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Abstract 

 

This study highlights the application of Back-Propagation (BP) feed forward Artificial Neural Network 

(ANN) as a tool for predicting bearing capacity of spread foundations in cohesionless soils. For network 

construction, a database of 75 recorded cases of full-scale axial compression load test on spread 

foundations in cohesionless soils was compiled from literatures. The database presents information about 

footing length (L), footing width (B), embedded depth of the footing (Df), average vertical effective stress 

of the soil at B/2 below footing (΄), friction angle of the soil () and the ultimate axial bearing capacity 

(Qu). The last parameter was set as the desired output in the ANN model, while the rest were used as 

input of the ANN predictive model of bearing capacity. The prediction performance of ANN model was 
compared to that of Multi-Linear Regression analysis. Findings show that the proposed ANN model is a 

suitable tool for predicting bearing capacity of spread foundations. Coefficient of determination R2 equals 
to 0.98, strongly indicates that the ANN model exhibits a high degree of accuracy in predicting the axial 

bearing capacity of spread foundation. Using sensitivity analysis, it is concluded that the geometrical 

properties of the spread foundations (B and L) are the most influential parameters in the proposed 
predictive model of Qu. 

 

Keywords: Bearing capacity, spread foundations, artificial neural network, sensitivity analysis, multi-
linear regression analysis. 

 

Abstrak 

 

Kajian ini menekankan penggunaan Back- Propagation (BP) feedforward ANN sebagai alat untuk 

meramalkan keupayaan galas asas tersebar di tanah berpasir . Untuk pembinaan rangkaian, pangkalan 
data 75 kes yang direkodkan daripada skala penuh ujian beban mampatan paksi pada asas tersebar di 

tanah berpasir dikumpulkan dari kajian literatur. Pangkalan data ini mengandungi maklumat tentang 

panjang asas (L) , lebar asas (B ), kedalaman terbenam asas tersebut ( Df ), purata tegasan berkesan tanah 

pada B / 2 di bawah kedudukan ( ’ ) , sudut geseran tanah (  ) dan keupayaan galas paksi muktamad 

(Qu). Parameter terakhir ditetapkan sebagai output yang dikehendaki dalam model ANN , manakala yang 

lain telah digunakan sebagai input model ramalan ANN bagi keupayaan galas. Prestasi ramalan model 
ANN telah dibandingkan dengan Multi- Linear Regression Analisis. Hasil kajian menunjukkan bahawa 

model ANN adalah lebih baik dalam meramalkan keupayaan galas asas tersebar. Pekali penentuan , R2, 

bersamaan dengan 0.98 menunjukkan bahawa model ANN memberikan darjah tahap kejituan keupayaan 
yang tinggi  dalam meramal galas paksi asas penyebaran. Kesimpulannya, menggunakan analisis 

sensitiviti, didapati bahawa sifat-sifat geometri asas penyebaran (B dan L) adalah parameter yang paling 

berpengaruh dalam model ramalan cadangan Qu. 
 

Kata kunci: Keupayaan galas, asas tersebar, ANN, analisis sensitiviti, analisis regresi multi linier  
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1.0  INTRODUCTION 

 

Spread or shallow foundations are often used to transfer the 

column-load of the low to moderate rise structures to the 

underlying soils. Das [1] reported that a foundation can be 

considered shallow if its embedded depth to width ratio is equal to 

or less than four. In geotechnical designing of spread foundations, 

two essential criteria should to be controlled: settlement of the 

foundations under structural loads, and ultimate bearing capacity. 

The latter is defined as the maximum load which the soil under 

footing can bear before shearing failure. Many researchers have 

developed semi-empirical solutions for bearing capacity of spread 

foundations (e.g. [2];[3];[4]). 

  Nevertheless, most of these methods incorporate several 

assumptions to simplify the problem. Moreover, the 

aforementioned methods mostly rely on empiricism and are site 

specific [5]. Hence, they need to be validated with more reliable 

methods. The most reliable method to determine the ultimate 
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bearing capacity of foundations is axial compression test of 

foundation in the field. However, experimental loading of 

foundations is time-consuming and costly. The use of Artificial 

Neural Network (ANN) as a quick, accurate and feasible tool in 

solving the bearing capacity problems has been highlighted in 

literature recently (e.g. [6]). The main objective of this study is to 

propose an ANN-based predictive model of ultimate bearing 

capacity of spread foundations in cohesionless soils. 

 

 

2.0  BACKGROUND 

 

In the recent past, the soft computation techniques, especially 

ANNs, have been applied successfully for solving bearing 

capacity problems in both deep and shallow foundations (e.g. 

[7];[8]). Shahin et al. [9] demonstrated the feasibility of ANN in 

predicting the settlement of spread foundations. They compiled a 

database of 189 individual cases for network construction. It was 

suggested in their study that footing width (B), footing net applied 

pressure, and average standard penetration test blow count (N), 

footing embedded ration and footing geometry are the important 

factors in settlement analysis and foundation design. According to 

their conclusion, ANN method works reasonably well in 

predicting the spread foundation settlement.  

  Soleimanbegi and Hataf [10] utilized feedforward BP-ANN 

for predicting the bearing capacity of shallow foundations. They 

have compiled a database including 351 records of laboratory and 

field measurement of spread foundations bearing capacity on 

reinforced cohesionless soils. The architecture of their proposed 

predictive model comprises 10 input layers, one hidden layer and 

one output layer. They used footing geometrical and soil 

engineering properties to train ANN models. According to their 

conclusion, ANN-based predictive model outperforms the 

conventional methods of bearing capacity estimation. 

  In another study, Adrash et al. [11] discussed the application 

of soft computation techniques in predicting the bearing capacity 

of cohesionless soils. The length of the footing, L, length to width 

ratio, L/B, density of the soil and internal friction angle of the soil, 

, were used as the inputs of their proposed predictive models of 

ultimate bearing capacity. It was highlighted in their study that 

predicted bearing capacity using ANN is in good agreement with 

the experimental results.  

  Ornek et al. [12] focused on the application of ANN in 

estimating the bearing capacity of circular footing on soft clay 

stabilized with granular soil. They have conducted several field 

tests on seven footings with various diameters in multilayer 

granular soil with different thicknesses. In their study, diameter of 

the footing, thickness of the granular fill layer and the settlement 

of the footing were used as inputs of the network while the output 

was set to be the predicted bearing capacity of spread foundations 

in natural clay deposits. According to their conclusion, the 

correlation coefficients values equal to 0.99 and 0.95 for training 

and testing datasets respectively suggest that ANN models serve 

as a simple and reliable tool for predicting the bearing capacity of 

foundations. 

 

 

3.0  ARTIFICIAL NEURAL NETWORK 

 

Artificial Neural Network (ANN) is an information processing 

technique which is based on our understanding of human-brain 

information process. It comprises several layers of many 

interconnected processing elements (nodes). A specific ANN 

network is identified by three important components: transfer 

function, network architecture and learning rule [13]. 

Nevertheless, determination of these components depends on the 

type of the problem [14].  

  There are two major types of ANN: recurrent and 

feedforward ANNs. The latter can be implemented if there is no 

time-dependent parameter in defining ANNs [9]. One of the most 

popular feedforward ANNs is Multi-Layer Perceptron (MLP) 

neural network [15]. This type of ANN consists of a number of 

nodes in various layers (input, hidden(s) and output(s) layers) 

connected to each other via different weights.  

  Utilization of MLP-ANN is of interest due to its high 

efficiency in approximating different functions in high 

dimensional spaces ([16];[17]). After selecting the architecture of 

the network and prior to interpreting net information, the ANN 

model should be trained. Back Propogation (BP) algorithm is the 

most widely used technique for training the MLP feedforward 

neural networks ([18];[19]).  

  As illustrated by Kuo et al. [20] in BP-ANN, the propagation 

of information is initiated from input layer where the real input 

data are fed in. In the next step, the input from each node in 

previous layer (Xi) is multiplied by an adjustable connection or 

weight, Wij. At each node, the sum of weighted input signals is 

obtained and subsequently this value is added to a threshold value 

or bias (θj) as shown in equation 1.  

  This combined input (Ii) is then passed through a nonlinear 

transfer  function, f(Ij) , such as sigmoidal function, to produce the 

output of the node (see equation 2). Details regarding transfer 

functions are beyond the scope of this paper and can be found 

elsewhere [21]. However, the output of each node provides the 

input to the next layer node. This procedure is continued until the 

output is generated.  

  The generated output then is compared to the desired output 

(presented output to the network) and the error is calculated. The 

purpose of BP training is to change iteratively the weights 

between the nodes in a direction that minimizes the mean square 

error (MSE) of the system where MSE is defined as the squared 

difference between the desired and the actual outputs [8]. Detail 

of the BP algorithm is out of the scope of this study and can be 

found in many literatures (e.g. [22]). 

 

Ij = ∑(𝑤𝑖𝑗 . 𝑥𝑖) + 𝜃𝑗     (1) 

 

y(i) = f(Ij)     (2) 

 

 

4.0  DATABASE 
 

A database of 75 recorded cases of axial compression tests on 

spread foundations was compiled from literature. The recorded 

database include the geometric properties of the tested footings 

including width (B) and length (L) of the foundation, embedded 

depth of the foundation (Df) in addition to some of the soil 

engineering properties of the project site i.e. soil internal friction 

angle (), average vertical effective stress at B/2 under the footing 

(΄) and ultimate axial bearing capacity (Qu). Apart from the last 

parameter, the other parameters were set as inputs of the ANN 

model due to the fact that they are influential parameters in 

designing spread foundations ([9];[10]). All tests were conducted 

in different type of cohesionless soils ranging from fine sand to 

coarse gravel. Table 1 presents the range of the feeding data used 

in this study. More detail regarding the database is reported in the 

study by Akbas and Kulhawy [23]. 
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Table 1  Input and output parameters used in the predictive models 

 

 Variable 

category 

Symbol 

 

Unit 

 

Minimum Maximum Average 

 

 

 

 

 

 

B 
 

 

(m) 

 

0.25 

 

3.02 

 

0.75 

  L 

 

(m) 0.25 3.02 0.80 

 Input D 

 

(m) 0 1.04 0.25 

   
 

Degree 28 50 38.59 

 

 

 ' kN/m2 2.3 124.1 14.98 

 Ouput Qu (kN) 15 10300 709.76 

 

5.0  PERSPECTIVE MODEL ARCHITECTURE 

 

The performance of ANN stoutly relies on its network 

architecture. This is due to the fact that the network topology 

directly affects its computational complexity and generalization 

capability [24]. 

  However, the network architecture design depends on the 

training algorithm as well as the number of nodes in input, hidden, 

and output layers. Although many scholars have defined the 

structural design of the ANNs (e.g. [25];[26]), there is no straight 

forward approach for selecting the optimum architecture of the 

network. It is often determined through a trial-and-error method. 

This is to say, several networks with different architectures i.e 

various numbers of nodes and hidden layers are trained, tested and 

validated. Consequently the network that performs best is selected 

as the optimum network. Thus, the database needs to be randomly 

divided into three subsets: training, testing and validation. There 

is no clear guidance for selecting the size of the subsets. It is often 

determined based on a particular problem [12]. In this study, 70 

percent of the data was used for training purpose, and the other 30 

percent was distributed equally for testing and validation of the 

ANN model. The problem was then imposed on the ANN models 

via five input parameters: B, D, L, , ΄. As mentioned earlier, 

they were selected due to their importance in the design of spread 

foundations.  

  According to Hornik et al. [27], a network with one hidden 

layer can approximate any continuous function. Moreover, 

Cybenko [28] mentioned that, for practical problems, networks 

with maximum two hidden layers perform well enough. 

Nevertheless, in designing ANN architectures, increasing the 

number of the hidden layers should be the last options. In essence, 

focus should be on adding the number of nodes rather than the 

number of hidden layers [26]. Study by Swingler [29] suggests 

that the number of hidden layers should be smaller than that of the 

input layers. Based on previous studies, to develop the optimum 

network of the problem in hand, nine different ANN models with 

six, nine, and 11 hidden nodes in one, two, and three hidden 

layers were trained, tested and validated.  

  Table 2 shows the architecture and performance of different 

ANN models used in trial-and-error method. The coefficients of 

determination (R2) values were used to assess the performance of 

the network in this stage. It was found that the second model 

which comprises six nodes in one hidden layer performs best (see 

Figure 2). As displayed in this figure, the R2 values of the second 

model suggest that the prediction performance of this model is 

better than that of other models. Hence, the second model was 

selected as the optimum network. The architecture of this model is 

shown schematically in Figure 1.  

  Nevertheless, it is worthy to note that in this study, the ANN 

models were trained using Levenberg–Marquardt (LM) learning 

algorithm due to its efficiency for training networks which have 

up to a few hundred weights. Moreover, it is well established that 

LM algorithm works faster than the conventional gradient descent 

technique (e.g. [30]). 

  According to Hagan and Menhaj [30], there are many 

reported case where Marquardt algorithm converges while other 

back-propagation techniques diverge. In fact, LM algorithm is an 

approximation of Newton`s method. More details of this training 

algorithm are reported elsewhere [30]. 

 

 

 

 
Figure 1  ANN model architecture 
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Table 2  The architecture and performance of ANN models 

 

ANN 

Model 

Network Architecture 

 

Coefficeint of determination, R2 

 

Node 

numbers 

Hidden 

Layers 

Training Validation  Testing Overall 

1 9 1 0.94 0.98 0.96 0.98 

2 6 1 1.00 0.98 0.96 0.98 

3 11 1 0.96 0.96 0.77 0.83 

4 6 2 0.98 0.94 0.94 0.94 

5 9 2 0.96 0.96 0.67 0.96 

6 11 2 0.85 0.98 0.90 0.88 

7 6 3 0.77 0.96 0.90 0.83 

8 9 3 0.90 0.96 0.96 0.92 

9 11 3 0.83 0.46 0.86 0.83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2  Prediction performance of different ANN models 

 

 

6.0  MULTI-LINEAR REGRESSION ANALYSIS 

 

Multi-Linear Regression (MLR) analysis is employed to 

establish a relationship between more than one Independent 

Variables (IV) and one Dependent Variable (DV). In this study, 

to have a better understanding of prediction performance of 

ANN model, MLR analysis was utilized using statistical 

software Microsoft Excel. The ANN input layer nodes were 

selected as the IVs in MLR analysis; and the ultimate bearing 

capacity was set to be the DV.  

  However, it is found that the following multivariate 

correlation suggests the best fitting statistical measure for the 

database given in Table 1. Details of the statistical information 

of the conducted MLR analysis are given in Table 3. The result 

of MLR analysis is discussed later.  

 

7.0  RESULT AND DISCUSSION 
 

The prediction performance of the proposed ANN-model is 

shown in Figure 3. The coefficient of determination (R2) value 

equals to 0.98 reveals a strong regression and robust relationship 

between the predicted and measured Qu. It is shown in Figure 3. 

Due to high variation of ultimate bearing capacities of the 

reported cases in the database, the measured and predicted Qu 

are plotted against each other in logarithmic scale.  

  Figure 4 displays the performance of the proposed ANN-

based predictive model of Qu for all reported cases. As shown in 

this figure, in overall, the agreement between the predicted Qu 

using ANN and the measured Qu is indeed good. 

 

 

 
  
 

 
 
 
 
 
 
 
 
 

 3988.26 1046.1 302.74 27.73 3.37 2621.70uQ B L D        (3) 
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Table 3  Details of the statistical information of MLR predictive model 

 

Independent variables  (inputs) Coefficient 

 

Standard Error 

 

T Sat P-value 

 

 

 

Intercept 

 

-2621.69 
 

 

933.16 

 

-2.81 

 

0.0064 

B : Footing width 3988.26 

 

499.24 7.99 2.097E-11 

L : Footing Length -1046.1 

 

446.07 -2.35 0.0219 

D : Footing embedded depth 302.74 
 

303.49 0.99 0.3219 

 : 

 

’ : 

 

Soil internal friction angle 

 
Vertical effective stress at B/2 

27.73 

 
3.37 

23.039 

 
5.57 

1.20 

 
0.60 

0.2328 

 
0.55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3  Predicted Qu using ANN against measured Qu 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4  The performance of the proposed ANN based predictive 

model in predicting Qu 

 

 

  To have a better understanding towards the prediction 

power of the ANN model, the performance of ANN is compared 

with that of MLR analysis. Figure 5 depicts the performance of 

MLR method in predicting the bearing capacity of foundations. 

  It can be seen in this figure that MLR method performs 

poorly in predicting the Qu. In fact, in many cases the predicted 

Qu is negative which is not acceptable. A simple comparison 

reveals the superiority of the proposed ANN model in predicting 

Qu. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5  The performance of the MLR based predictive model in 

predictive Qu 

 

8.0  SENSITIVITY ANALYSIS 
 

Sensitivity analysis is use to determine the relative importance 

of the input variables to the output value. In essence, sensitivity 

analysis is a method for extracting the cause-and- effect 

relationship between the inputs and outputs of a system. Cosine 

Amplitude Method (CAM) is one of the sensitivity methods 

which is used to identify the significance of each input 

parameter ([31];[32]). Utilization of this method in geotechnical 

engineering has been reported in literature (e.g. [14]). Hence, 

this method was used for the problem in hand. 

  In CAM method, the strength of ratio (rij) can be 

determined by using the following formula. This ratio represents 

the percentage of influence of a particular input parameter on 

the output of the system. The presented Uik and Ujk in the 

following equation represent the value of desired input 

parameter and the value of the desired output parameter 

respectively.    

 

 

 

      (4) 

 

 

 

 

  The value of strength ratio close to zero suggests the less 

impact of the input parameter on the model output while the 

value close to one indicates that the input parameter is an 

influential parameter. However, using CAM method, it was 

found that the effect of footing geometry i.e. width and length of 
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the foundation on its ultimate bearing capacity is more 

pronounced as shown in Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6  Strength of ratio between Qu and input parameters 

 

 

9.0  CONCLUSION 
 

In this study, a feedforward back-propagation neural network 

with the Levenberg–Marquardt training technique was used to 

predict the bearing capacity of spread foundations in 

cohesionless soils. The database used to develop the ANN-based 

predictive model of Qu, was based on 75 recorded cases 

compiled from literature.  

  Different network architecture were trained, tested and 

validated in order to find the best network architecture. For this 

reason, the database was randomly divided into three subsets: 

training, testing and validation. 70 percent of the data was 

considered for training purpose, 15 percent was used for testing 

the ability of model in generalization, and the 15 percent was 

assigned for validation. It was concluded that a network with six 

nodes in one hidden layer performs best; hence, this model was 

selected as the optimum ANN model. The prediction 

performance of the network was assessed based on of 

coefficient of determination(R2).  

  Findings show that ANN is a powerful and reliable tool in 

predicting the bearing capacity of spread foundations. The 

coefficient of determination (R2) equals to 0.98 suggests that the 

predicted bearing capacity by ANN model is in close agreement 

to the measured bearing capacity. Comparison between the 

prediction performance of ANN and MLR reveals the 

superiority of ANN in solving bearing capacity problems. 

However, to find the relative importance of input parameters in 

the predictive model, a sensitivity analysis was conducted using 

CAM method. Results showed that the width and length of the 

spread foundations are more significant parameters. 
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