

73:1 (2015) 135–138 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Full paper
Jurnal

Teknologi

Modelling the Behaviour of Single Stage Splicing Language: A Yusof Goode
Computational Approach

Wen Li Lim,* Yuhani Yusof, Norhayati Rosli, Mohammad Hassan Mudaber

Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 UMP Gambang, Kuantan, Pahang

*Corresponding author: wlilim@yahoo.com

Article history

Received: 05 October 2014

Received in revised form:

21 November 2014
Accepted: 1 February 2015

Graphical abstract

Abstract

Yusof-Goode (Y-G) splicing system is a formal characterization of the generative capacity of specified

enzymatic activities acting on DNA molecules with new extension symbolization of representing rule. The

output of Y-G splicing system can be categorized into three types of single stage splicing language namely
active persistent, transient and inert persistent language. It is both money and time consuming to conduct

laboratory experiments to determine the behaviour of splicing language. Hence, research has been

conducted to predict the characteristic of single stage splicing language based on limit adjacency matrix
computational modelling in order to optimize time and money. The utilization of software programming

has been developed through Visual Basic Software for scientists to determine the behaviour of single stage

splicing language as well as the number types of resulted DNA molecules restricted to at most two strings
and two rules with one cutting site. The output from the program was found to match the outcomes of wet

lab experiments.

Keywords: Yusof-Goode splicing system; splicing language; single stage limit language.

Abstrak

Sistem hiris-cantum Yusof-Goode (Y-G) adalah satu pencirian rasmi kepada kapasiti penjana bagi aktiviti-

aktiviti enzim pembatas tertentu ke atas molekul-molekul DNA dengan penyimbolan lanjutan baru dalam
mempersembahkan peraturan. Hasil daripada sistem hiris-cantum Y-G boleh dikategorikan kepada tiga

jenis bahasa hiris-cantum peringkat tunggal iaitu bahasa sementara, bahasa lengai dan bahasa berterusan

aktif. Duit dan kekangan masa untuk menjalankan ujikaji makmal dalam menentukan ciri-ciri bahasa hiris-

cantum peringkat tunggal. Oleh itu, penyelidikan telah dijalankan bagi meramal ciri-ciri bahasa hiris-

cantum peringkat tunggal berdasarkan model berkomputer matrik had bersebelahan bagi mengoptimumkan

masa dan duit. Penggunaan pengaturcaraan perisian telah dibangunkan melalui Perisian Visual Basic
supaya ahli-ahli sains dapat menentukan tingkah laku bahasa hiris-cantum peringkat tunggal dan juga

bilangan jenis molekul-molekul DNA yang dihasilkan terhad kepada paling banyak dua jujukan dan dua

peraturan dengan satu belah pemotongan. Keputusan daripada program didapati sepadan dengan hasil
ujikaji di makmal.

Kata kunci: Sistem Hiris-Cantum yusof-goode; bahasa hiris-cantum; bahasa had peringkat tunggal

© 2015 Penerbit UTM Press. All rights reserved.

1.0 INTRODUCTION

Splicing system was primarily introduced by Head [1] as a formal

characterization of the generative capacity of specified enzymatic

activities acting on initial deoxyribonucleic acid (DNA) molecules

via the framework of Formal Language theory. There have been

many developments of splicing system such as Head [1], Goode-

Pixton [2] and Yusof-Goode (Y-G) [3] models. All these models

can perform universal computation, which means it can generate

the entire family of recursively enumerable languages in Chomsky

hierarchy of formal languages [1, 2, 3]. Y-G model is applied in

the computational model for this paper as this new splicing system

was based on the characteristics of the restriction enzyme itself,

which presents the translucent behaviour of DNA biological

process.

Head [1] has defined splicing language as the language generated

by a splicing system. In order to analyze the outcome of a splicing

system, which is closer to the observation in the laboratory, Goode

and Pixton [4] has formally defined limit languages, the molecules

that are left after the biochemical reaction has run to completion.

The molecules that do not participate in further splicing at this final

stage are called inert languages. In the same paper, the authors

defined transient languages in the sense that the molecules are used

up in the system at equilibrium. Then, Yusof [3] introduced the

molecules that can participate in further splicing at terminal stage,

and the corresponding formal language defined by the splicing

system is named as active persistent languages.

 In this paper, the behaviour of single stage splicing language

of Y-G splicing system involving at most two strings and two rules

with one cutting site is modeled using limit adjacency matrix

136 Wen Li Lim et al / Jurnal Teknologi (Sciences & Engineering) 73:1 (2015) 135–138

similar to that presented in [6]. The main difference is in this paper,

the behaviour of Y-G splicing system is approached by

programming the linear adjacency matrix in Visual Basic software.

Results are then compared with the lab experiments [3, 5, 7].

2.0 COMPUTATIONAL MODEL GENERATION

2.1 Assumptions

In this paper, the following assumptions are followed:

1. A finite initial number of different double-stranded DNA

(dsDNA) sequences and a finite number of enzymes are

generated.

2. The probability of digestion and ligation efficiency is assumed

to be equal.

3. Restriction enzymes can cut DNA molecules at specific

recognition sites, producing molecules with only sticky ends.

4. Each DNA strands has exactly one recognition site for one

restriction enzyme and they do not contain the sites for the

other enzymes.

5. The DNA strands are linear.

6. The DNA strands are assumed to be dephosphorylated on its

5 ' ends to avoid blunt end ligation

The behaviour of single stage splicing languages is analyzed by

using limit adjacency matrix method [6] while Y-G model [3] is

used to compute the number types of single stage splicing language.

2.2 Preprocessing And Importing Into Visual Basic

2.2.1 Input Parameters

A Visual Basic software [8] programming script has been

developed to predict the number of resulted molecules. The

software requires the user to enter the number of DNA strings and

restriction enzymes as inputs. Then, the user will need to enter the

sequences of the DNA strings, that is alphabet A representing

Adenine, alphabet T representing Thymine, alphabet C

representing Cytosine and alphabet G representing Guanine. The

base pair of the entered DNA string will be generated

correspondingly. The user can then choose the cutting site of the

DNA string by sliding the bar beneath the entered and computer

generated DNA strings. After all required inputs have been keyed

into the fields, the software will generate the number patterns of

strings produced as the description in the next section.

2.2.2 Computing Splicing Language

Given a DNA string, the software will generate a finite set of strings

based on the entered number and configuration of DNA strings

with cutting site. Also, the software will create another dummy

DNA string, which is 180 degrees rotated to the initial DNA string.

These DNA strings will then be cut at the crossing site to produce

several pieces of DNA fragments with sticky ends. These DNA

fragments will be ligated to search for all possible combinations

based on their base pairs, which in Formal Language Theory terms

are called splicing languages. The computed splicing languages are

compared with the wet lab experiment.

2.2.3 Analyzing the Behaviour of Splicing Language

Each splicing language is analyzed according to a limit adjacency

matrix [6]. n n matrix is formed if there exists n number of

splicing languages. All splicing languages will then be cut and

ligated again at the crossing site, if they present, to produce other

DNA strings, which are represented by 1 in a limit adjacency

matrix. These cutting and recombination behaviour will continue

until the resulted strings do not contain any crossing site. These

strings,
iw , when no cutting is possible are called inert limit

language, which are represented by a row of zeros in a limit

adjacency matrix as follows:

0 0 0iw

---- (1)

 Based on the above mentioned script which simulates the

recombinant behaviour of DNA strings, the result is shown in a

matrix form and being analyzed by using limit adjacency matrix

method [6]. Each DNA strings and restriction enzyme with

different characteristic are simulated to obtain the results.

Flowchart in FIGURE 1 shows the operations of cutting and

pasting as well as the generating limit language operations.

Figure 1 Flowchart on determining the behaviour of splicing language

3.0 RESULTS AND DISCUSSION

Two runs on the script have been performed based on the enzymes

used in wet lab experiments [3, 5, 7]. FIGURE 2 and FIGURE 3

illustrate the results of the runs. These results are then summarized

in TABLE 1 along with the outcome from the wet lab experiments.

137 Wen Li Lim et al / Jurnal Teknologi (Sciences & Engineering) 73:1 (2015) 135–138

Figure 2 Results obtained from visual basic: modeling the behaviour of
splicing languages with two dna and two restriction enzymes, bgli and draiii

Figure 3 Results obtained from visual basic: modeling the behaviour of

splicing languages with two dna and two restriction enzymes, acii and AclI

Table 1 Comparison of the results from wet lab experiments and software

Item

Number of

Strings

Number of

Rules

Enzymes Used

Lab Results

Software Results

1

2

2

BglI and DraIII

[5, 7]

The two initial strings disappeared. Both adult

strands increased throughout the duration of the

reaction

2 inert persistent

languages,

2 transient languages

2 2 2 AciI and AclI

[3]

Existence of six inert persistent languages,

 three active persistent languages and one transient
languages

6 inert persistent

languages,
4 transient languages

138 Wen Li Lim et al / Jurnal Teknologi (Sciences & Engineering) 73:1 (2015) 135–138

As shown in item 1 of TABLE 1, the results from the software

are consistent with the outcome of the wet lab experiment. Adult

strings are renamed to inert persistent language in [3] and the

strings that disappeared have been formally defined by Goode

and Pixton in [4] as transient language. This is to be expected

since the operations of both software and experiment are similar.

The initial set of DNA strings was cleavage at the crossing site

and relegated into the predicted set of adult strings. The initial

strings gradually disappear since they are being consumed to

produce adult strings and no further recombination back to the

initial strings.

 For item 2 of TABLE 1, there is no active persistent

language according to the results from the software. To compare

the results with the wet lab experiment done which shows the

existence of six inert persistent languages, the software

successfully predicted the result. Besides, one molecule is shown

in wet lab experiment as transient, which is similar to the results

provided by the software. However, there are three molecules

presented as active persistent language in [3], which is different

from the predicted result in the software above. From the

conclusion in [3], it is due to the quantity of strings during the

experiment yet the prediction in the software above is ignoring

the possibility of unbalanced numbers of molecules available for

various reactions by the definition of limit language.

Nevertheless, limit adjacency matrix in FIGURE 2 shows that
10 10

9, 10, 4r r

r r

a a
10 10

,9 ,10 2,r r

r r

a a
10

8, 7r

r

a

10

,8 3r

r

a , but
10

1, 7r

r

a
10

,1 1r

r

a . Hence, the later string

is certainly transient but the other three strings can be an

ambiguous case to stay in between active persistent and transient

language depending on the quantity of initial strings. Therefore,

the software simulates the DNA splicing process in [3, 5, 7] in

determining the behaviour of splicing languages.

4.0 CONCLUSION

The computational results from the software prove that the

behaviour of splicing languages is predictable after comparing

with the wet splicing systems and theorems. In conclusion, the

conceivable molecules that the program provides do behave as

theorems predict.

Acknowledgement

The authors gratefully acknowledge Ministry of Education

(MOE) and Research and Innovation Department, Universiti

Malaysia Pahang (UMP) for the financial funding through UMP

Research Grant Vote No: RDU 130354 and RAGS Grant Vote

No: RDU131404.

References

[1] Head, T. 1987. Formal Language Theory and DNA: An Analysis of The

Generative Capacity of Specific Recombinant Behaviors. Bulletin of

Mathematical Biology. 49(6): 737–759.

[2] Laun, T.E.G. 1999. Constants and Splicing Systems. State University of

New York at Binghamton. Ph.D. Thesis.
[3] Yusof, Y. 2012. DNA Splicing System Inspired by Bio Molecular

Operations. Ph.D. Thesis, Universiti Teknologi Malaysia.

[4] Goode, E. and Pixton, D. 2004. Splicing to The Limit. Lecture Notes in

Computer Science. 2950: 189–201.

[5] Lim, D.S.F. 2006. Splicing Systems and Language. MSc. Dissertation.

Universiti Teknologi Malaysia.

[6] Lim, W.L. and Yusof, Y. Modeling Limit Languages via Limit
Adjacency Matrix and Yusof-Goode Approaches. 2014. Proceeding of

International Conference of Mathematics, Engineering and Industrial

Applications 2014 (ICoMEIA). in press.

[7] Laun, E. and Reddy, K.J. 1999. Wet Splicing Systems. DIMACS Series

in Discrete Mathematics and Theoretical Computer Science. 48: 73–83.

[8] Visual Basic, Microsoft.NET, 2010

