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Abstract 

 
This research is about computing the Green’s function on doubly connected regions by using the method 

of boundary integral equation. The method depends on solving a Dirichlet problem. The Dirichlet 

problem is then solved using a uniquely solvable Fredholm integral equation on the boundary of the 
region. The kernel of this integral equation is the generalized Neumann kernel. The method for solving 

this integral equation is by using the Nystrӧm method with trapezoidal rule to discretize it to a linear 

system. The linear system is then solved by the Gauss elimination method. Mathematica plots of Green’s 
functions for several test regions are also presented. 
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Abstrak 

 

Kajian ini berkaitan dengan pengiraan fungsi Green pada rantau berkait ganda dua terbatas dengan 

menggunakan kaedah persamaan kamiran sempadan. Kaedah ini bergantung kepada penyelesaian 
masalah Dirichlet. Masalah Dirichlet kemudiannya diselesaikan menggunakan persamaan kamiran 

Fredholm berpenyelesaian unik pada sempadan rantau ini. Inti persamaan kamiran ini adalah inti 

Neumann teritlak. Kaedah untuk menyelesaikan persamaan kamiran ini ialah dengan menggunakan 
kaedah Nystrӧm dengan peraturan trapezoid untuk menghasilkan sebuah sistem linear. Sistem linear 

kemudian diselesaikan dengan kaedah penghapusan Gauss. Plot Mathematica bagi fungsi Green untuk 

beberapa rantau ujian juga dipersembahkan. 
 

Kata kunci: Fungsi Green; Masalah Dirichlet; Persamaan Kamiran; Inti Neumann Teritlak 
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1.0  INTRODUCTION 

 

Green’s functions are important since they provide a powerful 

tool in solving differential equations. They are very useful in 

several fields such as solid mechanics, applied physics, applied 

mathematics, mechanical engineering, materials science and 

quantum field theory.1 

  Henrici shows three different methods for computing 

Green’s function for doubly connected regions which leads to 

three different analytical representations for the Green’s function. 

The methods are the Fourier series method, infinite product 

method and Theta series method.2 Crowdy and Marshall have 

presented an analytical formula for Green’s function for Laplace’s 

equation in multiply circular domains. The method is constructive 

and depends on Schottky-Klein prime function associated with 

multiply connected circular domain.3 

  Wegmann and Nasser have studied Fredholm integral 

equation associated with the linear Riemann-Hilbert problems on 

multiply connected regions with smooth boundary curves. The 

kernel of these integral equations is the generalized Neumann 

kernel. They investigated the existence and uniqueness of 

solutions of the integral equations by determining the exact 

number of linear independent solutions and their adjoints.4 Based 

on Wegmann and Nasser, Nasser et al. have proposed a new 

boundary integral method for the solution of Laplace’s equation 

on multiply connected regions using either Dirichlet boundary 

condition or the Neumann boundary condition. The method is 

based on two uniquely solvable Fredholm integral equations of 

the second kind with the generalized Neumann kernel.5 

  Recently, Alagele has proposed a new method for computing 

the Green’s function on simply connected region by using the 

method of boundary integral equation which depends on the 

solution of a Dirichlet problem.6  

  Based on paper by Wegmann and Nasser and Nasser et al., 

the Dirichlet problem is solved using a uniquely solvable 

Fredholm integral on the equation boundary of the region.4,5 This 
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paper wish to extend Alagele’s work to compute Green’s function 

for bounded doubly connected regions using integral equation 

with generalized Neumann kernel.6 

 

 

2.0  AUXILIARY MATERIALS  

 

Let Ω be a bounded doubly connected region in the complex 

plane (Figure 1). The outer boundary 
0  has a counter clockwise 

direction and surrounds the boundary 
1  which has clockwise 

orientation. So we have 
10  . 

 

  
Figure 1  Bounded doubly connected region 

 

 

  We assume that each boundary k  has a parameterization 

( ),   ,   0,1,k kt t J k   which is a complex periodic 

function with period 2 , where [0,2 ]kJ   is the 

parametric interval for each .k  The parameterization ( )k t  

also need to be twice continuously differentiable such that  

 

( )
( ) 0.k

d t
t

dt


  

                          (2.1) 

 

  Therefore the parameterization k  of the whole boundary 

  can be written as 

 

0 0 0

1 1 1

: ( ),   [0,2 ],

: ( ),   [0,2 ].

t t J

t t J

 

 

  

  
             (2.2) 

 

  Let u be a real function defined in the region   and let  

z x iy   . In our research, for simplicity, we write u(z) 

instead of u(x,y). Let H
 be the space of all real Hölder 

continuous function with exponent   on the boundary Γ. The 

interior Dirichlet problem is defined as follows: 

 

Interior Dirichlet problem: 

Let k H   be a given function. Find the function u harmonic 

in  , Holder continuous on   and satisfies the boundary 

condition 

 

( ) ,k ku  
   

,k k 
                     (2.3) 

  

where 

0 0

1 1

( ),   ,

( ),   .

t t J

t t J








  
 

  The interior Dirichlet problem (2.3) is uniquely solvable and 

can be regarded as a real part of an analytic function F in   

which is not necessary single-valued.2,5 The function F can be 

written as 

 

 1 1( ) ( ) ln ,F z f z a z z             (2.4) 

 

where f is a single-valued analytic function in  , 1z is a fixed 

point in 1  and 1a is real constant uniquely determined by 

k .5 We assume for bounded   that Im ( ) 0.f    The 

constant 1a  is chosen to ensure that 

 

1

'( ) 0.kf d 



 

 

In general the Green’s function for   can be expressed by8 

 

  
0 0 0

1
( , ) ( ) ln ,   , ,

2
G z z u z z z z z


      (2.5) 

 

where u is the unique solution of the interior Dirichlet problem 

 
2

0

( ) 0,

1
( ) ln , .

2
k k k k

u z z

u z  


   



  


          (2.6) 

 

By computing F given by (2.4) with  

 

0 0 0 1 0 1

1
ln  and ln , ,

2
k kz z    


      (2.7) 

 

the unique solution of the interior Dirichlet problem (2.6) is given 

in  by  

 

( ) Re ( ).u z F z
                          (2.8) 

 

 

3.0  INTEGRAL EQUATION FOR THE INTERIOR 
DIRICHLET PROBLEM 

 

Let ( )kA t  be continuously differentiable 2π-periodic functions 

for all ,   0,1kt J k  . We consider two real functions9  

 

,

( ) ( )1
( , ) Im ,

( ) ( ) ( )

l k
l k

k k l

A s t
N s t

A t t s



  

 
  

       (3.1) 
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,

( ) ( )1
( , ) Re .

( ) ( ) ( )

l k
l k

k k l

A s t
M s t

A t t s



  

 
  

       (3.2) 

 

  The kernel 
, ( , )l kN s t  is called the generalized Neumann 

kernel formed with complex-valued function ( )kA t  and ( ).k t
4 

When 1,kA   the kernel ,l kN  is the classical Neumann kernel 

which arise frequently in the integral equations for potential 

theory and conformal mapping.2 

 

Theorem 3.14 

 

a) The kernel 
, ( , )l kN s t  is continuous which takes on the 

diagonal the values  

 

,

( ) ( )1 1
( , ) Im .

2 ( ) ( )

k k
k k

k k

t A t
N t t

t A t



 

 
  

        (3.3) 

 

b) The kernel 
, ( , )l kM s t  is continuous for .l k  When 

,l k the kernel 
, ( , )k kM s t  has the representation 

 

, 1,

1
( , ) cot ( , ),

2 2
k k k

s t
M s t M s t




  

 (3.4) 

 

with a continuous kernel 
1,kM  which takes on the diagonal the 

values 

 

1,

( ) ( )1 1
( , ) Re ,

2 ( ) ( )

k k
k

k k

t A t
M t t

t A t



 

 
  

           (3.5) 

 

where 0,1.k   

 

  To find the function ( )F z given by (2.4), we need to find 

the function ( )f z and the real constant 1a . We define real 

functions  

 

 0

k k  and 
[1]

1lnk k z    for 0,1,k     (3.6) 

 

where k satisfy (2.7). It follows that5 

 
[ ]

[ ] [ ] [ ]( ( )) ( ) ( ) ( ), for , 0,1,
p

p p p

k k k kf t t h t i t p k     
 (3.7) 

 

are boundary values of analytic function [ ]pf  in   where 

[ ]p

k is the unique solution of the integral equation 

 

2 2

[ ] [ ] [ ]

,0 0 ,1 1

0 0

( ) ( , ) ( ) ( , ) ( )p p p

l l ls N s t t dt N s t t dt

 

     
2 2

[ ] [ ]

,0 0 ,1 1 ,

0 0

( , ) ( ) ( , ) ( ) ,    , 0,1.p p

l l lM s t t dt M s t t dt s J l p

 

     
 (3.8) 

 

and 

 
2 21 1

[ ] [ ] [ ]

, ,

0 00 0

1
( , ) ( ) ( , ) ( ) ,

2

p p p

l l k k l l k k

k k

h M s t t dt N s t t dt

 

  
 

 
   

 
  

(3.9) 

 

with 

 

[ ]

[ ]

               

0

                                      

[ ] [ ]

1 1 0

0,

.

p

p p p

h

h h h



 
 

 

  It follows from Nasser et al.5 that the unknown constant 
1a  

is the solution of the equation 

 
        
[0] [1]

1 0.h a h 
                        (3.10) 

 

Then 

 
[0] [0]

1 0
1 [1] [1]

1 0

.
h h

a
h h

 
  

   
 

Hence, the boundary values of the function f  is given by5 

 

1 1( ( )) ( ) ln | ( ) | ( ),k k k kf t t a t z i t      
   (3.11) 

 

where  

 
[0] [1]

1( ) ( ) ( ).k k kt t a t   
 

 

  By this result we can compute the interior values of ( )f z  

over the whole region   by using the Cauchy integral formula 

 

1 ( )
( ) .

2

f w
f z dw

i w z





                  (3.12) 

 

  We then compute the function ( )F z  from (2.4) and 

( )u z from (2.8). 

 

 

4.0  NUMERICAL IMPLEMENTATION 

 

Denoting the right-hand side of the Equation (3.8) by ( )l s , we 

get 

 
2 2

[ ] [ ] [ ] [ ]

,0 0 ,1 1

0 0

( ) ( , ) ( ) ( , ) ( )  ( ).p p p p

l l l ls N s t t dt N s t t dt s

 

      
 

(4.1) 
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Since the functions 
kA  and 

k  are 2 - periodic, the integrals 

are discretized by the Nystrӧm method with trapezoidal rule.7 

 
Let n be a given integer and define the n equidistant collocation 

points 
jt by 

 

2
( 1) ,jt j

n


    .,...,2,1 nj              (4.2) 

 

Then, using the Nystrӧm method for (4.1) we obtain the linear 

system  

 

[ ] [ ] [ ] [ ]

,0 0 ,1 1

1 1

2 2
( ) ( , ) ( ) ( , ) ( ) ( )

n n
p p p p

l i l i j j l i j j l i

j j

t N t t t N s t t s
n n

 
   

 

   
 

(4.3) 

 

where k is an approximation to  , and 

 

,

( )( )1
Im , ,  or ,

( ) ( ) ( )
( , )

( ) ( )1 1 , ,Im Im ,
2 ( ) ( )

k jl i

i j
k j k j l i

l k i j

k j k j
i j

k j k j

tA t
l k l k t t

A t t t
N t t

t A t l k t t
t A t



  



  

  
     

   
 

        
      

 

and 

 
2

[ ] [ ] [ ]

1,

10

1 2
( ) cot ( ) ( , ) ( )

2 2

n
p p pi

l i k j k i j k j

j

t t
t t dt M t t t

n




  
 


  

 

 

[ ]

,

1

2
( , ) ( ),

n
p

l k i j k j

j

M t t t
n






             (4.4) 

 

where , , 0,1,l k p   and 

 

,

( )( )1
( , ) Re ,  ,

( ) ( ) ( )

k jl i
l k i j

k j k j l i

tA t
M t t l k

A t t t



  

 
  

  

 

 

1,

( )( )1 1
Re cot ,   t

( ) ( ) ( ) 2 2
( , )

( ) ( )1 1   .Re ,
2 ( ) ( )

k j i jk i

i j

k j k j k i

k i j

k j k j
i j

k j k j

t t tA t
t

A t t t
M t t

t A t
t t

t A t



   



 

   
  

   
 

   
  

 

 

We use Wittich method to approximate the integral that contains 

cotangent function and obtain10 

 
2

10

1
cot ( ) ( , ) ( )

2 2

n
i

k k j

j

t t
t dt K i j t



 
 




    (4.5) 

 

where 









,
)(

cot
2

,0
),(

n

ji

n

jiK   

 

  The left-hand side of (4.3) can also be calculated directly by 

using Mathematica. Define the matrices 

[ ], [ ], [ ], [ ]   i j i j i j i jP P Q Q R R S S     and vectors 

,[ ]l l ix x  and 
,[ ]l l iy y  by  

 

, 0 0

2
( ( ), ( )),ij l k i jP N t t

n


  , 0 1

2
( ( ), ( )),ij l k i jQ N t t

n


   

 

, 1 0

2
( ( ), ( )),ij l k i jR N t t

n


  , 1 1

2
( ( ), ( )),ij l k i jS N t t

n


   

 

, ( ),l i l ix t  
, ( ).l i l iy t  

 

 

Hence, the Equation (4.3) can be written as an 2n by 2n system 

 

0 1 0( ) ,I P x Qx y    

0 1 1( ) .Rx I S x y                       (4.6) 

 

  To solve the system (4.6) we use the method of Gaussian 

elimination. Since (4.1) has a unique solution, then for a wide 

class of quadrature formula the system (4.6) also has a unique 

solution, as long as n is sufficiently large.7 After we get the 

unique solution 
, ( ) ,l i l ix t  then we calculate 

0 1and( ( ))  ( ( ))j jf t f t   by using the following formula: 

 

0 0 1 0 1 0

1 1 1 1 1 1

( ( )) ( ) ln ( ) ( ),

( ( )) ( ) ln ( ) ( ),

j j j j

j j j j

f t t a t z i t

f t t a t z i t

   

   

   

   

    (4.7) 

 

which represents the boundary values of )(zf  on .  We can 

compute the interior values of )(zf   over the whole region   

by using the Cauchy integral formula given in (3.12), i.e.,  

 
2 2

0 1

0 1

0 10 0

( ( )) ( ( ))1 1
( ) ( ) ( )

2 ( ) 2 ( )

j j

j j

j j

f t f t
f z t dt t dt

i t z i t z

  
 

   
  

  
  (4.8) 

 

  To increase the accuracy of )(zf  we shall use the following 

formula. Based on the fact that 1 1
1

2
d

i z


 





, we can write 

)(zf  as  

 
2 2

0 1

0 1

0 10 0

2 2
0 1

0 10 0

( ( )) ( ( ))1 1
( ) ( )

2 ( ) 2 ( )
( ) .

( ) ( )1 1

2 ( ) 2 ( )

j j

j j

j j

j j

j j

f t f t
t dt t dt

i t z i t z
f z

t t
dt dt

i t z i t z

 

 

 
 

   

 

   

 
 


 


 

 

 

(4.9)

              

 

 

  Then, using the Nyström method with the trapezoidal rule to 

discretize the integrals in (4.9), we obtain the approximation 

 

 

0 1

0 1

1 10 1

0 1

1 10 1

( ( )) ( ( ))
( ) ( )

( ) ( )
( ) .

( ) ( )

( ) ( )

n n
j j

j j

j jj j

n n
j j

j jj j

f t f t
t t

t z t z
f z

t t

t z t z

 
 

 

 

 

 

 

 
 


 


 

 

 

    (4.10) 

 

if j-i is even, 

 

if j-i is odd. 
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This has the advantage that the denominator in this formula 

compensates for the error in the numerator.11 Next, substitute 

( )f z  given in (4.10) into Equation ( )F z  in (2.4), and by 

taking the real part of (2.4) gives (2.8), i.e. 

 

( ) Re ( ).u z F z
 

 

Finally, by using )(zu  we can compute the Green’s function 

0( , )nG z z  by the following formula (2.5), i.e. 

 

0 0

1
( , ) ( ) ln .

2
nG z z u z z z


    

 

 

5.0  NUMERICAL EXAMPLES 

 

Example 1 

 

In Example 1, we consider an annulus as shown (Figure 2). The 

boundary of this region is parameterized by the function 

 

0 0

1 1

: ( ) ,  
0 2

: ( ) ,

it

it

t e
t

t pe




 

 
 

 
 

 

with
00.5, 0.75, p z   

 

0 0 0

1
ln

2
z 


  and 

1 0 1ln z   . 

 

 

 
 

Figure 2  The test region Ω for Example 1  

 

 

  The exact Green’s function of this region is given by2 

 
1

0

Log 1
( , ) 1 Log Log

Log 1

i

i

e
G z z

e





  


 

  
   

   

  



n

n

nn

nn

nn

n

n

cos
1















 
 

where 
iz e  , and the infinite series converges, uniformly for 

1z    and 1    at least like a geometric series with 

ratio  . 

  We describe the error by maximum error 

norm
0 0( , ) ( , )nG z z G z z


 , where n  is the number of nodes 

and 
0( , )G z z is the numerical approximation of 

0( , )G z z . We 

choose some test points inside the region. The results are shown 

in Table 1. 

 

Table 1  The error 
0 0( , ) ( , )nG z z G z z


  

 

            n 

      z            

32 64 128 

0.6 

0.7 

0.8 

0.9 

41072.1   
51077.9      
51058.1   
41088.1   

61013.1   
71086.7          
71072.4 
81029.2   

111081.5   
111005.4   
111054.2   
111015.1   

0.74999999999 5108.4   
7103.6   

111027.3   

0.75000000001 5108.4   
7103.6   

111027.3   

0.5+0.5i 

0.6+0.6i 

0.7+0.7i 

41035.1   
51078.7   
51046.1   

71067.7   
71069.3   
81021.7   

111094.3   
111087.1   
121003.3   

 

The 3D plot of the surface of 
0( , )nG z z  is shown (Figure 3). 

 

 

 
 

Figure 3  The 3D plot of Green’s function for Example 1  

 

 

Example 2 

 

In Example 2, we consider an Epitrochoid as shown (Figure 4). 

The boundary of this region is parameterized by the function 

 

0 0

1 1

: ( ) ,  
0 2

: ( ) ,

it it

it

t e pe
t

t qe










  
 

 
 

 

with 0.3333,  0.1,p q  0 0.75,z  1 0.01,z   

 

0 0 0

1
ln

2
z 


  and 

1 0 1ln z   . 
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Figure 4  The test region Ω for Example 2  

 

 

The 3D plot of the surface of 
0( , )nG z z  is shown (Figure 5). 

 

 
 

Figure 5  The 3D plot of Green’s function for Example 2  

 

 

6.0  CONCLUSION 
 

This study has presented a method for computing the Green’s 

function on doubly connected regions by using a new approach 

based on boundary integral equation with generalized Neumann 

kernel. The idea for computing the Green’s function on   is to 

solve the Dirichlet problem 

 

2

0

( ) 0,

1
( ) ln , .

2
k k k k

u z z

u z  


   



  


         (6.1) 

 

on that region by means of solving an integral equation 

numerically using Nyström method with the trapezoidal rule. 

Once we got the solution ( )u z , the Green’s function of   can 

be computed by using the formula  

0 0

1
( , ) ( ) ln .

2
nG z z u z z z


          (6.2) 

 

  The numerical example illustrates that the proposed method 

can be used to produce approximations of high accuracy. 
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