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Abstract 

 

In a linear regression model, the ordinary least squares (OLS) method is considered the best method to 

estimate the regression parameters if the assumptions are met. However, if the data does not satisfy the 

underlying assumptions, the results will be misleading. The violation for the assumption of constant 

variance in the least squares regression is caused by the presence of outliers and heteroscedasticity in the 
data. This assumption of constant variance (homoscedasticity) is very important in linear regression in 

which the least squares estimators enjoy the property of minimum variance. Therefor e robust regression 

method is required to handle the problem of outlier in the data. However, this research will use the 
weighted least square techniques to estimate the parameter of regression coefficients when the assumption 

of error variance is violated in the data. Estimation of WLS is the same as carrying out the OLS in a 

transformed variables procedure. The WLS can easily be affected by outliers. To remedy this, We have 
suggested a strong technique for the estimation of regression parameters in the existence of 

heteroscedasticity and outliers. Here we apply the robust regression of M-estimation using iterative 

reweighted least squares (IRWLS) of Huber and Tukey Bisquare function and resistance regression 
estimator of least trimmed squares to estimating the model parameters of state-wide crime of united states 

in 1993. The outcomes from the study indicate the estimators obtained from the M-estimation techniques 

and the least trimmed method are more effective compared with those obtained from the OLS. 
 

Keywords: Robust estimation; robust weighted least squares; robust least trimmed squares; 

heteroscedasticity; outliers 
 

Abstrak 

 
Dalam model regresi linear, kaedah kuasa dua terkecil (OLS) dianggap kaedah terbaik untuk menganggar 

parameter regresi jika andaian dipenuhi. Walau bagaimanapun, jika data tidak memenuhi andaian asas, 

keputusan akan terpesong. Andaian varians malar dalam regresi kuasa dua terkecil tidak dipenuhi 
disebabkan oleh kehadiran titik terpencil dan heteroskedastisiti dalam data. Andaian varians malar 

(homoskedastik) adalah sangat penting dalam regresi linear di mana penganggar kuasa dua terkecil 

mempunyai varians yang minimum. Oleh itu kaedah regresi teguh diperlukan untuk mengendalikan 
masalah titik terpencil dalam data. Walau bagaimanapun, kajian ini akan menggunakan teknik wajaran 

kuasa dua terkecil (WLS) untuk menganggar parameter pekali regresi apabila andaian varians ralat tidak 

dipenuhi dalam data. Anggaran WLS adalah sama seperti menjalankan OLS dalam prosedur transformasi 
pembolehubah. Pengaggar WLS dengan mudah boleh dipengaruhi oleh titik terpencil. Untuk mengatasi 

perkara ini, kami telah mencadangkan satu teknik yang kuat untuk anggaran parameter regresi dalam 

kewujudan heteroskedastik dan titik terpencil. Di sini kita menggunakan regresi teguh M- anggaran 
berdasarkan lelaran wajaran kuasa dua terkecil ( IRWLS ) daripada Huber dan Tukey Bisquare fungsi dan 

pengaggar rintangan r regresi kuasa dua terkurang untuk menganggar parameter model bagi data jenayah 

di seluruh Amerika Syarikat pada tahun 1993. Hasil daripada kajian menunjukkan penganggar yang 
diperolehi daripada teknik-teknik M- anggaran dan kaedah kuasa dua terkurang adalah lebih berkesan jika 

dibandingkan dengan yang diperoleh daripada OLS .  

 
Kata kunci: Menunjukkan anggaran; menunjukkan wajaran kuasa dua; menunjukkan kuasa dua 

terkurang; heteroskedastisiti; titik terpencil 

© 2014 Penerbit UTM Press. All rights reserved. 
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1.0  INTRODUCTION 

 

In classical linear regression analysis the ordinary least squares 

(OLS) method is generally used to estimate the parameter of the 

regression model due to its optimal properties and 

straightforward computation. There are several assumptions that 

have to be possessed in making the OLS estimators very 

attractive and valid. One of the assumptions within the OLS 

regression model is the assumption of homoscedasticity which is 

rather severe. Researchers frequently encountered difficult 

situations where the variance from the respond variable relates to 

the values of a number of independent variables, leading to 

heteroscedasticity [1], [2].  

  In this type of situation, the variance of a model according 

to the explanatory variables can produce weights for the 

weighted least squares estimator [2], [3], [4]. Weighted least 

squares, is a special case from the generalized least squares 

estimator, is optimal when the structure of heteroscedasticity 

error variance is known. But unfortunately usually, the structure 

of heteroscedasticity error variance is not known in advance. For 

that situation, researchers may use estimated generalized least 

squares [3], [4].  

  In the existence of heteroscedasticity, the OLS estimators 

remained unbiased. However, probably the most harmful 

consequence of heteroscedasticity in regression model would be 

that the OLS estimator from the parameter covariance matrix 

(OLSCM), whose elements in the diagonal are utilized to 

estimate the standard errors of the regression coefficients, 

becomes biased and unreliable [4], [5]. As a result, the t-tests for 

individual coefficients are generally too liberal or too 

conservative, with respect to the type of heteroscedasticity. 

White [4] and Rana et al. [6] suggested a heteroscedasticity 

consistent covariance matrix (HCCM) to resolve the 

inconsistency problem from the estimator.But there is evidence 

that with a couple of outliers this could make all the estimation 

and methods meaningless [5], [6], [7]. In the existence of outliers 

we possess some robust approaches for the recognition of 

heteroscedasticity [6], [7].  

  However we do not have enough robust techniques 

obtainable in the literature for the estimation of parameters in the 

existence of outliers and heteroscedasticity error variance. 

Although heteroscedasticity does not cause any biasness problem 

towards the OLS estimators, the OLS may be easily affected by 

the presence of outliers. The weighted least squares also suffer 

exactly the same problems in the existence of outliers and can 

produce a huge interpretive issue in the estimation method [6], 

[7], [8]. In most cases, no estimation techniques work effectively 

unless of course we eliminate the influence of outliers in a 

heteroscedastic regression model. 

  This problem inspires us to build a new and better 

estimation technique, that provide resistant result when 

heteroscedasticity and outliers happened at the same time. In this 

study the OLS regression estimation method will be compared 

with the robust regression methods of M-estimate based on 

Huber weighted function and tukey bisquare function and the 

resistant regression estimator of least trimmed squares. We 

expect the recommended methods could be less responsive to 

outliers and simultaneously have the ability to remedy the 

problem of heteroscedasticity  

 

 

2.0  METHODOLOGY OF HETEROSCEDASTIC 

REGRESSION MODEL 

 

Consider the following classical linear regression model 

y =X  +                                                                      (1) 

 

where y is the usual n×1 vector of the observed dependent 

values, X is the n×p matrix of the predictor variables including 

the intercept, β is a p×1vector of regression parameters, and ε is 

the n×1 vector of errors. The errors are assumed to be normally 

distributed, with mean 0 and constant variance σ2.  

The estimator of OLS regression coefficients is 

 

' 'ˆ -1
β=(X X) X y                                                                  (2) 

 

with the variance matrix giving by 

 

' ' 'ˆ -1 -1
var(β)=(X X) XΩX(X X)                                                              (3) 

  

Where 
TE(  ) = ,   is a positive definite matrix. Equation 

(3) simplifies to the following: 

 

2 'ˆvar( ) 
-1

(X X)                                                         (4) 

If the errors are homoscedastic, then is 
2 'ˆvar( ) 

-1
(X X) .but 

if the errors are heteroscedastic, the parameter Ω become 

 

2
= V , and equation (3) becomes  

 
2 ' ' 'ˆvar( ) 

-1 -1
(X X) X VX(X X)                                   (5)              

 

The mentioned problem above can be overcome by transforming 

our model to a new set of observations that fulfilled the 

underlying standard assumptions of least squares. Then the OLS 

is used on the transformed data. Since the covariance matrix of 

the errors is denoted by    , Then υ must be non-negative and 

non-singular definite, then 

 

' -1 -1 -1
β = (X V X) XV y

GLS
                                           (6) 

 

is the estimate of the generalized least squares (GLS) of β. When 

the errors ε have unequal variances and are uncorrelated, the 

covariance matrix of ε is written as  

 

2
[1/ ] , 1, 2, ...,V diag w i n

i
    

Consequently, the GLS now becomes a solution to the 

heteroscedastic model. Assuming we defined W = V-1 , as a  the 

diagonal matrix with diagonal elements or weights

1 2 n
w ,w ,...,w . From equation (6), the estimator of weighted 

least squares is now written as 

 

' '-1
WLS =(X WX) X Wy                                                   (7) 

'ˆ 2 -1
V(β )=σ (X WX)WLS

WLS
`                                     (8) 

Where 

2 2ˆ2 W εi i
σ =WLS

n-p
                                                        (9)        

 

If the error structure of heteroscedastic in the regression model is 

known, the computation of weights W matrix is simple, and 

consequently the WLS regression serve a good solution of the 

heteroscedastic model. Unfortunately, even though in practice, 

the hetroscedastic error structure of the regression model is 

unknown. 
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3.0  ESTIMATION OF ROBUST WEIGHTED LEAST 

SQUARES REGRESSION (RWLSR)  
 

Robust regression analysis provides an alternative choice to a 

least squares regression when fundamental assumptions are 

unfulfilled while using the character within the data [8].The 

qualities of efficiency, breakdown, and leverage points are 

broadly-knowledgeable about define robust techniques 

performance within the theoretical sense. One justification for 

robust estimators may well be a highest finite sample breakdown 

point ὲ*n defined by [9], [10], [11]. The breakdown point may 

be defined as the smallest percentage of contaminated data that 

can cause the estimator to take on arbitrary large aberrant Values 

[10]. Hence, the breakdown point is simply the initial time any 

record test becomes swamped due to contaminated data. Some 

regression estimators offer the smallest possible breakdown point 

of just 0/n or 1/n. basically; only one outlier will make the OLS 

regression equation being made useless. Other estimators offer 

the finest possible breakdown cause of n/2 or 50%. If robust 

estimation method includes a 50% breakdown point, then 50% of 

the data could contain outliers together with the coefficients that 

would remain useful [12], [13], [14], [15], [16]  

 

 

4.0  COMPARISON OF ROBUST REGRESSION 

METHODS 

 

In general, the three broad categories of robust regression models 

that play the most impotant role are; M-estimators (extending 

from M-estimates of location by considering the size of the 

residuals); L-estimators (based on linear combinations of order 

statistics), and R-estimators (based on the ranks of the residuals).  

Each category of the estimators contains a class of models 

derived under similar conditions and with comparable theoretical 

statistical properties. Least Trimmed Squares Estimate (LTS), 

M-estimate, Yohai -MM-estimate, Least Median Squares (LMS) 

and S-estimate are among popular techniques used in estimating 

the parameters of the regression line. In this study the M-

estimator and  least trimmed squares  are used and will be briefly 

described in the next sections.  

Suppose we define n sample of data points as 

 

Z = {(x , .., x , y ), .., (x , .., x , y )}
11 1p 1 n1 np n

                (10)  

 

and let T be an estimator of regression. This indicates that by 

applying T to such a sample Z will produce a vector of 

regression coefficients. 

                    T(Z) = θ̂  

Now let consider 
Tz  that are obtained by replacing any of the m 

original data points by arbitrary values. Let us denote by bias (m; 

T, Z) and thus the maximum bias cause as a result of such 

contamination    

 

     ; , sup '

'

bias m T Z T Z T Z

z

                                  (11)            

where the supremum is over all possible 
'z . If bias (m; T, Z) is 

infinite, this means that m outliers can have an arbitrary large 

effect of T which may be expressed by saying that estimator 

breaks down. Therefore, the (finite-sample) breakdown point of 

the estimator T for sample Z is described as follows,     

*
( , ) min , ( , , )

m
T Z bias m T Z is finite

n n


 
  

 
                     (12)  

is infinite. In other words, it is the smallest fraction of 

contamination that can cause the estimator T to take on values 

arbitrarily far from T(Z). For least squares, we have seen that one 

outlier is sufficient to carry T over all bounds. Therefore, its 

breakdown point is     

         
1*

n(T,Z) n
                                                        (13)      

 

which tends to zero for increasing size n, so it can be said that 

the LS has breakdown point of 0% This again reflects the 

extreme sensitivity of the LS techniques to outliers [12]. 

 

 

5.0  M-ESTIMATION 

 

The performance of linear least square estimates behaves badly 

when the distribution of error is not normal, more especially 

when the errors are heavily tailed. One solution to this is to 

eliminate the influential observation from the least squares fit. 

The group of M-estimator models consists of all models that are 

derived from maximum likelihood models. The most frequent 

general method of robust regression is M-estimation, produced 

by Huber (1964) that is nearly as efficient as OLS [12]. 

Consider the following linear model 

 

i 1 i1 2 i2 k ik iy = + x + x +...+ x +                          (14)      

    
'

i i=x    

 For the 
thi of n observations the fitted model is    

        1 1 2 2 ...i i i k ik iy b x b x b x e       

             
'

i ix b e                                                          (15) 

  

The general M-estimator minimizes the objective function rather 

than minimizes the sum of squared errors since the aim is to 

minimize the function ρ of the errors with M-estimate. The M-

estimate target function is, 

    
'

( ) ( )
1 1

n n
e y x b
i i i

i i
   

 
                                       (16)   

 

The contribution of each residual is given by the function ρ to 

the objective function. A suitable ρ should have the following 

characteristics.  

                         

( ) 0,

(0) 0

( ) ( ) and

( ) ( )

,

e

e e

e e for e ei i i i





 

 





 

 

 

For example, for least squares estimation, 

( )e e
i i

   

The devices of normal equations to solve this minimization 

problem was discovered if the  partial derivatives with respect to 

β are set to 0, produces a system of k+1 estimating equations for 

the coefficients 

       
' '( ) 0

1

n
yi x b xi i

i
  


  

where ψ is derivative of ρ. The preference of the ψ function is 

dependent on the choice of how much weight to specify outliers. 

A monotone ψ function does not consider weight on outliers as 

much as least squares (e.g. 10σ outlier would receive the same 

weight as a 3σ outlier). A descending ψ function increases the 

weight specify to an outlier until a specified distance and then 

reduce the weight to 0 as the outlying distance gets considerable. 

Newton-Raphson and Iteratively Reweighted Least Squares 

(IRLS) are the two methods to solve the M estimates nonlinear 

normal equations. But for this research, the iterative reweighted 

least squares robust regression is used. IRLS expresses the 

normal equations as,  
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' 'ˆX WXβ = XWy                                                (17)  

 

where W is an n x n diagonal matrix of weights. The initial 

vector of parameter estimates, α and β are typically obtained 

from OLS. IRLS updates these parameter estimates with 

   

            
' 'ˆ -1

β=(X WX) X .                                              (18)    

 

However, the weights depend upon the residuals; the residuals 

depend upon the estimated coefficients, and the estimated 

coefficients depend upon the weights. An iterative solution 

called iteratively re-weighted least squares, IRLS is therefore 

required. The following step describe the IRLS procedure:  

 

Step 1: Select the weight function for weighting all the cases. 

But in this study, we will make use of the Huber and the Tukey. 

The weights function which is defined as follows:  

Huber:   

1 1.345

1.3452 1.345

u

w
i u

u

 


 




    

 

The constant 1.345 is called a turning constant and the 

standardized residual  

(0) 0| ( )|(0)

0.6745

median e median ei is
i


   

The corresponding bisquare method is defined as:         

 

2
2

(0)
(0)

1 , 4.6850 4.685 , 1, 2, ..., 51

(0)
0 4.685

ui ui
w i

i

ui

 
                  
 

 
 

  

 

Step 2: Obtain the starting weight for all the cases.                                                                                                   

 
t t t-1 i t-i

b = [x w x]x w y                                         (19) 

 

 Where x is the model matrix, with xi   as its ith row, and  

 

 t-i
it-i=diag w

w    
is the current weight matrix. 

 

Step 3: Use the starting weights in weighted least squares to 

obtain the residual 
1t

ie 
 from the fitted regression function. 

 

Step 4: Use the obtained residuals in step 3 to obtain the revised 

weight  

 

1
[ ]

t t i
w e

i i
 

                                                                 (20) 

  

Step 5: Continue the iteration until convergence is obtained. The 

asymptotic covariance matrix of ̂  is   

2( ) -1
( ) ( )

( ( ))

E t
v b x x

E





                                               (21) 

   

Step 6: Finally carry out a WLS regression using the final 

weights wi. The coefficients of regression realized from this WLS 

regression are the required estimate of the heteroscedastic model. 

Step2 and Step3 are repeated until the estimated coefficient 

converges. The Procedure continues until some convergence 

criteria is satisfied. The estimate of scaled residuals may be 

updated after every initial estimate. 

 

 

6.0  LEAST TRIMMED SQUARES (LTS) ESTIMATE 

  

Another form of robust regression estimation is the least trimmed 

squares regression method (LTS) [9]. He develops the least 

trimmed squares (LTS) estimation method as a high efficiency 

alternative to least median squares regression (LMSR) and this 

technique is observed from minimizing 

 

ˆ ( ) where

2

1

arq MinQ
LTS LTS

h
Q e

LTS
i

 




2 2 2
........

(1) (2) ( )
where e e e

n
    are the ordered squared  

residuals from the smallest to the largest. The values of h  is 

obtained by
 1

2 2

pn
h

  
       

 with n and p being the  

given sample size and number of parameters involved in the 

model respectively. This approach is similar to least squares 

except usually the largest (n-h) squared residuals are removed 

(trimmed sum) from the summations which allow those outlier to 

be removed completely, allowing the fit to avoid the outliers. 

Least trimmed squares (LTS) can be very efficient when exact 

outlying data points are trimmed. But if there is more trimming 

than there are outlying data points, then some good observations 

will be eliminated from the computation.   From the breakdown 

point, LTS is regarded as a high break down techniques with a 

BP of 50% when 1/h n . The main disadvantage of robust LTS 

is the large number of operations required to sort the squared 

residuals in the objective function [15]. Another challenge is 

deciding the best approach for determining the initial estimate. 

The weighted robust least trimmed squares method consists of 

the following procedures:  

Step 1: Regressed the response variables iy  on the explanatory 

variables ijx  by least trimmed squares and compute the 

regression coefficients from this fitting 

 

Step 2: The inverse of these fitted values denoted by 1iw will be 

the values of the initial weight. 

 

Step 3:  Obtain the final weight from Huber weighted functions. 

Which is given as    

 

1 , 1.345

1.3452 , 1.345

u

w
i u

u

 


 




 

 

The constant 1.345 is called a turning constant and the 

standardized residual u. The estimate of the scaled residuals is 

obtained as, 

  

(0) 0| ( )|(0)

0.6745

median e median ei is
i


  

  

The standardized residual estimate is then defined as  
(0)

( )

(0)

| |
, 1,2,...,o i

i

e
u i n

s
    
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Step 4: Multiply the initial weight 1iw with the weight 2iw  

obtained from Huber function to get the final weight iw .  

 

Step 5: Finally perform the WLTS with regression with the final 

weight iw . The regression coefficients produced from this 

estimates of WLTS regression are the desired regression 

estimates of heteroscedasticity model regression are the desired 

regression estimate of heteroscedasticity model. 

 

 

7.0  NUMERICAL EXAMPLE 
 

In this section we consider some few examples to show the 

importance of  the robust estimators in a situation when 

heteroscedasticity and outliers are presence. A hetrosecdastic 

data taken from the state-wide crime data of United states (1993)  

are to be used. The data contains fifty one observation of violent 

crime rate (per 100,000 people in population) of y with 

corresponding predictor variables of x1, x2, x3, x4, x5 and x6, is 

used. The analysis begins by considering one regressor variables 

of x, with its corresponding response variable y, to observe the 

effects of outliers and heteroscedasticity using diagnostic plot. 

We intentionally replace the value correspond to 1st and 25th 

observation of the original data with a higher value such as 7610 

and 4340, where the original value is 761 and 434 respectively. 

The OLS, RWLTS, M-estimates based on Huber function and 

tukey bisquare were then used in the original and modified data. 

The results are presented in the graphs and the tables below. In 

Figure 1, OLS residual plot of the original data against the 

regression fitted values. The situation for existence of 

hetroscedasticity is that when variance of the error terms are not 

constant, and this can be identified when the residuals are not 

randomly distributed around the zero residual, with an indication  

of systematic trend on the plot. Based on this concept, the  plot 

clearly indicates that constant variance assumption is violated, 

which gives evidence that the OLS fit is improper  to be used, as 

there are clear evidence for the presence of heterogeneous error 

variance. In this regard we apply the m- estimator methods based 

on Huber and Tukey bisquare weighted function to the data for 

the purpose to remedy the short coming of OLS in the presence 

of outlier and hetroscedesticily error variance.  

  To introduce this technique to the data, we first need to plot 

the residual against the response variable with a data set that 

contain outlier. Figure 2, Figure 3 and Figure 4 gives the 

diagnostic plot of the residual against the fitted values without 

outliers using the M-estimate and least trimmed squares. While 

Figure 5 gives the linear regression models obtained from the 

three robust estimation techniques and OLS. From this plot we 

notice that there are some differences between the estimators.  

This is an evident that the performance of the methods was 

satisfactory. In order to examine the consequence of outlier in 

the existence of hetrosecdasticity, modification of the data is 

highly important. The OLS, M-estimate and resistance regression 

method were used to examine the presence of outliers in the 

modified data and the results are presented in Figure 6, Figure 7, 

Figure.8 and Figure 9 below. Figure 10 gives the linear 

regression models obtain from the three robust estimation 

techniques and OLS estimation when the modified data is used. 

The plot of linear regression models obtained from the three 

robust estimation techniques using the original and modified data 

give a clearer picturer about the real situation. The plot of Figure 

1 and Figure 6 of OLS, indicate a violation of the constant 

variance assumption. This  signifies that the OLS estimate is 

inappropriate to be used.  On the other hand When comepared 

with the RWLS and RWLTS  plot of Figures 2, Figures 3, 

Figures 4, Figures 7, Figures 8 and Figures 9 indicate that the 

RWLS and RWLTS can solve the heteroscedasticity and outliers 

problems.  

 
Table 1  Summary of Robust techniques performance against OLS for 

(Original and Modified) 

 

Method Data Type Estimate SE t- value 

OLS Original 49.03 11.83 4.15 

 Modified 54.21 36.12 1.50 

RWJS 

HUBER 
Original 35.96 11.19 3.22 

 Modified 49.37 12.26 4.04 

Turkey 

Bisquare 
Original 28.45 9.54 2.98 

 Modified 37.57 9.118 4.12 

 

 

  Table 1 gives the summary results of statistics, which 

include the standard errors, t-values and the estimate of the 

regression coefficient for the original and modified crimed data. 

The result of Table 1 reveals the influence of outliers on the 

regression model, when OLS is used to estimate the regression 

parameter compared with the regression parameter obtained from 

the RWLS and RWLTS estimate. The result of RWLS based on 

Huber function, psiBisquare function and RWLTS estimate of 

regression coefficient, standard errors and t-value of the 

modified and original data are similar. We can also see the 

weights given to the estimates on dramatically lower using the 

Tukey bisquare weighting function than the Huber weighting 

function and the parameter estimates from these two different 

weighting methods differ.  

  On the other hand when considering the estimate of the 

result obtained from the crime data that involve six explanatory 

variables. 

  As you can see, the results from the two analyses of original 

and modified data are fairly different, especially with respect to 

the regression coefficients and the constant (intercept) While 

normally we are not interested in the constant, if you had 

centred one or all of the predictor variables, the constant would 

be useful. It will be noticed that some variables are not 

statistically significant in either analysis, whereas some are 

significant in both analyses it is an evidence that M- estimate 

and RWLTS have partially address the problem of 

hetroscedastic in the presence of outleirs in the data. However, 

the results obtained using RWLS based on Huber and RWLTS 

are only slightly influence by the outliers. Different functions 

have advantages and drawbacks. Huber weights can have 

difficulties with severe outliers, and  Tukey Bisquare weights 

can have difficulties converging or may yield multiple solutions.  

  The summary in Table 1 provides the result of the estimated 

parameter using OLS and RWLS and RWLTS for the simple 

linear sigression of two variables X and Y and multiple 

regression of  both original and modified  crimed data. Hence 

they are not reliable. However, the M-estimation (IRWLS) 

emerges to become plainly more effective and much more 

reliable because it is less affected by the outliers. The outcomes 

of the result appear to point out that the M-estimation based on 

Huber estimation, Tukey bisquare and RWLTS methods 

provides asubstantial Improvement within the other existing  

techniques. 
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Table 2  Summary of robust techniques performance against OLS for (original and modified) 

 
Method Data 

type plainly 0  1  
2  

3  4  
5  6  

OLS Orign. -857.62 23.42 6.24 -1.27 5.36 15.09 28.632 

 Mod 519.88 -17.82 -16.07 35.90 24.82 -17.40 253.912 

RWLS Huber. Orign -662.47 24.16 5.62 -1.14 3.34 10.48 32.170 

 Mod. -139.38 15.09 3.82 -8.58 3.93 14.63 51.781 

Tukey Bisquare Orgn. -509.74 24.25 5.28 -1.32 2.01 8.11 33.6722 

 Mod. -376.50 23.03 5.28 -1.84 0.42 12.58 31.9234 

RWLTS Orign -662.47 24.16 5.62 -1.14 3.34 10.48 32.170 

 Mod -139.38 15.09 3.82 -8.58 3.93 14.63 51.781 

 

Table 3  Summary of robust techniques performance against OLS for (original and modified) 

 
Method Data type 

S.E. 0  S.E.
1  S.E.

2  S.E. 3  S.E.
4  S.E. 5  S.E. 6  

OLS Original 602.8 3.94 1.18 2.554 6.98 10.34 14.73 

 Modified 3816.4 24.9 7.48 16.168 44.2 65.44 93.26 

RWLS Huber Original 602.7 3.95 1.21 2.554 6.95 10.43 14.86 

 Modified 616.6 4.52 1.32 3.504 7.09 10.73 18.54 

Tukey Bisquare Original 628.7 4.11 1.23 2.664 7.28 10.78 15.36 

 Modified 599.2 3.92 1.18 2.539 6.95 10.28 14.64 

RWLTS Original 602.7 3.95 1.21 2.554 6.95 10.43 14.86 

 Modified 616.6 4.52 1.32 3.504 7.09 10.73 18.54 

 

Table 4  Summary of robust techniques performance against OLS for (original and modified) 

 
Method Data type t-value 

0  

t-value 

1  

t-value 

2  

t-value 

 3  

t-value 

4  

t-value 

5  

t-value 

6  

OLS Original -1.42 5.94 5.28 -0.50 0.77 1.46 1.94 

 Modified 0.14 -0.71 -2.15 -2.22 0.56 -0.27 2.72 

RWLS Huber Original -1.10 6.12 4.66 -0.45 0.48 1.01 2.17 

 Modified -0.23 3.34 2.91 -2.45 0.56 1.36 2.79 

Tukey Bisquare Original -0.81 5.90 4.29 -0.50 0.28 0.75 2.19 

 Modified -0.63 5.88 4.50 -0.72 0.06 1.22 2.18 

RWLTS Original -1.10 6.12 4.66 -0.45 0.48 1.01 2.17 

 Modified -0.23 3.34 2.91 -2.45 0.56 1.36 2.79 

 

 
Figure 1  Plot of OLS residual versus fitted values  (Original data) 

 
Figure 2  Plot of RWLS based on Huber residuals versus fitted values 
(Original data) 

 
Figure 3  Plot of RWLS based on Tukey Bisquare residuals versus fitted 
values(Original data) 

 
Figure 4  Plot of RWLTS residuals versus fitted values (Original data) 
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Figure 5  Plot of crime data with four estimated regression lines 
(Original data) 

 
Figure 6  Plot of OLS residual versus fitted values (Modified data) 

 
Figure 7  Plot of RWLS based on Huber residuals versus fitted values 

(Modified data) 

 
Figure 8  Plot of RWLS based on Tukey Bisquare  residuals vs 

fittedvalues (Modified data) 

 
Figure 9  Plot of RWLTS residuals versus fitted values (Modified data) 

 
Figure 10  Plot of crime data with four estimated regression lines 
(MModified data) 

 

 

8.0  THE BEST MODEL 

 

The best model is by using the standard error and t-value 

estimated from  the state-wide crime data which involve all 

the explanatory variables. Based on the results obtained in 

Table 1, Table 2, Table 3 and Table 4 it is clear that RWLS 

estimator using Tukey bisquare has the least standard errors 

with the largest t-values compared  to the t-value obtain from 

RWLS estimator using, Huber function, RWLTS and OLS   

 

 

9.0  CONCLUSION 

 

The primary focus of this paper would be to produce reliable 

techniques for correcting the problem of heteroscedastic 

errors in the existence of outliers. The empirical study 

discloses the OLS estimations are often affected by the 

outliers.For correcting the problems of outliers and 

heteroscedastic errors in the data. 
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