
THE OPTIMIZATION OF STEPPING STONE DETECTION: PACKET CAPTURING STEPS 1

Jurnal Teknologi, 44(D) Jun 2006: 1–14
© Universiti Teknologi Malaysia

THE OPTIMIZATION OF STEPPING STONE DETECTION:
PACKET CAPTURING STEPS

MOHD NIZAM OMAR1, MOHD AIZAINI MAAROF2 & ANAZIDA ZAINAL3

Abstract. This paper proposes an optimized packet capturing stone detection algorithm that can
shorten the response time of overall response mechanism. The aim of the research is to improve the
packet capturing step in stepping stone algorithm, thus, improve the response from overall detection
and response system. The proposed method is to use small size of user buffer and kernel buffer.
Experiments were conducted with two types of packet stream; i) 10 kbps and ii) 10 000 kbps data
generated by Tfgen (packet generator) tools and nine combinations of different buffer sizes for each
network packet stream were tested. Results from the experiment were analyzed. From the result, it is
proven that the proposed method (by using small size of buffer) gives better result. The research
concludes that by using the proposed method, the response time can be improved.

Keyword: IDS, IRS, detecting stepping stones, time gap, optimization

Abstrak. Kertas kerja ini mencadangkan pengoptimuman langkah penawanan paket di dalam
algoritma pengesanan batu loncatan yang boleh memendekkan masa tindak balas keseluruhan
mekanisma penindakbalasan. Tujuan penyelidikan ini adalah bagi membuktikan langkah penawanan
paket di dalam algoritma batu loncatan seterusnya membolehkan percepatan penindakbalasan bahagian
penindakbalasan daripada keseluruhan sistem pengesanan dan penindakbalasan. Kaedah yang
dicadangkan diperkenalkan dengan menggunakan saiz penimbal pengguna dan penimbal kernel
yang kecil. Eksperimen dijalankan dengan menggunakan dua jenis aliran paket rangkaian; i) 10 kbps
dan ii) 10 000 kbps yang dijana menggunakan perkakasan Tfgen (penjana paket) dan kombinasi
sembilan saiz penimbal yang berbeza untuk setiap aliran paket rangkaian yang diuji. Keputusan
daripada eksperimen dianalisa. Daripada keputusan, kaedah yang dicadangkan (dengan menggunakan
saiz penimbal yang kecil) memberikan keputusan yang lebih baik. Penyelidikan ini menyimpulkan
bahawa dengan menggunakan kaedah yang dicadangkan, masa tindak balas dapat diperbaiki.

Kata kunci: IDS, IRS, pengesanan batu loncatan, jurang masa, pengoptimuman

1.0 INTRODUCTION

IDS can be defined as a system that attempts to identify intrusion, such as unauthorized
use, misuses, or abuses of computer systems by either authorized users or external
perpetrators [1]. IDS can be divided into two categories, host-based and network-
based IDS [2]. From the input perspective, host-based IDS uses logs, system calls, and

1,2&3 Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, 81310
Skudai, Johor. Email: maarofma@fsksm.utm.my, anazida@fsksm.utm.my

JTjun44D[1]CRC.pmd 04/24/2007, 14:431

MOHD NIZAM OMAR, MOHD AIZAINI MAAROF & ANAZIDA ZAINAL2

so forth while network-based IDS uses network packets as its main input [3]. IRS
(Intrusion Response System) can be defined as IDS that detects an attack and
immediately responds to remove the intruder from the network [4]. IDS and IRS are
related. Both of these systems can use packet capturing program as their main source
to detect and respond. IDS detects intrusion while IRS responds after IDS has detected
an intrusion. There are many types of responses that IRS can perform such as
generating report, locking user account, terminating user session [5], and so on. It is
important to note that the success of an attack depends on the time-gap between
detection and response [6]. Some efforts to overcome the time-gap problem were
accomplished by Ragsdale [7] using adaptive IDS and Foundstone [8] used the
preventive approach. In this paper, we focus on the input stage of an IDS. The
optimization of both detection and response will give an impact to overall performance;
time detection and response processes [9].

Existing NIDS such as Bro [10], Snort and other NIDS use packet capturing
software as the tool to obtain information from network. Several packets capturing
software or tools such as CMU/Stanford [11], libcap, WinPcap and so on have been
used for this purpose. Here, we used WinPcap.

A sample program named CaptureIt was edited from packet capturing program
to include a function that has a capability to count the time that has been used for
capturing a packet. CaptureIt used WinPcap tools to capture network packet.
CaptureIt has been tested with different memory sizes and the time for capturing
process was obtained to determine the best buffer size. Besides observing an impact
on different sizes of buffer, the CPU and memory usage were also monitored.

1.1 Time Gap

Research by Cohen [12] indicated that the success of an attack depends on the time
gap between detection and response. For more comprehensive understanding about
this, see the illustration in Figure 1. From the time gap problems, if skilled attackers
are given ten hours after they are detected and before a response is made, they will
be successful 80% of the time. After thirty hours, the attackers almost never fail [12].
Although Cohen [12] has detected the time gap problem focusing on the time after the
intrusion has been detected, we believe that the time detection must also be considered
as an important parameter to be optimized. The optimization of both detection and
response will give an impact to overall time detection and response processes. Figure
1 shows an effect of optimization processes to overall IDS.

There are many techniques that can be used for an optimization. The technique
that will be explained in this paper focuses on the initial step of both detection and
response techniques, known as packet capturing technique. The reason for optimizing
this packet capturing technique is because it is an initial component used in both
detection and response. In addition, it is assumed that optimization of the initial stages
in intrusion detection and response is more effective.

JTjun44D[1]CRC.pmd 04/24/2007, 14:432

THE OPTIMIZATION OF STEPPING STONE DETECTION: PACKET CAPTURING STEPS 3

1.2 Intrusion Response and Stepping Stone Detection: The
Relationship

Tracing intruder was listed by Carver [5] as one of the response techniques. Tracing
was chosen because according to Jang [13], tracing technique can identify intruders
and prevent them from performing another intrusion. Tracing intruder can be
classified [14] into two categories; IP-based and connection-based. Here, we chose to
implement connection-based. Unlike IP-based which needs specific hardware in its
implementation, connection-based is independent from any hardware and it is also
more important than IP-based [14]. Connection-based can be further divided into
three areas; host-based, network-based and active network-based [14]. Stepping stone
detection falls under network-based category and is currently being researched
[15 - 19]. The focus of this research is Stepping Stone Detection. Figure 2 illustrates the
relationship between IRS and Stepping Stone Detection. Here, by reducing the time
gap (with efficient Stepping Stone Detection algorithm), the response time can be
reduced.

1.3 General Steps for Stepping Stones Detection

There are three general steps in Stepping Stone Detection Technique; i) Packet capture,
ii) Identification and iii) Comparison. Packet capturing steps are the processes involved
where all of the information from raw source (network connection) is obtained and
extracted so that the information can be used later. Identification steps are the processes
of identifying network connection to obtain its unique identity and finally, comparison
steps deal with the comparison of the previously obtained unique identity
(identification). Figure 3 shows the general steps of the stepping stone detection.

Optimization After optimization

Figure 1 Time gap before and after optimization

(a) Before optimization (a) After optimization

t1 t2 t3 t4 t1 t2 t3 tn t4

Detection Idle time Response

Time
gap

Detection and response

Detection Idle time Response

Time
gap

Detection and response

JTjun44D[1]CRC.pmd 04/24/2007, 14:433

MOHD NIZAM OMAR, MOHD AIZAINI MAAROF & ANAZIDA ZAINAL4

The research focuses on the first general steps known as packet capturing steps.
Detail explanation about packet capturing will be discussed in the next section.

1.4 Packet Capturing

Problem solving requires appropriate diagnostic and analysis tools and ideally, these
tools should be available where the problems are located. In Unix environment, to
allow such tools to be constructed, a kernel must have some facilities that give a user-
level program access to raw, unprocessed network traffic. There are facilities such as
NIT [20] in SunOS, the Ultrix Packet Filter [21] in DEC’s Ultrix and Snoop in SGI’s
IRIX, and BSD Packet Filter [22]. All of these facilities only work in Unix-based
environment. BSD offers substantial performance improvement over existing packet
capture facilities, 10 to 150 times faster than Sun’s NIT, and 1.5 times faster than CPSF
on the same hardware and traffic mix.

In windows environment, there is a facility called IP filter driver but it is available
only for Windows 2000 and it does not support other protocols except IP. It allows
controlling and dropping packets but it does not allow monitoring and generating
them. PCAUSA offers a commercial product that provides an interface for packet

Figure 2 Relationship between intrusion response and stepping stone

����

����������	
��
���	

����	
��

	
�����

������������
�������	

��

���	�
��

�����

�������	

��������

������

��������	 ������	

������������

�����	
�����
��������	�
�

IRS

Generating
report

IP-based

Tracing intruder

Host-based
Network-based

Stepping-stone detection

Active network-
based

Connection-
based

Disconnecting
network

Figure 3 General steps of detecting stepping-stones

	
������	��
������	

	
��������������	

	
���
�����	

	

Packet capturing Indentification Comparing

JTjun44D[1]CRC.pmd 04/24/2007, 14:434

THE OPTIMIZATION OF STEPPING STONE DETECTION: PACKET CAPTURING STEPS 5

capture and includes a BPF-compatible filter. However, the user interface is quite low-
level and it does not provide abstract function like filter generation.

Most Unix systems provide a set of system calls that allow applications to interact
with the network directly. These primitives are useful, for example in packet capture
applications, which need to grab the data flowing through the network without any
further processing from the kernel. WinPcap is a newly proposed architecture that
adds these functionalities to Win32 operating systems. WinPcap includes a set of
innovative features that are not available in previous systems [23].

WinPcap is a windows version of BSD Packet Filter. Current IDS such as Bro [10],
Snort [24] and others used BSD Packet Filter as their input. Due to the broad usage of
BSD Packet Filter in IDS environment, we chose BSD Packet Filter for our experiment.
The usage of WinPcap is suitable because WinPcap puts performance as its priority.
Experiment done in [23] showed that WinPcap is better than Libpcap (BSD Packet
Filter). Furthermore, WinPcap has been proven to be an excellent choice for several
applications that are based on high performance packet filtering on Win32 platforms.

1.5 WinPcap

WinPcap is an architecture that is added to the Win32 family of operating system,
which enables the system to capture the data of a network using the network adapter
of the machine [25]. It provides a high level API to the applications that makes low-
level capabilities simpler to use.

1.5.1 Architecture of WinPcap

The basic structure of the WinPcap is given in [25]. WinPcap architecture is made of
the following components. NIDS is responsible for the management of the various
network adapters. Network Tap [21] is a function to interfere all packets flowing
through the network. Filter is used to analyse incoming packet to detect whether it is
needed by the user. While kernel buffer is used to transit packets from NIC driver,
user buffer is used to transit packets from kernel level. Finally, Packet.dll is used for
implementing a set of functions that make communication with the driver simpler
[20].

1.5.2 Packet Capture Process

In packet capturing process, the packets will be copied from the NIC driver buffer
to the kernel driver buffer and finally, to the user application buffer. In Network Tap,
packets that flow through the network are snooped. Later, Filter will analyze incoming
packets in order to detect whether a packet is of interest of the user. Consequently,
kernel buffer will copy the packet that satisfied the filter. User buffer is then used to
store the packets coming from the kernel buffer at user level, with this, it prevents the

JTjun44D[1]CRC.pmd 04/24/2007, 14:435

MOHD NIZAM OMAR, MOHD AIZAINI MAAROF & ANAZIDA ZAINAL6

application from accessing kernel-managed memory. Application used the packet in
user buffer as needed. Our interest is to determine the suitable sizes for WinPcap
buffer, kernel buffer, and user buffer. The size of the buffer influences the capturing
process, and the maximum amount of data that can be copied from kernel space to
user space within a single system call [23].

1.5.3 Kernel Buffer and User Buffer

WinPcap chooses circular buffer as kernel buffer [23]. Circular buffer has been
optimized to copy blocks of packets at a time. This buffer allows all the memory to
be used to store network bursts. The entire kernel buffer is usually copied by mean of
a single read(), thus decreasing the number of system calls and therefore, the number
of context switches between user and kernel mode.

Small buffer penalizes the capturing process especially when the application is unable
to read as fast as the driver can capture for a limited time interval [23]. The size of the
user buffer is very important because it determines the maximum amount of data that
can be copied from kernel space to user space within a single system call. Large user
buffer causes kernel to wait for the arrival of several packets before copying the data to
the user. On the other hand, small value of user buffer means that the kernel will copy
the packets as soon as the application is ready to receive them [23]. This paper evaluates
the performance of packet capturing process with regards to different buffer sizes.

2.0 TOOLS AND METHODS

This section aims to describe the experiment that has been done using WinPcap.
The experiment was intended to investigate packet capturing impact from time
perspective by using different buffer sizes. The testbed used in the experiment is
shown in Figure 4.

Figure 4 Experiment testbed

Packet capture
program

Host B
AMD 500, 256 MB
RAM, 30 GB HD,

D-Link DEF-538TX
10/100 Adapter,

Windows 2000 pro
(172.16. 2.177)

Tfgen (Packet
generator
program)

Time
measurement

program

Host A
Pentium III 766,
64 MB RAM, 20
GB HD, 3Com
NIC, Windows

2000 pro
(172.16. 2.176)

MC

Packet stream
(10/100/10 000 kbps)

JTjun44D[1]CRC.pmd 04/24/2007, 14:436

THE OPTIMIZATION OF STEPPING STONE DETECTION: PACKET CAPTURING STEPS 7

Host A is known as Sender and Host B is known as Receiver. This experiment was
restricted only to these two hosts as to assure the isolation of the testbed from external
sources, therefore, allowing more accurate tests. This same testbed had also been
used by [23]. Host A generated traffic using software named Tfgen. The selection of
Tfgen as a traffic generator instead of Iperf, Pchar, or Chariot is because Tfgen has
many interesting features like being user-friendly, provides GUI, and it can generate
multicast traffic.

For each session of experiment, Tfgen was set to the following specifications;
utilization rate was 10 kbps and 10 000 kbps, Time to Live was 16, Port was 16, and
Traffic Pattern was set to continuous and constant. Host B waited for the packet
from Host A. Host B had been equipped with two software; MC (Management
Console 1.2) and packet capture program called CaptureIt. CaptureIt contains a function
that can be used to capture the time used to capture a packet. In capturing the packet,
it uses WinPcap. MC (Management Console 1.2), which is part of Windows 2000 was
used to capture the performance during the experiment.

Besides that, we also used a special function to measure the time. It provides six
floating point, unlike the clock() function in C language library. Detailed description
of the experiment can be found in section 6.1

2.1 Tools

Table 1 lists the equipments used for the experiment.

Table 1 Equipment for the experiment

No Name Usage

1 Host A To generate the packet
2 Host B To receive the packet
3 Packet capture program Listen packet
4 Tfgen Generate packet stream
5 Time measurement program Capture time that have been used

for capturing packet
6 Microsoft Management To administer computer (CPU and memory

Console 1.2 (MC) usage during the experiment)

2.2 Method

The capturing processes were done with different sizes of kernel buffer and user
buffer. The size of kernel buffer and user buffer were set to 4, 64, and 1024 MB.

Processes in Figure 5 can be elaborated as follows. As described before, the main
purpose of this experiment is to measure the time used for packet capture program to
capture a packet. The capturing process was done with different sizes of kernel buffer

JTjun44D[1]CRC.pmd 04/24/2007, 14:437

MOHD NIZAM OMAR, MOHD AIZAINI MAAROF & ANAZIDA ZAINAL8

and user buffer. For each combination sizes (for example 4 MB for kernel buffer and
64 MB for user buffer), experiment was conducted in the order illustrated in Figure 3.

With various combinations of kernel buffer and user buffer sizes, experiment began
by running Microsoft Management Console 1.2 (MC). The MC started running with
time initialized to zero. 15 seconds after the execution of MC, Tfgen will be executed,
then after another 15 seconds, packet capture program was started and it ran for 60
seconds. Time measurement program embedded in packet capture program was
used to capture the time used to capture each packet. All these processes continued to
run for another 60 seconds. Then packet capture program was stopped. After another
15 seconds, Tfgen was terminated followed by MC in the next 15 seconds. This
sequence of running and stopping was changed to another combination of kernel
buffer and user buffer sizes.

The important thing in this sequence of testing is time measurement, which was
done by packet capture program in 60 seconds interval. From 60 seconds of the running,
information on the number of packets successfully being captured, and the time used
to capture was recorded (kept in input file) for later usage. Data from the input file was
plotted into a graph. The result of this experiment will be discussed in the next section.

3.0 RESULTS AND DISCUSSIONS

Results obtained were in a raw format. Further step was needed to change this raw
input. Figure 6 shows the process to obtain the final result.

Figure 5 Overall process of an experiment

���	�����	

���	������
��
����	

�������

�	 !"	 #� $� !�"	 !%�

���	&�	

'����		 '����	 '����	 	 '��
	 '��
							'��
	
�������	�������	�������		 �������	�������	���	

&�	 �����	 �������		 �������	�����					&�	

0 15 30 105 12090

Start
running
MC

Start
running
Tfgen

Start
running
program

Start
running
program

Start
running
Tfgen

Start
running
MC

Run packet
capture
program

JTjun44D[1]CRC.pmd 04/24/2007, 14:438

THE OPTIMIZATION OF STEPPING STONE DETECTION: PACKET CAPTURING STEPS 9

After an experiment was done for each possible sequence of kernel buffer and user
buffer (see Table 2) using steps shown in Figure 5, the next step is to present results in
graphs.

In Figure 6, each packet capture program was embedded with time measurement
program that will produce output containing number of packets and time spent by
packet capture program to execute the capturing process. The output which contained
information in list-based style was converted to a graph-based output. We put the
raw output into M-file. M-file is a script file which is widely used in MatLab 6.1 software
[26]. Then, we plotted graphs as shown in Figures 7, 8, 9, 10, and 11 using Matlab 6.1
software. The final results illustrated in graph-based format are shown in Figures 7, 8,
9, 10, 11 and 12. The outputs are shown from two different sizes of data input, 10 kbps
and 10 000 kbps (generated by Tfgen software).

3.1 Experiment Using 10 kbps Data Input

The graph in Figure 7 shows the processing time of the packet capturing using different
sizes of kernel and user buffers with 10 Kbps data input of network traffic. The overall

Figure 6 Further step to obtain final experiment output

&���*�	
&��+��	

:;!

<��
��	��	����	
����������	
������	=	����	

������	��
����	

������	

����	
����������	

������	

Time
measurement

program

Packet capture
program

Output of time
measurement

Packet # Time

Figure 7 Processing time of packet capturing using 4 MB of kernel buffer and 4, 64 and 1024 MB of
user buffer

No. of packet

P
ro

c
e

s
s

in
g

 t
im

e
 (

s
)

64 MB
4 MB
1024 MB

JTjun44D[1]CRC.pmd 04/24/2007, 14:439

MOHD NIZAM OMAR, MOHD AIZAINI MAAROF & ANAZIDA ZAINAL10

processing time of packet capturing (regardless of the kernel buffer and user buffer
sizes) shows that the processing time is nearly the same for each buffer. The number
of packets that are successfully captured by the program is also nearly the same.

Figure 8 shows that the processing time of packet capturing is high when 1024 MB
of user buffer is used and low when 4 MB of user buffer is used, while the size of
kernel buffer is kept fixed. The highest number of packet that is successfully captured
by the program occurred when the small size user buffer is used, and the lowest
number of packets is captured when the size of user buffer is 1024 MB.

Figure 8 Processing time of packet capturing using 64 MB of kernel buffer and 4, 64 and 1024 MB
of user buffer

No. of packet

P
ro

c
e

s
s

in
g

 t
im

e
 (

s
)

Figure 9 Processing time of packet capturing using 1024 MB of kernel buffer and 4, 64 and 1024
MB of user buffer

No. of packet (#)

P
ro

c
e

s
s

in
g

 t
im

e
 (

s
)

JTjun44D[1]CRC.pmd 04/24/2007, 14:4310

THE OPTIMIZATION OF STEPPING STONE DETECTION: PACKET CAPTURING STEPS 11

Figure 9 reveals that by using 1024 MB of user buffer, the processing time of packet
capturing is very high. This is followed by 64 MB of user buffer. When 4 MB of user
buffer is used, the processing time is very low. The number of packets that are
successfully captured by the program is high when 4 MB of user buffer is used. This is
followed by the usage of 64 MB and then, 1024 MB of user buffer size.

From Figures 7, 8 and 9, the usage of small sized buffer, regardless whether it is
kernel or user buffer, yields the fastest processing time of packet capturing. It also
gives a large amount of packets being captured by the program. The usage of a large
buffer size (kernel buffer or user buffer) causes longer capturing time and lower the
amount of captured packets.

3.2 Experiment Using 10 000 kbps Data Input

In the next stage, the experiment continued by using 10 000 kbps data input of network
traffic. The size of buffer was still the same as the previous experiment (10 kbps data
input) except the rate of data input was changed. Figures 10 to 12 depict the results.
Figure 10 shows that by using small user buffer size (4 MB), the processing time of
packet capturing is faster compared to using large user buffer (1024 MB). Besides, the
number of packets successfully captured is higher when small user buffer is used.

No. of packet (#)

P
ro

c
e

s
s

in
g

 t
im

e
 (

s
)

Figure 10 Processing time of packet capturing using 4 MB of kernel buffer and 4, 64 and 1024 MB
of user buffer

Figure 11 also shows that when small buffer is used in packet capturing process, the
processing time is small. The number of captured packets is also high when small
user buffer is used.

Figure 12 shows the same result as the experiment. In here, we used 64 MB kernel
buffer. This figure indicates that when small user buffer (4 MB) is used, the packet

JTjun44D[1]CRC.pmd 04/24/2007, 14:4311

MOHD NIZAM OMAR, MOHD AIZAINI MAAROF & ANAZIDA ZAINAL12

capturing time is short. On the other hand, when large user buffer (1024 MB) is used,
the result of the processing time is long. The number of the packets successfully captured
is nearly the same for different sizes of user buffers.

From Figures 10, 11, and 12, it can be concluded that when a small user buffer is
used, the processing time of packet capturing is short. Meanwhile, when a large buffer
(1024 MB) is used, a longer packet capturing time is required.

From the different sizes of data input (10 kbps and 10 000 kbps), the conclusion
with regards to the buffer size usage and the processing time is the same. Regardless
of buffer types, larger size buffer makes the kernel waits for several packets before

Figure 11 Processing time of packet capturing using 64 MB of kernel buffer and 4, 64 and 1024
MB of user buffer

No. of packet (#)

P
ro

c
e

s
s

in
g

 t
im

e
 (

s
)

Figure 12 Processing time of packet capturing using 1024 MB of kernel buffer and 4, 64 and
1024 MB of user buffer

No. of packet (#)

P
ro

c
e

s
s

in
g

 t
im

e
 (

s
)

JTjun44D[1]CRC.pmd 04/24/2007, 14:4312

THE OPTIMIZATION OF STEPPING STONE DETECTION: PACKET CAPTURING STEPS 13

copying the data to the user. On the other hand, the small size (4 MB) buffer makes
the kernel copies the packet as soon as the application is ready to receive them. In
general, we know that packet capturing facilities are widely used in many applications
such as network analyzer, packet sniffer and IDS. When these applications used large
buffer size (1024 MB), the packet capturing process will be time consuming. In IDS
and IRS environment, the delay occurs here can cause the situation known as time
gap. To overcome this problem, one of the solutions is to use small size buffer. This is
proven through the experiment explained above, a small buffer will produce a faster
processing time for packet capturing.

4.0 CONCLUSION

This paper has investigated the relationship between the usage of kernel and user
buffers. The experiment has shown that the buffer size does influence the capturing
speed and the number of packets successfully captured by packet capturing program.
It is found that when small buffer size is used, the number of packets successfully
captured in a unit time is larger. By reducing the packet capturing time, the time gap
between detection and response time can be reduced [9]. Further works can focus on
investigating the side effects of using small buffer size and how to overcome the
problem.

REFERENCES
[1] Puketza, N. J., K. Zhang, M. Chung, B. Mukhejee, and R. A. Olsson. 1996. A Methodology for Testing

Intrusion Detection System. IEEE Transactions On Software Engineering. 22(10): 719-729.
[2] Mukherjee, B., T. L. Heberlein, and K. N. Levit. 1994. Network Intrusion Detection. IEEE Network. 8(3):

26-41.
[3] Kerschbaum, F., E. H. Spafford, and D. Zamboni. 2000. Using Embedded Sensors for Detecting Network

Attack. Proceeding of the First ACM Workshop on Intrusion Detection Systems. Purdue University, West
Lafayette, Indiana.

[4] Kulin, H. T., H. L. Kim, Y. M. Seo, G. Cheo, S. L. Min, and C. S. Kim. 1993. Caller Identification System
in the Internet Environment. Proceeding of the USENIX Security Symposium IV. Santa Clara, California,
USA.

[5] Carver, A. C. 2002. Intrusion Response Systems: A Survey. Department of Computer Science, Texas
A&M University. Collage Station, USA.

[6] Huagang, X. 2000. LIDS Hacking HOWTO, Document for LIDS, v1.0. Linux Intrusion Detection System.
http://www.lids.org/lids-howto/lids-hacking-howto.html.

[7] Ragsdale, D. J., C. A. Carver, J. W. Humphries, and U. W. Pooch. 2000. Adaptation Techniques for
Intrusion Detection and Intrusion Response System. IEEE International Conference on Systems, Man,
and Cybernetics. Nashville, Tennessee, USA.

[8] Founstone, Inc. 1998. Managed Security Service. 2 Venture Street, Suite 100, Irvine, CA 92618.
[9] Omar, M. N., M. A. Maarof, and S. Ibrahim. 2003. Towards Solving Time Gap Problems Through the

Optimization of Packet Capture Techniques. CITA ‘03. Universiti Malaysia Sarawak. Kota Samarahan,
Sarawak, Malaysia.

[10] Paxson. V. 1999. Bro: A System for Detecting Network Intruders in Real-Time. Computer Network. 31(23-
24): 2435-2463.

JTjun44D[1]CRC.pmd 04/24/2007, 14:4313

MOHD NIZAM OMAR, MOHD AIZAINI MAAROF & ANAZIDA ZAINAL14

[11] Mogul, J. C., R. F. Rashid, and M. J. Accetta. 1997. The Packet Filter: An Efficient Mechanism for User-level
Network Code. Proceeding of 11th Symposium on Operating Systems Principle. Austin, Texas, ACM.

[12] Cohen. F. B. 1999. Simulating Cyber Attacks, Defenses, and Consequences. Fred & Cohen Associates. http:/
/all.net/journal/ntb/simulate/simulate.html. (accessed in May 1999).

[13] Jang, H., and S. Kim. 2000. A Self-extension Monitoring for Security Management. Computer Security
Application, ACSAC’00, 16th Annual Conference. 196-203.

[14] Dong-li, S. 2002. Trend & Techniques of Intruder Traceback. ITU-T Workshop on Security. Seoul, Korea.
[15] Staniford-Chen, S., and L. T. Theberlein. 1995. Holding Intruders Accountable on the Internet. Proceeding

of IEEE Symposium on Security and Privacy. Oakland, USA.
[16] Yoda, K. H. 2000. Finding a Connection Chain for Tracing Intruders. In F. Guppens, Y. Deswarte, D.

Gollman, and M. Waider. 6th European Symposium on Research in Computer Security – ESORICS
2000 LNCS-1985, Toulouse, France.

[17] Zhang, Y., and V. Paxon. 2000. Detecting Stepping Stone. Proceeding of 9th USENIX Security Symposium.
Denver, Colorado.

[18] David, D. L., F. A. Georgina, S. Umesh, P. Vern, C. Jason, and S. Stuard. 2002. Multi Scale Stepping
Stone Detection: Detecting Pairs of Jittered Interactive Streams by Exploiting Maximum Tolerable Delay.
Fifth International Symposium of Recent Advance in Intrusion Detection. Zurich, Switzerland. Lectures
Notes in Computer Science. 2516.

[19] Xinyuan, W., R. S. Douglas, and W. S. Flix. 2003. Inter-Packet Delay Based Correlation for Tracing
Encrypted Connection Through Stepping Stones. ESORICS 2003 Symposium. Zurich, Switzerland.

[20] SUN MICROSYSTEMS INC. 1990. NIT(4P), SunOS 4.1.1, Reference Manual. Mountain View, CA. 800-
5480.

[21] DIGITAL EQUIPMENT CORPORATION. Packetfilter(4). Ultrix V4.1 Manual.
[22] McCanne, S., and V. Jacobson. 1993 . A New Architecture for User-level Packet Capture. Winter USENIX.

259-270.
[23] Risso, F., and L. Degioanni. 2001. An Architecture for High Performance Network Analysis. Proceedings of

Sixth IEEE Symposium on Computers and Communication (ISCC 2001). Hammamet, Tunisia. 686-693.
[24] Northcutt, S., J. Novak, and D. McLachlan. 2000. Network Intrusion Detection An Analyst’s Handbook. 201,

Indianapolis, Indiana: New Riders. 189-190.
[25] Degionni. L. 2000. Development of an Architecture for Packet Capture and Network Traffic Analysis.

Master Thesis. Politecnico Di Torino.
[26] Hanselman, D., and B. Littlefield. 1996. Mastering MATLAB A Comprehensive Tutorial and Reference. Upper

Saddle River, New Jersey: Prentice-Hall.15-16.

JTjun44D[1]CRC.pmd 04/24/2007, 14:4314

