain security feature, serving as a backdoor, or executing

commands not intended by the user, then it can be considered as

malware.

 It is estimated that more than 286 million unique variants of

malware are released in the year 2010 alone, which roughly

translate to an average of 784,000 unique variants per day

according to a report by Symantec Corp1. The number of unique

malware variants increased 41% in the year 20112, and continue

to increase in the year 20123. The statistics clearly show that

malware is a serious problem and thus, it is not surprising that

there are a significant number of studies being done by

researchers in the field.

 Analysing a lot of malware samples manually is something

which is inevitable due to the growing number of malware

samples each year1,2,3. Researchers need a technique that could

enable quick and easy analysis of malware samples, especially on

the behavioural aspects of the sample.

 In this paper, a new technique for malware visualization that

highlights the behavioural aspects of malware will be disclosed.

The technique displays malware behaviour in the form of images

(called Malware Behaviour Image). The presented method can be

used for malware analysis, detection and identification of malware

variants.

26 Syed Zainudeen Mohd Shaid & Mohd Aizaini Maarof / Jurnal Teknologi (Sciences & Engineering) 70:5 (2014) 25–33

The next section discusses the problem background, the research

strategy, and the related works in malware visualization followed

by a number of sections that will describe in detail, the steps

necessary in generating a Malware Behaviour Image. Finally, we

will present some use cases to highlight the possibility of using

Malware Behaviour Image in malware analysis, detection and

identification of malware variants.

2.0 PROBLEM BACKGROUND

The process of detecting a malware and generating a signature for

a newly released malware sample is time consuming and may

require manual analysis of malware samples4. Whenever there is

an outbreak of a new malware, researchers will grab hold of a

sample, analyse it and then release a signature for that particular

sample. There are two approaches towards analysing a malware

sample. These are dynamic analysis, and static analysis. Dynamic

analysis is a technique for studying the behaviour of a malware

sample while the sample is being executed. Static analysis, on the

other hand, is a technique that enables the study of a sample

without the need for sample execution.

 Often manual analysis of malware samples cannot be

avoided, especially on new malware samples. The two

approaches, when done manually, will require a lot of time. The

longer the time it takes to analyse a malware sample, the longer

the gap between the release of a new sample and the release of a

new signature. With the ever increasing number of malware

samples to process, a new technique that could aid in malware

analysis is needed.

3.0 STRATEGY

One possible way to assist analysis of malware samples is through

the use of malware visualization. Malware visualization is a field

of knowledge that focuses on representing malware features in the

form of visual cues that could be used to deliver more information

about a particular malware in a more compact manner.

Visualization helps researchers to better understand malware

graphically, highlighting certain interesting aspect of malware

which might not be conceivable in other forms of malware

analysis. This could lead to more knowledge being extracted from

the same amount of data, and thus contributes towards better

understanding of the workings of a malware.

 Existing malware visualization techniques seems to be able

to generate similar images for the malware of the same family5,6,7.

This is probably due to the fact that these images are derived from

features of malware samples. Malware from the same family

tends to share, at a different degree, the same feature5,6,7 and this

consequently leads to the creation of similar looking images. This

trait can be exploited to create a technique that could help in

better understanding of malware samples through visualization.

4.0 RELATED WORK

There are currently 4 documented malware visualization

techniques in malware research. These are Malware Treemap5,

Malware Threadgraph5, Malware Image6, and VERA7.

 Malware Treemap is a visualization technique that visualizes

malware behaviour in the form of an image of nested rectangles

by Trinius et al.5 It is a behaviour-based, malware visualization

technique that takes API calls of malware as input and visualizes

it into a colour image. The API calls are obtained by executing

malware samples inside a VM. API calls of malware samples are

not used in raw form. Instead, all API calls are grouped into

several sections5. Such grouping increases the abstraction level

represented by the image since the input used in generating the

image is of low granularity behaviour data (grouped API calls of

similar functionality).

 Malware Threadgraph, as its name suggests, is a graph that

plots the activity of each of the threads in a malware by Trinius et

al.5 ‘Thread’ here refers to the execution threads of a malware

sample. The number of threads may differ among malware

samples. Single-threaded malware will have only one line plotted

in the threadgraph while multi-threaded malware will have 2 or

more lines plotted (depending on the actual number of threads in

use). Malware Threadgraph shares a lot of common attributes

with Malware Treemap. For instance, both uses API calls

obtained through the same method (CWSandbox), and grouped

into sections of behaviour with similar functionality. However,

instead of representing the percentage of sections, Malware

Threadgraph represents the chronological order of the sections

and the transition between the regions that was represented by an

API call. The graph is plotted from left to right and is limited to

showing only the first 550 operations (and hence can only show

449 section changes)5.

 Unlike Malware Treemap and Malware Threadgraph,

Malware Image is a static feature based, malware visualization

technique and thus, did not require execution of malware samples

for feature extraction6. Malware samples are visualized based on

raw malware data available on the malware binary itself. Each

byte of the malware binary is interpreted as an 8-bit unsigned

integer value ranging from 0 to 255, where a value of 0 will

represent black while a value of 255 will represent white.s Once

each byte of the malware binary has been converted into values

that represent a grayscale color, a grayscale image will be plotted,

from left to right, top to bottom. The width of the image depends

on the size of the malware sample. The bigger the sample size, the

larger the width of the image will be6.

 VERA (Visualization of Executables for Reversing and

Analysis) is actually a framework by Quist and Liebrock7 for

visualizing malware samples in the form of a 3D image. VERA

was not meant for malware classification but rather, it was aimed

at assisting malware researcher in doing malware analysis,

especially on manual malware unpacking. VERA helps

differentiate code section entropy and monitor the creation,

deletion, and modification of code sections of malware in memory

by representing executable code blocks as colour coded nodes.

VERA uses a modified hypervisor-based VM for monitoring the

execution of malware sample. Details such as memory address,

memory state, code entropy and several other state details were

recorded. This information is later used in creating a 2D image

consisting of colour coded nodes (that represent code blocks) and

branches (that represent flow of code execution). This 2D image

is later converted to 3D for better visual appeal.

 Table 1 shows a comparison between existing malware

visualization techniques. Malware Treemap, Malware

Threadgraph, and VERA are malware visualization techniques

based on the use of dynamic feature of malware. Malware Image

on the other hand, is a static feature based malware visualization

technique. The use of raw malware binary for the creation of

Malware Images includes visualization of non-behaviour related

data such as the PE header (metadata), and resources (e.g. icons,

bitmaps, xml files, etc.)8. This could affect the overall accuracy of

the generated image, especially in cases where the size of non-

behaviour related data is greater than the size of behaviour related

data in a malware binary (e.g. malware with lots of resources).

Therefore, Malware Image is not a good candidate for a

visualization technique that could accurately visualize malware

behaviour.

27 Syed Zainudeen Mohd Shaid & Mohd Aizaini Maarof / Jurnal Teknologi (Sciences & Engineering) 70:5 (2014) 25–33

Malware Treemap did not capture information on malware

behaviour sequence and represents behaviour in the form of

sections. These traits cause the technique to represent low

granularity malware behaviour, which is not sufficient for use in

differentiating very similar malware families or groups. The same

is true for Malware Threadgraph that makes use of limited

number of behaviour sections.

 The 3D malware model by VERA is not suitable for

representing malware behaviour. This is because the VERA

framework is only interested in capturing memory location and

other memory state information. While the technique is good for

malware analysis, especially in malware unpacking, it does not

capture any data that could be related to malware behaviour and

therefore, could not be a good candidate for a malware behaviour

visualization technique.

 All of the abovementioned malware visualization techniques

have restrictions that prevent them from being used in visualizing

the behavioural aspects of malware samples for malware analysis.

Therefore, a new technique that can clearly highlight the

behavioural aspects of a malware sample is needed. The next

section presents a new technique for malware behaviour

visualization. The technique will have malware samples as input

and generates images of malware behaviour called ‘Malware

Behaviour Image’.

Table 1 Comparison of existing malware visualization techniques

Visualization

Technique

Type of

Feature Used
Feature Used Limitations

Malware

Treemap
Dynamic API calls

Low

granularity,

No sequence
information

Malware

Threadgraph
Dynamic API calls

Low
granularity,

Limited to 550

operation

Malware Image Static
Raw malware

binary

Does not

represent
actual

malware

behavior

VERA Dynamic

Memory

address,

memory state,

code entropy,

etc.

Not meant for

representing

malware
behaviour

5.0 VISUALIZING MALWARE BEHAVIOUR

The process of visualizing malware behaviour can be summarizes

as in Figure 1. There are 3 important processes in generating a

malware behaviour image. We start by capturing malware

behaviour. Before the captured behaviour are transformed into

images, a behaviour-to-colour mapping needs to be created. This

mapping is responsible for highlighting certain features in the

behaviour image. In case of malware, we want to highlight

malicious features and therefore, assign colours that will protrude

malicious behaviour inside the behaviour image. Once the

behaviour-to-colour mapping is ready, the behaviour image is

generated by converting each captured behaviour into colours that

together, forms the behaviour image. Details on each of the

processes involved are explained in the next section.

5.1 Malware Behaviour

There have been a lot of attempts by researchers to find the

perfect candidate that could represent malware behaviour.

Malware behaviour refers to what malware does, exhibits, or

causes to its environment during live execution. Among the

candidates for representing malware behaviour includes

monitoring changes to operating system resources during malware

execution9, capturing malware’s API call sequence10,11, malware’s

I/O request packets (IRP)9, and malware’s network activity13,14.

 In monitoring changes to operating system resources, Jiang

et al.9 has outlined a method similar to taking snapshots of a

system state at certain time intervals. The outlined method works

best for capturing changes in operating system’s resources, but

not the order in which these changes happened. Besides that, the

technique is only limited to analysing well-known structures like

the process list, partition table, or the file system table.

Figure 1 Processes in Malware behaviour visualization

 API call monitoring is a rather effective approach for

capturing malware behaviour. An API is self-explanatory and

could (very clearly) tell if an application is trying to access a file,

a network service or even attempt to modify memory content of a

remote process. Currently, according to Nataraj et al.15 the

technique proved to be the one that provides the most accurate

result for representing malware’s behaviour, especially in the case

of malware classification.

 Zhang et al.12 later presented a new indicator for malware

behaviour by using I/O Request Packet (IRP). An IRP can be

generated whenever a user mode application requests for an I/O

operation, usually through the use of windows API. Not all APIs

will generate an IRP, especially in the case of pure user mode

API. The paper claimed that IRP is better than API call

monitoring because API call monitoring could only be used on

user mode applications, but this is far from true. Kernel mode

applications do use APIs (albeit different from user mode APIs)

and these API calls can be monitored.

28 Syed Zainudeen Mohd Shaid & Mohd Aizaini Maarof / Jurnal Teknologi (Sciences & Engineering) 70:5 (2014) 25–33

Capturing malware’s network activity, while useful in studying

spyware and botnets, is not suitable for representing malware

behaviour. Some malware might have very little or no network

activity (e.g. Virus) and this could hinder malware analysis due to

lack of data.

 In our research, API call is used to provide malware

behaviour data for malware behaviour visualization due to its

proven effectiveness in representing malware behaviour15.

5.2 Capturing Malware Behaviour

The first step towards behaviour visualization is to obtain

behaviour data. An API call monitoring utility is executed on each

of the malware sample. The utility executes malware samples in

real time and collects all user mode API calls made by each

malware sample. The reason we opt for user mode API calls is

because of its conciseness in representing malware behaviour.

 User mode API is stable in the sense that it rarely changes as

opposed to the lower level system call, which differs a lot

between different versions of the same operating system. The

sequence of lower level system call that is used to implement a

user mode API might change and this could render analysis of

malware on one version of an operating system to be unusable on

other versions.

 Besides being stable, capturing user mode API is also crucial

in speeding up the process of understanding the workings of a

malware since user mode API reflects the exact nature of a

particular malware. In Windows for example, it is far easier to

understand the user mode API call CreateFileA than several

system calls that does memory allocation and de-allocation.

Running a kernel mode API call monitor on a malware will result

in a flood of APIs which vaguely reflects the behaviour of the

malware. Capturing user mode API on the other hand will result

in a clearer description of malware behaviour. This is similar to

viewing the source code of the malware, where one can see high

level description (user mode APIs) of a malware.

5.3 Feature Highlighting

There are several approaches towards mapping API calls to

colour. One way to do this is by creating a colour mapping whose

colours are randomly selected. Assuming that we use 8-bit colour

per channel (RGB), we could represent around 2563 or ~16

million colours which would be more than enough to represent

captured APIs. However, during our initial test, we find that the

behaviour image generated using this mapping technique lack

intrinsic value because the colours in the behaviour image did not

convey any meaningful information.

 We then settle for another approach, by grouping and sorting

APIs based on the level of maliciousness. There are a lot of APIs

(in Windows) and each APIs varies in its level of maliciousness.

Some API like DeleteFileA (which deletes files in a file system) is

considered malicious while others like malloc (which allocates

memory from the heap) could be considered as less harmful. We

enumerated a list of APIs and group them according to their level

of maliciousness. We then assign certain colour (e.g. red) to

malicious APIs and some other colour (e.g. blue) to non-malicious

APIs. By doing this, we would have a visual representation of the

level of maliciousness of a malware sample. In our test, we find

that this approach yield better visual information compared to the

previous one.

 In order to map all API calls to colour, we need a set of

colours that can uniquely represent all of the sorted API calls in

the previous phase. To do this, we select the hot-to-cold colour

ramp (see Figure 2). Hot colours (e.g. red, orange, etc.) will

represent malicious APIs while cold colours (e.g. cyan, blue, etc.)

will represent non-malicious APIs.

 Once we have the sorted APIs and the colour ramp, we map

the APIs (as in Figure 3) so that APIs that are in the malicious

region will have hot colours and APIs that are in the non-

malicious region will have cold colours. The hot-to-cold colour

ramp enables the Malware Behaviour Image to highlight

malicious API calls made during the lifetime of a malware.

 The colours are represented using the RGB (Red, Green,

Blue) colour model. In the model, the chosen colour ramp starts

from red (1,0,0) to yellow (1,1,0) to green (0,1,0) to cyan (0,1,1),

and to blue (0,0,1) as in Figure 4.

Figure 2 Hot-to-Cold colour ramp

Figure 3 API-to-Colour mapping

Figure 4 RGB colour cube depicting the line that represents the hot-to-

cold colour ramp

 Therefore, given a list of APIs (sorted based on the level of

maliciousness) with an index ranging from 1 to n, API1 will map

to RGB colour 1,0,0 while APIn will map to 0,0,1. We calculate

the value of each colour element R,G,B of index i (where each

colour channel is represented with a value scale of 0 to 1) using

the following formula (1).

Malicious API

…
…
Less malicious API

…
…
Non-malicious API

API Maliciousness level Color assigned

Black (0,0,0)

White (1,1,1)

Red (1,0,0)

Green
(0,1,0)

Blue (0,0,1)

Magenta (1,0,1)

Yellow (1,1,0)

Cyan (0,1,1)

29 Syed Zainudeen Mohd Shaid & Mohd Aizaini Maarof / Jurnal Teknologi (Sciences & Engineering) 70:5 (2014) 25–33

 (1)

5.4 Image Generation

Once we had the API-to-colour map ready, we then proceed to

generate a behaviour image for each sample. Each API will cause

a 64 x 4 pixel image to be painted to the behaviour image. We

find that the use of a 64 pixel (width) by 4 pixel (height) result in

an image that could be easily compared against each other while

being easy to the eyes (not too small or too big). The malware

image will be painted top-to-bottom, which means earlier APIs

will be at the top while API calls near the end of the API call

monitoring will be at the bottom of the behaviour image.

 Figure 5 shows some example of malware behaviour image

generated using our proposed technique.

6.0 EVALUATION

It is common for malware authors to modify certain aspects of a

malware sample as a defensive mechanism, to thwart detection by

signature-based malware scanners. It is therefore important to

have a malware visualization technique that is resistant towards

such modification. This section presents test results that evaluate

the proposed technique’s ability in visualizing malware behaviour

without being affected by static-based changes (metadata

alterations) and dynamic-based changes (code packing) made to

malware samples.

6.1 Metadata Alteration Test

This test measures the techniques ability in resisting static-based

changes made to malware sample. There are 2 types of changes

made to these samples. Details on the type of metadata changes

made are listed in Table 2.

 Table 3 below shows differences of samples before and after

the modifications made to them. Each sample has different MD5

hashes which means that no two sample are the same (even if they

have the same size). Each sample is tested to make sure that the

modifications done do not corrupt the sample and that the samples

are working normally (e.g. no premature termination).

Figure 5 Malware behaviour image sample for 3 different type of

malware

Table 2 Metadata changes made to malware samples

Type of metadata change Detail

PE header change
1. Values in the DOS Header

2. Values in Section Headers

Resource modification
1. Resource substitution

2. Addition of new resource

Table 3 Sample malware set with metadata changes









































1

14

7500

24

1

750500

0

1

5025022

0

4

25011

B =

) - (i ÷ n)(G =

(n)., iR =

)) ÷ n(i - (n÷B =

G =

(n).i(n)., R =

B =

G =

(n).i(n)., i) ÷ n(n - R =

B =

i ÷ nG =

(n).i, R

Color(i)

Allaple.A Korgo.C SdBot

Sample Modification
Size

(KB)
MD5 hash

1

No

modification
62 216acc5aafc68fa1b442d396e1a79db9

PE header

change
62 5265b4ebd3e12e85ff2f4d83094cb4f8

Resource

Modification
63 7ff52fe0179da517e0c78aff9f7c91f5

2

No

modification
57 00a93869f8f009fb16d1a7d8f2657639

PE header

change
57 a217f0f9739d25a34177fa8ea8890bff

Resource

Modification
58 1131cfbc706c65c9b795e37b744cbb63

3

No

modification
42 470b88083967272ebbeb0167381199e8

PE header

change
42 617fa53401e4047ef5140fc9921b638e

Resource

Modification
44 2ca075d0fccae4fd3990e498d3313d57

4

No

modification
71 12b684aa174471206ec5edaaef40b309

PE header

change
71 4eda98ca416a1bbb4108f89ffd5bfa8f

Resource

Modification
72 e650123076c4777168680a5d52139904

5

No

modification
115 2c87e39be193e46e8d88e6900b1bdd1e

PE header

change
115 e2cc201dc037b8c40a142990cd4eaad8

Resource

Modification
117 9c38abbd791a7d59ff47fdb58ced180d

30 Syed Zainudeen Mohd Shaid & Mohd Aizaini Maarof / Jurnal Teknologi (Sciences & Engineering) 70:5 (2014) 25–33

Figure 6 shows the generated MBIs for each of the above test

cases, before and after modification. It was clear that metadata

changes made to malware samples do not result in any change in

the generated MBIs. This is because the proposed technique does

not use static based data for visualization and hence, any static-

based modification made to malware samples does not affect the

output MBIs.

Figure 6 Metadata alteration test results

6.2 Code Packing Test

This section presents the result of dynamic-based changes made to

malware samples or specifically, code packing. Most of the

malware samples for the research (obtained from CyberSecurity

Malaysia) are already packed with various packers. Of all the

malware samples which were not packed, only 2 seems to be

stable enough to be packed and run without problems. All others

crashed during execution. For the test, the two stable samples

were packed using UPX16. Table 4 shows the differences of each

malware samples before and after UPX code packing.

 From the table, it can be seen that samples packed with UPX

are a lot smaller in size compared to the original ones. This is

because UPX compresses executable files, making it smaller13.

The MD5 shown in the table is just meant to show that each

samples are unique.

Table 4 UPX on malware samples

 MBIs for each sample were generated and compared. Figure

7 shows the generated MBIs for each test case. Through visual

inspection of the MBIs, it was clear that the proposed technique is

able to show behaviour added by UPX and the original behaviour

of the malware sample. In fact, in the experiments conducted, it

was possible to identify the presence of a specific packer by

comparing the behaviour on the top of the MBIs against a known

pattern of a packer.

7.0 APPLICATION OF MALWARE BEHAVIOUR

VISUALIZATION

Malware Behaviour Image could possibly open up a new

paradigm for malware research. We have tested several possible

uses of Malware Behaviour Image in the field of malware

research. Below we highlight two possible uses; malware

detection, and malware variant identification.

7.1 Malware Detection

We wanted to see if there is a difference between images of

benign samples and images of malicious samples. Therefore, we

generated behaviour images for benign samples and malicious

samples. The benign samples are taken from a newly setup 32-bit

Windows XP system. They are composed of 7 different types of

application, characterized based on their functionality. The list of

application category is listed in Table 5.

 In a test environment, we took 20 benign samples (from 7

different categories) and 20 malicious sample (from different

malware variants), mix them together and generated their

behaviour images. We then try to visually determine if an image

is of malicious sample or of benign sample.

Sample
No

modification

PE

Header

change

Resource

Modification

1

2

3

4

5

Sample Modification
Size

(KB)
MD5 hash

1

No

modification
231 011bbba2e3be13ea2aa84a1242e0d47b

UPX 93 dc77226ae6c851c3cea006b0b05a04be

2

No

modification
286 449c163674eeaffd44ca3f1eb62d670d

UPX 114 27e92c792b4f72f5bdc30b979c2b8fc4

31 Syed Zainudeen Mohd Shaid & Mohd Aizaini Maarof / Jurnal Teknologi (Sciences & Engineering) 70:5 (2014) 25–33

Table 5 Application category for benign samples

Figure 7 Code packing test result

 Figure 8 shows some of the behaviour image that we have

generated. It is easy to see that behaviour images of malicious

samples have more hot colours in them compared to benign

samples (that are mostly composed of cold colours). From visual

inspection, we find that we could easily differentiate between

malicious sample and benign sample with 100% accuracy by

spotting the presence of hot and cold colours in the behaviour

images.

Figure 8 Behaviour image for malware and benign sample

Sample
No

Modification
UPX

1

2

Malicious sample Benign sample

SdBot

4

Allaple

B

Korgo

B
Paint Explorer

Internet

Explorer

Behaviour

added by

UPX

Original

malware

behaviour

Behaviour

added by

UPX

Original

malware

behaviour

Application Category Sample count

File browser 1

System Tools 4

Games 4

Network Utility 2

Internet Application 4

Utility Application 3

Text Editors 2

32 Syed Zainudeen Mohd Shaid & Mohd Aizaini Maarof / Jurnal Teknologi (Sciences & Engineering) 70:5 (2014) 25–33

The reason for such an easy differentiation of malicious and

benign sample can be understood further from the colour

histogram below. Figure 9 shows 2 histograms, where one

represents the frequency of API calls made by malicious sample

and the other one is the frequency of API calls made by benign

samples, generated using matplotlib17. The bars to the left of the

histograms (with hot colours) represent the frequency of

malicious API calls while the bars to the right of the histogram

(with cold colours) represent the frequency of non-malicious API

calls.

(a)

 (b)

Figure 9 (a) API call histogram for malicious sample, (b) API call
histogram for benign sample

 In Figure 9(a), we can clearly see that the malicious samples

generated more malicious API calls compared to benign samples

(in Figure 9(b)). While benign samples do invoke APIs of

malicious nature, the frequency of the API calls is nothing near to

the frequency of malicious API calls made by malicious samples.

It is therefore logical that behaviour image of malicious samples

will have more hot colours in them, thus leads to easier

recognition of malicious and benign samples.

7.2 Malware Variant Identification

We notice that malware from the same family tends to have a

recognizable pattern in them. The similarity of behaviour images

of a malware family varies among each family. Some malware

family have similar looking behaviour image like the Allaple

family (see Figure 10) even though each of the samples in the

family have different sizes and different hashes.

Figure 10 The Allaple family with a set of similar looking behaviour

images of its variants

 The reason for similar looking behaviour images can be fully

understood by manually inspecting the malware through static and

dynamic analysis. Malware family with similar looking behaviour

images (but with different malware sizes and hashes) might

suggest that variants of the malware family are created purposely

for evading signature based identification by anti-virus (AV)

software.

 There are also family with minor changes between behaviour

image of its samples (see Figure 11(a)) and some have

significantly more changes among its variants (see Figure 11(b)).

These changes could suggest that either these variant have some

level of randomness in determining the path of code execution, or

there might be certain behavioural alterations among malware

variant, like features being improved, added, or removed from

previous variants. However, these changes did not seem to hide

the overall pattern and the similarity between variants of the same

family.

 In our test, we find that given enough time, we can visually

identify variants of malware from the same family through

behaviour images with high accuracy. This is no surprise since

each malware family is created differently by various authors,

with probably different compiler and coding style. Behaviour

image seems to be able to visually highlight these aspects and this

contributes to the possibility of accurate visual identification of

malware variants.

8.0 CONCLUSION AND FUTURE WORKS

We have presented a technique for visualizing malware samples

that highlights the behavioural aspects of malware. The behaviour

images can be used to visually identify malicious and benign

samples, and can also be used to visually identify malware

variants with high accuracy. The proposed technique is not meant

as a replacement for existing malware analysis technique, but

rather, a new paradigm, a technique that complements existing

techniques for malware analysis. The technique is able to visually

highlight malicious behaviour in malware samples. This enables it

to be used in malware detection. It was also discovered that

malware variants have unique set of colours of pattern when

visualized using the proposed technique. This makes it suitable

for use in classification of malware samples. We plan to extend

the current work to automate the process of malware detection

and malware variant identification, removing the need for manual

Allaple

A

Allaple

B

Allaple

C

Allaple

E

Allaple

G

33 Syed Zainudeen Mohd Shaid & Mohd Aizaini Maarof / Jurnal Teknologi (Sciences & Engineering) 70:5 (2014) 25–33

visual inspection. Hopefully, this could contribute towards better

automated analysis of malware samples.

(a)

(a)

(b)

Figure 11 Behaviour images of the (a) SdBot2 malware family and the (b)

Korgo malware family

Acknowledgement

The authors would like to thank CyberSecurity Malaysia for their

utmost cooperation in providing malware samples for the

research.

References

[1] Symantec Corp. 2011.Symantec Internet Security Threat Report–2010.

Internet Security Threat Report Volume 16. Technical Report.

http://www.symantec.com/business/threatreport/.

[2] Symantec Corp. 2012. Symantec Internet Security Threat Report 2011.

Internet Security Threat Report, Volume 17. Technical Report.

http://www.symantec.com/business/threatreport/.
[3] Symantec Corp. 2013. Symantec Internet Security Threat Report 2012.

Internet Security Threat Report, Volume 18. Technical Report.

http://www.symantec.com/business/threatreport/.

[4] Egele, M., Scholte, T., Kirda, E., and Kruegel, C. 2011. A Survey on

Automated Dynamic Malware Analysis Techniques and Tools. ACM

Computing Surveys. 1–49.

[5] Trinius, P., Holz, T., Gobel, J., and Freiling, F. C. 2009. Visual Analysis

of Malware Behaviour Using Treemaps and Thread Graphs. 6th
International Workshop on Visualization for Cyber Security, 2009

(VizSec 2009). Oct 2009. 33–38.

[6] Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath, B. 2011. Malware

Images: Visualization and Automatic Classification. Proceedings of

Visualization for Cyber Security (VizSec). 2011: 1–7

[7] Quist, D. A. and Liebrock, L. M. 2009. Visualizing Compiled

Executables for Malware Analysis. In International Workshop on
Visualization for Cyber Security (VizSec). 27–32.

[8] Microsoft. 2010. Microsoft PE and COFF Specification. Technical

Report, Microsoft.

[9] Jiang, X., Wang, X., And Xu, D. 2007. Stealthy Malware Detection

through vmm-based "out-of-the-box" Semantic View Reconstruction.

Proceedings of the 14th ACM Conference on Computer and

Communications Security (CCS '07). New York, NY, USA: ACM. 128–

138.
[10] Nair, V. P., Jain, H., Golecha, Y. K., Gaur, M. S., And Laxmi, V. 2010.

MEDUSA: Metamorphic malware Dynamic analysis Using Signature

from API. Proceedings of the 3rd international conference on Security of

information and networks (SIN '10). New York, NY, USA: ACM. 263–

269.

[11] Trinius, P., Holz, T., Gobel, J., And Freiling, F. C. 2009. Visual Analysis

of Malware Behaviour Using Treemaps and Thread Graphs. 6th

International Workshop on Visualization for Cyber Security, 2009
(VizSec 2009). Oct. 33–38.

[12] Zhang, F. Y., Qi, D. Y., and Hu, J. L. 2010. Using IRP for Malware

Detection. Recent Advances in Intrusion Detection in Lecture Notes in

Computer Science.Springer Berlin/Heidelberg. 514–515.

[13] Ahmed, I., and Lhee, K. S. 2011. Classification of Packet Contents for

Malware Detection. Journal in Computer Virology. 279–295.

[14] Skrzewski, M. 2011. Flow Based Algorithm for Malware Traffic
Detection. Computer Networks in Communications in Computer and

Information Science. Springer Berlin Heidelberg. 271–280.

[15] Nataraj, L., Yegneswaran, V., Porras, P., and Zhang, J. 2011. A

Comparative Assessment of Malware Classification Using Binary

Texture Analysis and Dynamic Analysis. In Proceedings of the 4th ACM

workshop on Security and artificial intelligence (AISec '11). ACM, New

York, NY, USA. 21–30.

[16] Oberhumer, M. F., and Molnár, L. 2013. The Ultimate Packer for
eXecutables (UPX). UPX. Retrieved June 13, 2013, from

http://upx.sourceforge.net/.

[17] Hunter, J. D. 2007. Matplotlib: A 2D Graphics Environment. Computing

in Science & Engineering. 9(3): 90–95.

Allaple

A

Allaple

B

Allaple

C

Allaple

E

Allaple

G

SdBot2

WFZ

SdBot2

WEW

SdBot2

ULG

SdBot2

UDG

SdBot2

RLW

Korgo

A

Korgo

B

Korgo

C

Korgo

D

