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Graphical abstract 
 

 
Performance of frog sound 

classification system using full 

entropy approach 

Abstract 
 

Animal species identification based on their sound has received attentions from 

researchers. This is to establish fast and efficient identification method. Identification of 

frogs have been one of the examples where research activities have shown some progress. 

Mel Frequency Cepstrum Coefficient (MFCC) and Linear Predictive Coding (LPC), coupled 

with k-th Nearest Neighbor (k-NN) or Support Vector Machines (SVM) have been the 

favorate approachs used by researchers. Quite recently, a new classification and 

identification method of sound using entropy-based approach for species identification of 

Australian frogs was proposed. Shannon, Rènyi and Tsallis entropy were used as features of 

extraction for the purpose of pattern recognition. Result shows that the full entropy-based 

animal sound identification system has successfully identified most of the frog species used 

in this study. The overall classification accuracy is as high as 91% with two failures from nine 

samples at 70% and 40%, respectively. A comparative analysis highlights the advantages of 

full entropy approach over conventional frequency spectral and hybrid methods. This is 

shown especially in the running time of a computer that required to complete the species 

identifications process. The result presented in this paper indicates that full entropy-based 

method can be used for faster frog species identification. 

 

Keywords: Bioacoustics signal, entropy, frogs sound analysis, pattern recognition, specisis 

identification 

 

Abstrak 
 

Pengecaman spesis hawian berasaskan bunyi telah mendapat perhatian ramai pengkaji. 

Ini adalah untuk pembinaan satu kaedah pengecaman yang pantas dan berkesan. 

Pengecaman katak merupakan salah satu kajian yang telah menunjukkan kemajuan. 

Kaedah Mel Frequency Cepstrum Coefficient (MFCC) dan Linear Predictive Coding (LPC), 

yang dijalankan secara bersama dengan k-th Nearest Neighbor (k-NN) atau Support 

Vector Machines (SVM) merupakan pilihan utama para pengkaji. Tidak begitu lama 

dahulu, satu kaedah pengkelasan dan pengenalpastian bunyi berasaskan entropi untuk 

penentuan spesis katak Australia telah dicadangkan. Entropi Shannon, Renyi dan Tsallis 

telah digunakan untuk memperolehi cirian bagi mengenalpasti polanya. Keputusan 



226                                            Ng Chee Han et al. / Jurnal Teknologi (Sciences & Engineering) 75:1 (2015) 225–231 

 

 

menunjukkan bahawa kaedah berasaskan entropi sepenuhnya berjaya mengenalpasti 

hampir semua spesis katak dalam kajian. Ketepatan pengkelasan secara keseluruhannya 

adalah sehingga 91% dengan hanya dua kegagalan daripada sembilan sampel masing-

masing pada 70% dan 40%. Analisis perbandingan telah menyingkap kelebihan kaedah 

entropi penuh berbanding kaedah lazim berasaskan spectra frekuensi dan juga hibrid. Ini 

ditunjukkan terutamanya dalam masa yang diperlukan oleh computer untuk menyiapkan 

proses mengenal sepsis berkenaan. Keputusan yang dipaparkan dalam kertas kerja ini 

menunjukkan bahawa kaedah berasaskan entropi sepenuhnya boleh digunakan bagi 

pengecaman sepsis katak yang lebih pantas. 

 

Kata kunci: Isyarat bioakustik; entropi; analisis bunyi katak; pengecaman pola; 

pengecaman spesis. 

 

© 2015 Penerbit UTM Press. All rights reserved 

  

 

 
1.0  INTRODUCTION 
 

Biological classification is a taxonomic process used 

by biologists to classify living organisms. It is important 

for identification of unknown species, grouping of 

new organisms with existing ones, assigning names to 

organisms (nomenclature) and providing a common 

reference for those already identified.  

Conventionally, living organisms are classified 

based on their morphological and behavioral. It was 

then evolved into the application of genetic and 

biochemical observations. Recently, it was shown 

that animal species can also be identified based on 

their calls when the animal sound is measured 

acoustically to relevant features [1-2]. For instance in 

birdsong, some species of bird e.g. Cardinalis 

produce songs with individual syllables that are 

almost pure tone while other birds such as 

cockatoos, however, have a truly chaotic waveform 

[3]. Many sound signal analysis methods have been 

suggested in the literatures to study the 

characteristics of the sound signal in a particular 

feature. They can be categorized into two groups- 

the frequency domain and the time domain [2]. 

Combination of these two categories is known as 

time-frequency analysis. Fourier transforms (FT) was 

once one of the most commonly used frequency 

domain method in animal sound analysis. It had 

been used to study the active frequency component 

in a sound signal. However, some information such as 

phase change in the signal cannot be detected by 

FT. Therefore, time-frequency analysis comes in to fill 

this gap and ever since it becomes the most 

frequently used approach. Among the techniques 

are the short-time Fourier transforms (STFT) and 

wavelet transforms. Time-frequency analysis has 

become the favorite method in literatures because 

the outputs are easier to visualize and to understand 

the behavior or pattern of the sound signals [4-5]. 

However, the shortcomings of this method are 

computationally intensive and energy and time 

consuming. Other available time domain methods 

are pulse distance density [6], temporal structure of 

the pulses, pulse length and zero-crossing rate [2]. 

Frogs have been identified as good biological 

indicators as the health of frogs signifies the 

conditions of an ecosystem [7-9]. Unfortunately, 

technique devoted to the development of 

automated frog sound recognition system is not 

widely known in the literature. Thus, it becomes 

essential to develop an effcient frog sound 

recognition system [1]. Several automated frog 

identification have been investigated such as using 

k-th Nearest Neighbor (k-NN) and Support Vector 

Machines (SVM) [1], Mel Frequency Cepstrum 

Coefficient (MFCC) with Support Vector Machines 

(SVM) identifier [10] and Linear Predictive Coding 

(LPC) with k-NN [11] with good accuracy. 

Quite recently, a hybrid method that consists of 

spectral centroid (based on FT), Shannon entropy 

and Rényi entropy, as bioacoustics features had 

been introduced for animal species identification 

[12]. The study claims that the animal species can be 

identified in average up to 98% of accuracy based 

on the combination of those features. Since the 

hybrid method has given such encouraging result, 

the authors have further investigated the potential of 

pure entropy approach (Shannon, Rényi and Tsallis 

entropy) for bioacoustics signal analysis and animal 

species identification. They found that full entropy 

approach is inferior in detection accuracy [13]. This 

paper is an extension from the previous work with 

additional information on the analysis of advantages 

of the full entropy over the conventional and hybrid 

method. 

 

 

2.0  THEORETICAL BACKGROUND 
 

2.1  Shannon, Rényi And Tsallis Entropy 

 

In order for an information measure to qualify to be 

an entropy in thermodynamic sense, it has to satisfy 

the four main Khinchin axioms as follow [14]. Axiom I 

states that the information measure I only depends 

on the probabilities pi of the events and nothing else. 

Axiom II states that information measure takes on an 

absolute minimum for the uniform distribution and 

any other probability distribution has an information 

contents that is larger or equal to that of the uniform 

distribution. Axiom III ensures that the information 

measure remains unchanged even if the sample set 



227                                            Ng Chee Han et al. / Jurnal Teknologi (Sciences & Engineering) 75:1 (2015) 225–231 

 

 

of events is enlarged by another event that has 

probability zero. Finally, Axiom IV postulates that the 

information measure should be independent of the 

way the information is collected, and in particular this 

axiom is essential to describe joint probabilities. The 

three definitions of entropy employed in this study, 

namely the Shannon entropy, Rényi entropy and 

Tsallis entropy would differ largely due to variation in 

additivity and convexity assumptions in Axiom IV. 

Shannon entropy, S is the measure of information 

content in a sequence of signal, X = {x1, x2, x3, … , xn}. 

Shannon entropy describes the average of all the 

information contents, I(p) weighted by their 

probabilities pi, written in mathematical expression as 

 

    (1) 

 

where E[I(p)] denotes expectation value of I(p). The 

continuous version of the Shannon entropy is known 

the differential entropy given as 

 

  (2) 

 

Shannon entropy can also be used to measure the 

degree of predictability of a signal. Consider for 

example a d.c. signal at constant amplitude k. Its 

probability density function is then a unitary impulse 

located at k, i.e. pi = δ(k), therefore its entropy or 

unpredictability is zero. Shannon entropy has been 

used in many applications including in biodiversity 

and in ecology [15-16]. 

By introducing less stringent condition which states 

that the entropy of independent systems should be 

additive, one can use Rényi entropy of order q ≥ 0, 

defined as [17-18] 

 

(3) 

 

where pi is the probability of the occurrence {x1, x2, 

x3, …, xn} in the signal. Rényi entropy have been used 

in communication and coding theory [19] data 

mining, detection, segmentation, characterization of 

signals and sequences [20], signal processing [21], 

classification, image matching and registration [22]. 

Rényi information can be used to ‘obtain different 

averaging of probabilities’ via the parameter q [23]. 

By considering as a function of q, the spectrum of the 

Rényi entropy is also of some interest in many 

different fields. For example, Rényi information of 

order of q = 2 is used as a measure of diversity in 

economics [24]. In the study of random signal, a 

lower bound of Rényi entropy at least in the order of 

q = 2 is often adopted. Measurement of Rényi 

entropy also refers to the estimation of noise when 

transmitting a signal. One may expect that in this 

context, the ‘highly ordered’ animal sound signal will 

produce in relatively low complexity. 

The Rényi entropy does not possess a definite 

convexity, which is crucial for formulating a 

generalized statistical mechanics. Hence, other 

candidates for information measures have been 

introduced and among the most notable is the Tsallis 

entropy (also known as q-entropy) written as [25] 

 

  (4) 

 

where q ϵ R is a real parameter which is also known 

entropic index. The Tsallis entropy is quite different to 

the Rényi entropy and this is noticeable from the 

expression that lacks the logarithmic term. However, 

the Tsallis and Rényi entropies are related through the 

following relation. 

 

  (5) 

 

Tsallis entropy has been used in several studies, 

including measurement of complex systems in 

electric signals of ECGs and myocardial infarction 

[26], study of complexity of learning in both natural 

and artificial systems [27] and understanding 

nonlinear physiological signals [28]. 

 

2.2 k-NN CLASSIFIER AND ASSESSMENT OF 

PERFORMANCE 

 

The non-parametric k-NN classifier is known as a 

simple yet powerful method for classification in 

pattern recognition, machine learning, data mining, 

and information retrieval [1]. It has been used in 

variety of sound analysis applications. Taking a set of 

parameters, k-NN searches the nearest neighbor 

among training data by using the categories of 

neighbor to consider the class of a given input. 

In this study, the feature vector which consists of 

Shannon, Rényi and Tsallis entropy of the sound 

samples from each species were first determined and 

used as training data to represent each animal 

species. In the classification stage, given a set of 

parameters, it finds the nearest neighbour among 

training data and uses the categories of the 

neighbour to determine the class of a given input. 

The similarity between parameters is measured by 

using the distance metric method. There are different 

types of distance metric including Euclidean, city 

block, cosine, correlation and Hamming. For this 

study, Euclidean distance was selected as the 

distance metric methods for k-NN classifier in species 

classification. The Euclidean distance defines the 

distance d(m,n) between instances m and n as [1] as 

 

 

(6) 

 

 

where Ra = max (ya) - min (ya), which denotes the 

range of attribute a and used as normalization in 

order to avoid any attribute overpower the other 

attributes. 
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3.0  EXPERIMENTAL DETAIL 
 

3.1  Full Hardware Setup 

 

In this work, a database that consists of nine frog 

species found in Australia, as listed in Table 1 Frogs 

Australia Network, was used. The Microhylidae is a 

family of firmisternal frogs, which have broad sacral 

diapophyses, one or more transverse folds on the 

surface of the roof of the mouth, and a unique slip to 

the abdominal musculature. Almost all Australian 

Microhylids are small (snout to vent length less than 

35 mm), and all have procoelous vertebrae, are 

toothless and smooth-bodied, with transverse 

grooves on the tips of their variously expanded digits. 

The terminal phalanges of fingers and toes of all 

Australian microhylids are T-shaped or Y-shaped with 

transverse grooves [29]. They produce sound by 

pneumatic generation where pneumatic air is forced 

between two membranes in the larynx in such a way 

to cause them vibrate at a very nearly their 

mechanical resonance frequency [30-31]. 

 

Table 1 Frog species for Microhylidae as test samples 

 

Family Scientific name Common name 

Microhylidae 

Cophixalus bombiens Buzzing Nurseryfrog 

Cophixalus concinnus 

Tapping Nurseryfrog; 

Elegant Frog; 

Beautiful Nursery-frog 

Cophixalus exiguus 
Dainty Nurseryfrog; 

Scanty Frog 

Cophixalus hosmeri 
Rattling Nurseryfrog; 

Hosmer's Frog 

Cophixalus infacetus 
Creaking Nurseryfrog; 

Inelegant Frog 

Cophixalus monticola Mountain Nurseryfrog 

Cophixalus neglectus 

Bellenden Ker 

Nurseryfrog;  

Neglected Frog 

Cophixalus ornatus 
Ornate Nurseryfrog; 

Ornate Frog 

Cophixalus saxatilis 

Black Mountain 

Boulderfrog; 

Rock Frog 

 

 

The proposed method of species identification 

involves four stages. It begins with segmentation of 

the sound signal from the original recordings of the 

nine selected frog species. Figure 1 and Figure 2 

show examples of how the segmentation of the 

syllable is performed with the corresponding 

spectrogram for Cophixalus bombiens and 

Cophixalus saxatilis, respectively. For each species, a 

total of 10 segments were prepared. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Example of complete call and segmented syllable 

for Cophixalus bombiens in time domain and the 

corresponding spectrogram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Example of complete call and segmented syllable 

for Cophixalus saxatilis in time domain and the 

corresponding spectrogram 

 

 

A syllable is basically a sound that an animal 

produces with a single blow of air from the lungs [1]. 

Once the syllables have been properly segmented, a 

set of features can be calculated to represent each 

syllable. From Figure 1 and Figure 2, it can be seen 

that the waveforms of each syllable from a call looks 

similar. Depending on the species, the number of 

syllable in a call varies from as low as 12 syllables to 

as high as 96 syllables. The duration for each syllable 

is between 3.58 to 65 ms, whereas the duration for 

each call is in the range of 0.536 to over 3 s. The 

dominant frequency of the call for each species also 

varies from 1.7 kHz to 4.9 kHz with different active 

frequency range. In this study, the signal 

segmentation was performed using software ‘Raven 

Lite’. The segmented syllables for each species are 

digitized in 24-bit WAV format with sampling 
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frequency of 44.1 kHz. MATLAB software is used for 

feature extraction and classification analysis. 

After segmentation, extraction of the features of 

the sound signal was then performed in the second 

stage. As previously mentioned, three types of 

entropy namely Shannon, Rényi and Tsallis entropy, 

were extracted from the syllable signal using (1), (3) 

and (4), respectively. In the present study, entropic 

index q = 2 is adopted for Rényi and q = 0.1 for Tsallis 

entropy due to their wide application in signal 

analysis. 

In the third stage of the work, a set of reference 

data for each species was determined from the 

average of each feature. Using these training data 

and the entropy value of each by syllable as input, 

the species classification and identification were 

performed using k-th nearest neighbor (k-NN) 

algorithms given in (6). 

The final stage of this work is the assessment of the 

accuracy of the proposed method. In order to 

examine its performance, the classification accuracy 

A is measured based on the percentage of the 

correctly identified syllables given by 

 

   (7) 

 

where NC is the number of syllables which were 

correctly recognized and NS is the total number of 

the syllables for each species (10 syllables in this 

study). 

 

 

4.0  RESULTS AND DISCUSSION 
 

Figure 3-5 show the values of Shannon, Renyi and 

Tsallis entropy, respectively, for each syllable of the 

respective frog species. The results show that the 

entropy values for each syllable from a particular 

species mostly deviated in small range, indicating a 

high similarity in terms of the syllable produced by the 

test subjects. The dispersion of all values from 

Shannon and Renyi entropy are less than 10 bits 

whereas for Tsallis entropy the values are in the 

interval of 100-500 bits. In Shannon and Renyi 

entropy, an interesting pattern was found that all 

species exhibited a similar range, as small as two 

decimals point. Among them bombiens, neglectus & 

ornatus sp. are showing the least deviation with 

approximately 0.02-0.08. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Shannon entropy of nine Microhylidae frog species 

for ten syllables each species 

 

Figure 4 Rényi entropy of nine Microhylidae frog species for 

ten syllables each species 

 

 

 

Figure 3 Shannon entropy of nine Microhylidae frog species 

for ten syllables each species 

 

Figure 4 Rényi entropy of nine Microhylidae frog species for 

ten syllables each species 

 

Figure 5 Tsallis entropy of nine Microhylidae frog species for 

ten syllables each species 

 

Table 2 Training data for animal species identification 

 

Frog 

species 

Shannon 

entropy 

Rényi 

entropy 
Tsallis entropy 

bombiens 8.34 8.30 203.00 

concinnus 9.05 8.90 330.00 

exiguus 8.60 8.40 270.00 

hosmeri 8.90 8.85 340.00 

infacetus 9.00 8.86 320.00 

monticola 9.10 8.75 350.00 

neglectus 8.11 8.10 175.00 

ornatus 7.35 7.35 108.00 

saxatilis 9.50 9.00 580.00 

 

 

100
s

c

N

N
A
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A slightly different pattern was observed in Tsallis 

entropy such that the range differs in the units of 

ones to tens. For example, most of the values of Tsallis 

entropy for ornatus sp. are in the interval of 107.69-

108.91 bits but other species e.g. hosmeri sp. 

exhibited a relatively larger range of data with 

304.30-358.73 (Figure 5). Due to this fact, the average 

value for the features of each species is used as the 

training data which is shown in Table 2. For example, 

the training data for bombiens-Shannon entropy in 

Table 2 (the value in column 2 raw 2) is the average 

value from all the Shannon entropy given in column 1 

of Figure 3. The number of successfully identified 

syllables NC (refer to (7)) was determined based on 

the number of syllables that are correctly classified 

into right species using k-NN in (6) with data in Table 2 

as reference for the related species. 

Figure 6 shows the performance of the proposed 

method in terms of percentage of accuracy. It 

should be noted that the percentage of accuracy 

above 80% is considered successful. It can be seen 

that seven of the species were successfully identified 

with 100% accuracy. The proposed method had 

successfully identified the uniqueness of these 

species. Only Cophixalus concinnus and Cophixalus 

hosmeri are failed to be recognized with 70% and 

40% of accuracy, respectively. Detailed inspection of 

Figure 3, 4 and 5 shows that the entropy features for 

these two species are very close resemble to each 

other. This has made it difficult to identify or 

differentiate each sound correctly. 

Figure 6 Performance of frog sound classification system by 

using entropy approach for nine Microhylidae frog species 

 

 

As a comparison with spectral centroid method, 

the pure entropy approach has marked significant 

improvement in the accuracy of classification [12]. It 

has decreased the failures of identification to two 

species with an average of more than 91% in 

accuracy. This is slightly low compared to the hybrid 

method previously reported. Therefore, further 

analysis was performed in terms of running time of 

the identification process on Intel i3 and i5 processors 

with standard specifications. Running time is one of 

the important factors for a practical implementation 

of an identification method. It was found that the 

CPU running time reduced by 25% compared to 

hybrid method. The overall comparison between the 

three methods is shown in Table 3 and favors the full 

entropy method in general. 

 

Table 3 Comparison of performance between spectral 

centroid, pure entropy & hybrid classification method 

 

 Spectral 

centroid method 

Pure entropy 

method 

Hybrid 

method 

Accuracy 65% 91% 98% 

CPU time <40% <25% - 

Failure of 

identification 

6 sp. 2 sp.  none 

 

 

5.0  CONCLUSION 
 

A set of sound recordings from nine Microhylidae 

frogs were collected and segmented into syllables 

form used as test samples. Three different entropy 

approaches, which are Shannon, Rényi and Tsallis, 

were then extracted from the test samples and used 

as acoustical features for animal species 

identification. Based on these entropy features, the k-

NN classifier managed to recognize majority of the 

Microhylidae frog species with high recognition rate. 

The low computational complexity of full entropy 

approaches have given an advantage of being 

implementable on low power microcontrollers 

leading to the possibility of hand-held recognizers for 

long term bioacoustics monitoring. 
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