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Abstract 
 

We use derivatives to prove the equivalences between MacWilliams identity and its four equivalent forms, and present new 

interpretations for the four equivalent forms. 
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1.0  INTRODUCTION 
 

Let be a (n, k) linear code on the field ( )F GF qq  

and let ^ be its dual code. Define: 

 

 

and 

 

 

The following identity is proved by [6] and is called 

the MacWilliams identity: 

 

  

The following are four equivalent forms of the 

MacWilliams identity: 

 

 

 

 

The MacWilliams identity and the four equivalent 

forms have been studied by many authors [1-6, 8, 9]. 

In 1963, MacWilliams [6] proved that (2), (3) and (4) 

are all equivalent to MacWilliams identity (1). In 1983, 

by using a method different from that of [6], Blahut [1] 

proved that (1) can be derived from (4). Similar 

method can also be used to derive (1) from (3). 

Identity (5) was initially discovered by Brualdi et al. in 

1980 [2], and they showed that (5) can be derived 

from (2). In 1997, Goldwasser [4] proved (5) by 

induction.   

It should be pointed out that Brualdi et al. presented 

combinatorial interpretations for (3), (4) and (5) in [2]. 

Let M be a q n matrix whose rows are the codewords 

of  in some order. Let r be an integer with 0 r n  . A 

row of M with weight j contains 
j

r

 
 
 

r-tuples of nonzeros. 

So the number of r-tuples of nonzero in the rows of M 

equals  
0

n j j
W

rj

 
  

 
.Hence identity (3) is a 

consequence of counting the number of r-tuples of 

nonzeros in the rows of M in two different ways. 
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Similarly, identity (4) is a consequence of counting the 

number of r-tuples of zeros in the rows M in two 

different ways; while identity (5) is a consequence of 

counting the number of r-tuples of weight t in the rows 

of M in two different ways. 

According to their interpretations, both (3) and (4) 

are special cases of (5).  

In the following section we will use derivatives to 

prove the equivalence between anyone of (2), (3), (4), 

(5) and (1), our proofs also unveil new relationships 

between MacWilliams identity and its equivalent forms. 

 

 

2.0  PROOFS OF EQUIVALENCES 
 
The following two lemmas are needed in our 

equivalence proofs: 

 

Lemma 1. Let ( 1) , , s tX x q y Y x y f X Y      , then for any 

non-negative integers l, m we have  

 

Lemma 2. Let ( , ) and ( , )f x y x yg be two homogeneous 

polynomials of degree n in x, y. If 

 

then  ( , ) = ( , )f x y x yg . 

 

Proof of Lemma 1. We only prove the second identity, 

the first one can be proved similarly. 

If m = 0, the result is obvious. Now let m>0, and 

suppose 

 

 

The assertion follows by induction. 

Proof of Lemma 2. We only prove the case of 

 

 

the other two cases can be proved similarly. 

Let  

 

then from (6) we can get the following equations: 

 

 

Solving these equations we get 

 
, , , , .1 1 1 1 0 0f f f fn n n n    g g g gº  

 

Therefore ( , ) ( , )f x y x yg . 

 

2.1  Derive (2) or (3) from (1) 

 

By taking r-th partial derivative with respect to y on 

both sides of (1), we get 

 



383                                                 Bao Xiaomin / Jurnal Teknologi (Sciences & Engineering) 76:1 (2015) 381–385 

 

 

- Substituting 1 for x, 0 for y in the above equation 

we get 

 

 

So from (1) we can derive (2). 

- Substituting 1 for both x and y we get 

 

 

Therefore, from (1) we can derive (3). 

 

2.2  Derive (4) from (1) 

 

By taking r-th partial derivative with respect to x on 

both sides of (1), we get 

 

 

So from (1) we can derive (4). 

 

2.3  Derive (5) from (1) 
 

 

Let ( , ) ( , )f x y W x y . For 0 t r n   , by taking r-th mixed 

partial derivatives on both sides of 

 

we can get 

 

( !  )
0

                 !( ) !
0

r r t nf j j n j j t
t W x y

r t t r t tx y x j

n j n j j n j r t j t
t r t W x y

t r tj

    
       

      
          

 

 

From 

 

and lemma 1 we get 

 

 

Substituing 1 for both x and y, and also notice that 
- -( - ) 0j s ix y   when j s i   we get 

 

1

0 0

      ( 1) ( 1)

0

( 1) ( 1)
0 0

n rj n j j j
W W

n kt r t qj j

t n j j n r t ii t i n rq q
r t j i j i t ii

t r n j j r j jk r i t iq q W
r j i t ii j

  
           

              
        

                          

^

^

 

 

So (5) holds. 

 

2.4  Derive (1) from (2) 

 

Let 

( , )  ( , )

0

1
( , ) ( ( 1) , )

1
            [ ( 1) ] ( )

0

n j n j jf x y W x y W x y

j

x y W x q y x y
n kq

n
j n j jW x q y x y

n kq j

  


   


   




g
^

^
 

Then both f(x,y) and g(x,y) are homogeneous 

polynomials of degree n in x, y. 

For any non-negative integer r n , by lemma 1 we 

have 
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!

1, 0

1
! ( 1) ( 1)

0 01, 0

                                  [ ( 1) ] ( )
1, 0

1
                     ! ( 1) ( 1

0

r rf
r W

ry x y

r n r n j jj i r iW r q
r n k r i iy q j ix y

n j r i j ix q y x y
x y

n
j ir W q

n kq j




  

               

     
 

  




g
^

^
)

0

r n j jr i

r i ii

          

 

 

Since (2) holds, we get 

 

By lemma 2 we obtain 

 

2.5  Derive (1) from (3) or (4) 

 

We only prove that from (3) we can derive (1). Let 

 

 

Then both f(x,y) and g(x,y) are homogeneous 

polynomials of degree n in x, y. For any non-negative 

integer r n , by lemma 1 we get 

!  
0

1, 1

1
! ( 1) ( 1)

0 01, 1

                                  [ ( 1) ] ( )
1, 1

                     ! ( 1)

r n j rf
r W

r rjy x y

r n r n j jj i r iW r q
r n k r i iy q j ix y

n j r i j ix q y x y
x y

k r jr q

 
  

   

               

     
 


 

g
^

( 1) .
0

n n j jr jq W
r jj

    
 

^

 

From (3) we get 

 

2.6  Derive (1) from (5) 

 

If t = 0, then (5) reduces to (4), while if t = r, then (5) 

reduces to (3). Since (1) can be derived from (3) or (4), 

(1) can also be derived from (5). 

 

 

 

 

3.0  CONCLUSION 
 

A homogeneous polynomial of degree n in two 

variables is uniquely determined by its n+1 coefficients, 

and any properly selected n+1 points on the range of 

the polynomial can be used to determined these 

coefficients. From the proofs in the last section we see 

that identities (2), (3), (4) and (5) are actually four 

different groups of conditions that can be used to 

determine the coefficients of (1), and they can be 

written respectively in the following four forms: 

 

 

Therefore more equivalent forms of (1) can be written  

out in this way. 
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