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Graphical abstract 
 

 

Abstract 
 

This paper presents a numerical simulation study for electrical characteristics of double-

gate (DG) nano-MOSFET at equilibrium thin-body condition. The electrical characteristics 

which are studied include subband energy (including unprimed and primed subbands), 2D 

electron density at 77K and 300K ambient temperatures, transmission coefficient, average 

electron velocity and ballistic current. The ranges of silicon body thickness TSi are 1.0 nm, 1.5 

nm and 2.0 nm. The electron transport models used in simulation tool covered quantum 

model and classical model. Simulation output data are also compared with theoretical 

discussion. 

 

Keywords: Ballistic, classical, nanometer, temperature effects, wave nature, particle 

 

Abstrak 
 

Kajian ini menjalankan simulasi sifat-sifat elektrik nano-MOSFET pada keadaan seimbang. 

Sifat-sifat ini termasuk jalur tenaga (jalur unprimed dan primed), ketumpatan elektron 2D 

pada suhu 77 K dan 300 K, pemalar pengaliran, kelajuan purata elektron dan arus ballistik. 

Linkungan ketebalan lapisan silikon adalah 1.0 nm, 1.5 nm dan 2.0 nm. Model 

pengangkutan elektron yang digunakan dalam perisian simulasi termasuk model kuantum 

dan model klasikal. Data hasil simulasi dibandingkan dan dianalisikan dengan teori.     

 

Kata kunci: Ballistik, klasik, nanometer, kesan suhu, sifat gelombang, zarah 
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1.0  INTRODUCTION 
 

DG nano-MOSFET with silicon channel length at 10 nm 

is studied in this paper, and this truly nanometric 

transistor is approaching the ballistic transport regime 

since the phonon mean free path scattering for 

electron in silicon is 76Å (7.6 nm). When the channel of 

this nano-MOSFET is thin enough (less than 5 nm, 

typically), the energy levels splitting will be significantly 

larger than thermal voltage (0.025 eV at 300 K), and 

electrons are only able to occupy the bottom 

subbands without hopping to higher levels. In this case, 

Schrödinger equation can be used to solve for 

wavefunction which in turn is used to obtain electron 

spatial distribution [1-4]. In the Possion solver used in 

the simulation tool, the electron density, n is given by 
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n = NCℱ1/2 (
EF−EC

kBT
)   Equation (1) 

 

In non-degenerate limit, the Fermi-Dirac integral can 

be simplified to become 

 

n = NCexp (
EF−EC

kBT
)    Equation (2) 

 

where EF = energy of the Fermi level 

 EC= energy of conduction band 

 kB= Boltzmann constant 

 T= Temperature 

 NC = effective density of states in the     

         conduction band 

 

In this simulation project, the material is silicon and 

wafer orientation is (001)/channel transport direction is 

[100]. The conduction band in silicon consists of two set 

of subbands, that is unprimed subbands and primed 

subbands. The output results of this simulation project 

contain data regarding 1st and 2nd unprimed 

subbands as well as 1st primed subband. Because of 

the heavier electron effective mass, unprimed 

subbands have relatively lower bound state energies 

as compared to the lighter electron effective mass of 

primed subband. Therefore, electrons basically 

occupied these three lower energy subbands [5-9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 2D structural design of DG nano-MOSFET 

 

 

Consider the electron movement in a 2D dimension 

region of the channel, LZ (channel thickness) x LX 

(device length), the 2D Schrödinger equation is given 

by 

 

(−
ℏ2

2m∗ (
∂2

∂x2 +
∂2

∂z2) − E) ψ(x, z) = 0  Equation (3)   

 

where ℏ = reduced Planck’s constant 

m* = electron effective mass (unprimed and 

primed subband) 

 E= electron energy 

 ψ(x, z) = wavefunction 

Assume a product solution of the form 

 

ψ(x, z) = ψx
(x)ψz(z)   Equation (4) 

 

Equation (3) becomes 

 

(
1

ψx

∂2

∂x2
ψx +

1

ψz

∂2

∂z2
ψz +

2m∗

ℏ2
E) = 0  Equation (5) 

 

The time-dependent wavefunction for an electron is 

 

Ψ(𝐫, t) = ψ(𝐫)e−
iEt

ℏ = A0ei𝐤∙𝐫e−
iEt

ℏ   Equation (6) 

 

where  r = position vector = axx + azz (in rectangular 

coordinates; a is unit vector) 

 k = wavevector = axkx + azkz 

 

The time-independent wavefunction is obtained by 

putting t=0, 

 

Ψ(𝐫, 0) = ψ(𝐫)    Equation (7) 

 

The allowed discrete values of energy are given by 

 

Enx,nz
=

ℏ2π2

2m∗ ((
nx

Lx
)

2
+ (

nz

Lz
)

2
)  Equation (8) 

 

where  nx and nz = quantum numbers. 

 

Degenerate is the situation where states with 

different quantum numbers but have the same energy 

as will be analyzed in next section [10]. For much of the 

simulation results of this project, consider only the single 

particle Schrödinger equation. This assumption seems 

not suitable since the number of electrons is very large 

in typical silicon channel. However, the single particle 

Schrödinger equation usually can be applied due to 

the fact that for silicon, assumption that electrons are 

non-interacting to each other is almost valid because 

of screening effect which is related to the Pauli 

exclusion principle. Electrons repel each other 

because (i) like charges repel each other and, (ii) 

electrons with the same spin will avoid each other. 

Since no two electrons can have the same state, the 

probability of electrons with the same spin not located 

near each other is high. Therefore, in silicon electrons 

movements are independent of each other. 
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2.0  RESULTS, ANALYSIS AND DISCUSSION 

 

In this simulation project, all biasing voltages are set 

to zero volts. Figure 2 shows the 1st unprimed subband 

energy along the channel at equilibrium condition for 

various silicon channel thickness TSi at 300K with 

ballistic transport using Green’s function approach 

[11-15]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 1st unprimed subband energy along the channel at 

equilibrium condition for various silicon channel thickness TSi 

at 300K with ballistic transport using Green’s function 

approach 

 

Table 1 Silicon channel thickness and corresponding 1st 

unprimed subband energy 

 

 

From Figure 2 and Table 1, as TSi decreases, 

potential barrier height increases. This situation 

causes more backscattering electrons and so lesser 

electrons will flow to the channel for thinner TSi. 

Therefore, 2D electron density distribution in the 

channel will also be smaller for thinner TSi. Also, 

steeper slope can be observed in the semilog plot of 

2D electron density for thinner TSi. Figure 3 exhibits this 

phenomenon. 

 

From Equation (2), at fixed temperature 300K, NC is 

fixed, so 

 

n ∝ exp (
EF−EC

kBT
)    Equation (9) 

 

At source and drain contacts, when TSi increases, 2D 

electron density n in source and drain contact 

increases (see Figure 4). When n increases, from 

Equation (9), conduction band energy EC should 

reduces since energy of the Fermi level is fixed. So, 

thicker source/drain contacts have smaller energy 

level value as shown in Figure 2. With thinner TSi, from 

Figure 4, 2D electron density at source/drain contacts 

reduces. From Equation (9), EC should be higher. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Semilog plot of 2D electron density along the 

channel for various silicon channel thicknesses at 300 K 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Normal plot of 2D electron density along the 

channel for various silicon channel thicknesses at 300 K 

 

 

From Figure 2 and Figure 3, in the channel region, 

TSi=2.0 nm has the lowest 1st unprimed subband 

energy and so this subband is the most populated 

with electrons. Thus, its 2D electron density is the 

highest among all the thicknesses studied. 

 

 

 

 

Thickness (nm) 

1st unprimed subband energy 
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Figure 5 Energy subbands profile along the channel for 

channel thickness 1.0 nm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Energy subbands profile along the channel for 

channel thickness 1.5 nm 

 

 

Figure 5, Figure 6 and Figure 7 show the subbands 

energy profile for different TSi with Green’s function 

approach at 300K. Each figure has 1st and 2nd 

unprimed subbands as well as 1st primed subband. 

The 2nd unprimed has same energy as the 1st primed 

subband. Both of these two subbands have different 

quantum numbers. This phenomenon is called 

degenerate. As energy increases, density of states 

(DOS) decreases but when a new subband is 

reached, DOS increases suddenly and then gradually 

decreases again. There are several ways to reduce 

channel DOS, (i) reducing the number of populated 

subband by enhancing confinement. In other words, 

uses thinner channel which is the topic studied in this 

project. Other ways include (ii) introducing 

mechanical strain and using different wafer 

orientation, and (iii) just using low DOS alternative 

materials for channel, for instance GaAs has lower 

DOS than silicon (001)/[100] material which is used in 

DG nano-MOSFET of this project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Energy subbands profile along the channel for 

channel thickness 2.0 nm 

 

Table 2 Silicon channel thickness and corresponding energy 

levels separation 

 

Thickness (nm) 

Separation between energy 

levels (eV) 

1.0 1.30 

1.5 0.60 

2.0 0.40 

 

Table 3 Simulated and calculated value of energy levels 

 

Energy levels 

simulated energy 

(eV) 

calculated 

energy (eV) 

1st unprimed 

subbans 0.25 0.261 

2nd unprimed 

subband 0.95 0.959 

1st primed 

subband 0.95 0.899 

 

 

Table 2 is the result collected from Figure 5, Figure 6 

and Figure 7. From Table 2, as TSi decreases, 

separation energy gap between subbands 
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increases. From Figure 3 and Figure 4, in the channel 

region the charge density is relatively low compared 

to source and drain regions. Therefore, the 1st 

unprimed subband accounts for almost all of the 

channel charges. However, since the source and 

drain contacts are N+ heavily doped with donor, the 

higher subbands also contribute to the total 2D 

charge, thereby making a single subband treatment 

inadequate. Therefore, two more nearest subbands 

are considered in this simulation project. Now, let 

compare the quantum energy levels between 

simulated data and theoretical calculation from 

Equation (8). Let consider the case for channel 

thickness 1.5 nm and Table 3 is obtained. In Table 3 

theoretical calculation using Equation (8), channel 

thickness is 1.5 nm and channel length is 10 nm. The 

electron effective mass for 1st and 2nd unprimed 

subbands is taken to be 0.98xfree electron mass 

where as the 1st primed subband electron effective 

mass is lighter, which is taken to be 0.19xfree electron 

mass. 

The chemical potential effects are included in the 

calculation for unprimed subbands. In this case, the 

theoretical formulae for the unprimed spacing 

between the two unprimed quantum energy levels 

for TSi=1.5 nm is given by 

 

En − En−1 = 0.261(2n − 1) eV         Equation (10) 

 

For unprimed subband in this case 

 

E2 − E1 = 0.261(3) eV = 0.783 eV 

 

From simulation results in Table 3, it is equal to 

0.700eV. The Fermi level is defined as the value of 

chemical potential at T=0K. Chemical potential is 

basically could be think as approximately the energy 

needed to add Nth electron to a system of N-1 

electrons. So, in this simulation project, it can be 

related in 1st and 2nd unprimed subbands. 

Figure 5, Figure 6 and Figure 7 show that 2nd 

unprimed energy level is the same as 1st primed 

energy level. This case is called degenerate since 

both of them have same energy but different 

quantum levels. This degeneracy causes the graph of 

energy versus transmission coefficient (Figure 8) to be 

almost continuous flat between total transmission 

coefficient 1 and total transmission coefficient 3. In 

ballistic nano-MOSFET using Green’s function, the 

current flow is controlled by transmission coefficient 

which is the probability of electrons to be able to 

transmit through the channel in a single subband. In 

this simulation project, 2 unprimed subbands and 1 

primed subband are simulated, thus total transmission 

coefficient is simply addition of transmission 

coefficients for all these 3 subbands. So, in this 

project, the maximum obtainable transmission 

coefficient is thus 3. Thinner TSi causes higher potential 

barrier which resulted in larger energy level shift for 

thinner TSi in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Transmission coefficients curve for various channel 

thicknesses simulated at 300K 

 

 

Total transmission coefficient value from 0 to 1 is 

caused by 1st unprimed subband. Meanwhile, total 

transmission coefficient value from 1 to 3 is caused by 

2nd unprimed subband and 1st primed subband 

which formed degeneracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Semilog plot of 2D electron density along the 

channel for various silicon channel thicknesses at 77K. 

 

 

Now, comparing Figure 3 and Figure 9 where both 

of these two figures are 2D electron density along the 
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channel using quantum model semilog plot for 300K 

and 77K, respectively. These two plots could be 

analyzed with the following expression  

 

n(qm) = n(conv)exp {
Eg(qm)−Eg(conv)

2kBT
}            Equation (11) 

 

where n(qm)= electron concentration after     

quantum mechanical correction 

 n(conv) = conventional electron             

concentration 

 Eg(qm)  = quantum level energy 

 Eg(conv) = energy gap for conventional model 

 

Taking the 1st unprimed subband for TSi = 1.0 nm for 

elaboration. The 1st unprimed subband for 300K and 

77K are very close to each other so that their 

difference could be ignored. From Figure 2, this value 

Eg(qm) = 0.5eV. Referring to Equation (11), the 

exponential term value for 300K is larger than that of 

77K. So, the electron density in the channel is higher 

for 300K case. The channel region has less electron 

density than source/drain regions because the 

probability of electron to overcome the subband is 

become lesser and lesser. Energy of electrons in 

equilibrium condition without voltage biasing comes 

from thermionic emission. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10 Normal plot of 2D electron density along the 

channel for various silicon channel thicknesses at 77K using 

quantum model 

 

 

Figure 10 shows the 2D electron density distribution 

for various TSi at 77 K using quantum model. Figure 10 

shows some oscillations near source and drain 

regions whereas Figure 4 which is the same plot with 

same design parameters but simulated at 300 K 

doesn’t exhibit such oscillations. In Figure 10, TSi = 1.0 

nm curve indicates less wave oscillation nature 

(longer wavelength) in source/drain regions 

compared with TSi = 2.0 nm curve. This may due to 

quantum confinement effect where TSi = 2.0 nm has 

transition between bands because the energy bands 

are close to each other. 

 

For an electron of mass m in an equilibrium condition, 

the Schrödinger equation is 

 

𝑖ℏ
𝜕Ψ(𝐫,𝑡)

𝜕𝑡
= (−

ℏ2

2𝑚
∇2) Ψ(𝐫,𝑡)           Equation (12) 

 

Assuming a product form for the wavefunction 

 

Ψ(𝐫, t) = ψ(𝐫)g(t) 

 

where  g(t) = e−iEt/ℏ 

 

Substituting the wavefunction product into Equation 

(12) results in 

 

(−
ℏ2

2𝑚

1

ψ(𝐫)
∇2ψ(𝐫)) = 𝑖ℏ

1

g(t)

∂g(t)

∂t
             Equation (13) 

 

Equation (13) can be used to explain the effects of 

temperature on oscillations in electron density 

distribution seen in above figures. The left hand side 

of Equation (13) is function of position (spatial) but 

not time, while the right hand side is a function of 

time but not position. This situation arises only when 

each side is equal to the same constant called E 

(energy). So, 

 

(−
ℏ2

2𝑚
∇2ψ(𝐫)) = Eψ(𝐫)              Equation (14) 

 

𝑖ℏ
∂g(t)

∂t
= Eg(t)               Equation (15) 

 

There are two operators for quantum mechanics; 

firstly is the momentum operator which is related to 

spatial part of a plane-wave function by 

 

ψ(𝐫) = Ae𝐢𝐤𝐫 

 

and after applying the operator 

 

ô = −iℏ
∂

∂𝐫
               Equation (16) 

 

to function ψ(𝐫) leads to 

 

−iℏ
∂

∂𝐫
 ψ(𝐫) = −iℏ

∂

∂𝐫
 Ae𝐢𝐤𝐫 = ℏ𝐤ψ(𝐫) = 𝐩ψ(𝐫)  

                Equation (17) 
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where 𝐩 = ℏ𝐤 is the momentum. Hence Equation (16) 

is called the momentum operator, expressed as 

 

𝐩̂ = −𝑖ℏ
∂

∂𝐫
 

 

In Figure 4 and Figure 10, as temperature increases, 

energy of electron increases, so does the velocity of 

electron. This causes the momentum of the electron 

increases. Hence, electron behaves more like 

particle in higher temperature 300K and thus 

oscillation patterns are not observed at high 

temperature. 

 

Secondly, there is energy operator which is 

 

Ê = iℏ
∂

∂t
                Equation (18) 

 

Consider the temporal dependence of g(t) 

 

g(t) = e−iEt/ℏ 

 

obtaining 

 

Êg(t) = iℏ
∂

∂t
g(t) = iℏ

∂

∂t
e−iEt/ℏ = ℏ

E

ℏ
g(t) = Eg(t) 

                Equation (19) 

 

In Figure 4 and Figure 10, as temperature reduces, 

energy of electron reduces. So, the effects of 

temporal dependence of energy in g(t) increases. 

Thus, electron behaves more like wave plane in low 

temperature 77K and thereby oscillation patterns are 

observed in low temperature. This is the case of 

electron has a particle-wave duality property. 

Put in other words, quantum charge density exhibits 

oscillations caused by interference of incident and 

reflected electron waves near source/drain regions 

at low temperature 77K. However, at high 

temperature when Poisson equation is used to solve 

for potential, the charge oscillations disappear, 

resulting in smooth profile. In semiclassical model (see 

Figure 11) no such oscillations are observed even at 

low temperature 77K since semiclassical model 

considered particle nature of electron through 

Boltzmann Transport Equation (BTE). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11 Normal plot of 2D electron density along the 

channel for various silicon channel thicknesses at 77K using 

semiclassical model 

 

 

Now, let focuses on the result of average electron 

velocity and current flow in equilibrium condition 

(without voltage biasing at all terminals). Average 

electron velocity in source/drain (heavily N+ doped) 

and channel (intrinsic) should all be zero because no 

drift electric field due to no biasing voltages [16, 17]. 

This is shown by Figure 12 below. In source/drain 

contacts which are heavily N+ doped, maximum 

individual electron velocity value should be lower 

than channel maximum individual electron velocity 

due to impurities scattering in source/drain contacts. 

Since average electron velocity is zero as shown in 

Figure 12, the current flow should also be zero. This 

current flow phenomenon can be analyzed by using 

Natori-Lundstrom models of ballistic transport. 

Firstly, let explained the zero current flow by using 

Natori model of ballistic transport. Two important 

assumptions are considered: (i) nano-MOSFET source 

and drain are assumed to be electron reservoirs in 

equilibrium condition, (ii) negligible short channel 

effects are assumed. In this project, 1st and 2nd 

unprimed as well as 1st primed subbands are 

simulated. So, the electron flux Fs
+ emitted from the 

source in equilibrium and entering the channel can 

be expressed as 

 

Fs
+ =

(2kT)3/2

π2ℏ2 [{√mcLℱ1/2 (
EFs − E1

L

kT
)

+ √mcLℱ1/2 (
EFs − E2

L

kT
)}

+ √mcTℱ1/2 (
EFs − E1

T

kT
)] 

                Equation (20) 
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where mcL = mt =unprimed subband conductivity 

electron effective mass 

mcT = (ml
1/2

+ mt
1/2

)
2
= primed subband conductivity 

 electron effective mass 

           mt= transverse electron effective mass 

           ml=longitudinal electron effective mass 

E1,2
L =1st and 2nd unprimed subband energies 

E1
T=1 primed subband energy 

ℱ1/2=Fermi integral of order ½ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Average electron velocity along the channel at 

equilibrium conditio 

 

 

Electron flux Fd
− emitted from the drain to the source 

has a similar expression with Fs
+  except EFd = EFs −

qVds. Since Vds=0V and Vgs=0V, EFd = EFs=energy level 

of the Fermi level of source and drain. 

 

Fd
− =

(2kT)3/2

π2ℏ2 [{√mcLℱ1/2 (
EFd − E1

L

kT
)

+ √mcLℱ1/2 (
EFd − E2

L

kT
)}

+ √mcTℱ1/2 (
EFd − E1

T

kT
)] 

                Equation (21) 

 

At Vds=0V, EFd = EFs  coincides with inversion layer 

Fermi level. The ballistic current flowing from source to 

drain is 

 

Id
BAL = qT(E)(Fs

+ − Fd
−) = 0              Equation (22) 

 

since Fs
+ = Fd

−. T(E) is the transmission coefficient. 

 

Secondly, let compares the above result with 

Lundstrom model which includes the backscattering 

coefficient r, which is defined as the ratio between 

electron flux backscattered to the source by 

scattering divided by the electron flux emitted by the 

source. When no biasing voltage is applied to nano-

MOSFET terminals, the backscattering coefficients 

have the same value at the source and drain side. 

The current flow is given by 

 

Id
QBAL

= qT(E)[Fs
+ − rFs

+ − (1 − r)Fd
−]            Equation (23) 

 

Since Fs
+ = Fd

−, 

 

Id
QBAL

= qT(E)[Fs
+ − rFs

+ − Fd
− + rFd

−] = 0      Equation (24) 

 

Therefore, Natori model and Lundstrom model of 

ballistic transport have the same current flow result at 

equilibrium condition (no voltage biasing) [18]. 

 

 

3.0  CONCLUSION 
 

When the channel thickness of nano-MOSFET is thin 

enough (usually less than 5 nm), the splitting of 

energy levels are large enough. In room temperature 

300K, the splitting of energy levels is larger than 

thermal voltage. Therefore, only the lowest few 

energy bands are populated and this situation is able 

to explain the electrical characteristics of nano-

MOSFET well. In equilibrium state (no voltage biasing 

at terminals), the electronic charge distribution is 

symmetry causing zero net current flow even though 

the electron individual velocity is not zero. However, 

the average electron velocity is zero at this 

equilibrium condition. In non-equilibrium state, 

charge distribution is not symmetry anymore and net 

current flows due to Fermi levels difference between 

source and drain. 
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