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Abstract 

 

Recently, membrane technology has become more attractive particularly in solid-liquid separation process. 
Membrane bioreactor (MBR) has found to be a reliable technology to replace the conventional activated 

sludge (CAS) process for water and wastewater treatment by adopting membrane filtration technology and 

bioreactor. However, numerous drawbacks arise when using membrane which includes high maintenance 
cost and fouling problem. An optimal MBR plant operation is needed to be determined in order to reduce 

fouling and at the same time reduce the cost of running the MBR. It is crucial to have a reliable MBR 

filtration prediction that can measure and predict the filtration dynamic performance especially the effect 
of fouling to the filtration and cleaning operations. With this prediction tool, suitable action can be taken to 

improve the operation in order to find the optimum setting of the filtration process. This paper presents the 

permeate flux measurement and prediction development for submerged membrane filtration process. Three 
input filtration parameters were used to predict the permeate flux in the filtration process. This work  

employed feed forward artificial neural network (FFNN) and radial basis function neural network (RBFNN) 

for the prediction purpose. The permeate flux prediction method was developed using operation settings 
such as aeration airflow, suction pump voltage and transmembrane pressure (TMP) under schedule 

relaxation condition.  The result shows that FFNN method gives better performance compared with RBFNN 

method in terms of accuracy and reliability.  
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1.0  INTRODUCTION 

 

Membrane bioreactor (MBR) is recognized as the best alternative 

solution for conventional activated sludge (CAS) system for 

wastewater treatment. This technology is capable to give better 

treatment of influent either from industrial or domestic waste water 

treatment. Membrane filtration system is one of the key successes 

in any MBR system. Several configurations of MBR and 

membrane filtration system are developed to optimize the 

biological part and the filtration system. Membrane filtration 

system is not just used in bioreactor, but it is also widely used in 

solid liquid separation process in many industries such as chemical, 

food technology, and agriculture. The implementation of 

membrane filtration system for any filtration system application is 

it must consider its strengths and weaknesses in terms of quality, 

efficiency and operation cost. The successful operation of this 

technology is measured from its filtration performance.  

  Membrane filtration system still struggles from many issues 

such as fouling and energy efficiency [4][5][6][7]. Fouling can be 

defined as undesirable of the accumulation of matter such as 

colloidal, particulate, solute materials, microorganism, cell debris 

on the membrane during filtration process [8]. Fouling can lead to 

membrane clogging where the membrane pore will be blocked by 

solid material. When this phenomenon occurs, the transmembrane 

pressure (TMP) will be risen or permeate flux will be declined and 

if this situation cannot be controlled it will lead to the membrane 

damage. 

  The development of a reliable prediction model or soft sensor 

technique for membrane filtration system is crucial in order to 

improve the performance of the membrane filtration system in 

MBR plant[1][2][8]. With this prediction model it can help the 

plant operator to predict the filtration performance under different 

operation settings.  

  Membrane filtration system is influenced by many factors 

including membrane physical cleaning operations[9][10]. Apart 

from that membrane filtration permeates flux also affected with the 

influent concentration [11], transmembrane pressure (TMP) [12] 

and other influent properties. The complexity of the membrane 

filtration process causes the development of the filtration prediction 

tool to be very difficult. In literature, there are several techniques 

which can be adopted to represent the filtration system such as 

mechanistic/mathematical model and the artificial intelligent 

technique such as fuzzy, artificial neural network (ANN), and 

support vector machine. However, the application of ANN is 
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widely used in the membrane filtration prediction because of its 

accuracy and reliability in prediction nonlinear dynamic system. 

In the Submerged MBR (SMBR), Geissler et al. [13] developed 

two models which are semi empirical model and empirical ANN 

based model for permeate flux modeling in submerged capillary 

MBR. The ANN model was based on Elman neural network 

structure to predict the permeate flux. Nine inputs were used in the 

model and the inputs were TMP, rate of transmembrane pressure 

change, TMP during backwash, filtration cycle length, backwash 

cycle length, solid retention time (SRT), total suspended solids 

(TSS), temperature and oxygen decay. Results showed both of the 

models can give very good results. In addition, the semi empirical 

model required small input variables compared to ANN. However, 

ANN gave high accuracy with the average error of 2.7%. 

  Another SMBR application of ANN model was demonstrated 

by [14] in the application of flat sheet SMBR system for wastewater 

treatment application. The ANN model represented the backwash 

effect to the permeate flux. Several backwash intervals were tested 

to the flat sheet filtration. The multilayer neural network was used 

to model the system with backwashed interval, and filtration 

interval was used as an input to the model and flux is the output of 

the model. Work by [15] presented ANN model for effluent quality 

for SMBR treating cheese whey wastewater. The model is used to 

predict chemical oxygen demand (COD), ammonia, nitrate and 

total phosphate concentrations.  

  Submerged membrane flocculation hybrid systems for 

synthetic wastewater treatment filtration model was developed by 

[16] using different types of neural network structure. Multilayer 

perceptron neural network (MLPNN), radial basis function neural 

network (RBFNN) and general regression neural network (GRNN) 

were compared in terms of their performance for the modeling 

result. The inputs of the model were coagulation dose and filtration 

time, while the outputs of the model were the TMP, permeate pH 

and permeate DOC. All three ANN structure provided good 

prediction of the TMP profile during the filtration process.  

  In this work, the feed forward neural network (FFNN) and 

RBFNN were compared in terms of their reliability and accuracy 

for permeate flux prediction in SMBR filtration application. This 

paper is organized as follows: Section 2 presents the method used 

for the permeate flux prediction. Section 3 discusses the experiment 

setup, permeate measurement, data set used for training and testing 

procedure. Section 4 presents the results obtained and analysis for 

each method. Finally section 5 concludes the findings of this work.  

 

 

2.0  METHOD 

 

2.1  Feed Forward Neural Network (FFNN) 

 

In this work, the FFNN was used to predict the flux. The FFNN 

structure is represented by multilayer network starting from the first 

layer in which the neuron received input from external input. The 

next layer is connected by each of the neuron from the previous 

layer. This network will be connected until the final (output) layer 

neuron. Figure 1 presents the basic feed forward neural network 

structure. In this work, the network is trained using back 

propagation Levenberg-Marquardt (LM) algorithm. 

 

 

 
Figure 1  Feed Forward neural network structure [17] 

 

 

This network can be represented by Equation (1). 

                               

𝑦̂1(𝑡) =  𝐸𝑖 [∑ 𝑊𝑖𝑗 𝑓𝑗
𝑛ℎ
𝑗=1  (∑ 𝑤𝑖𝑗 + 𝑤𝑗0

𝑛𝜑

𝑙=1 ) + 𝑊𝑖0]           (1) 

 

Where 𝑦̂𝑖(𝑡)is the prediction output. Fi is the function of the 

network, φ is the input vector, Wij and wij represent the network 

connection layer weights and biases. 

 

2.2  Redial Basis Function Neural Network (RBFNN) 

 
The RBFNN is almost similar in structure with the FFNN structure. 

The main difference in the RBFNN is the neuron is based on Gauss 

function. The structure of RBFNN is presented in Figure 2 below. 

 
Figure 2  RBF neural network structure  

 

 

The RBFNN structure can be represented by Equation (2)[18]. 

 

             𝑦 (𝑡) = ∑ 𝑤𝑖 𝑖(𝑡),𝑖
𝑖=1                                          (2) 

 

i= 1, 2, 3…k 

 

Where, the output of the hidden layer is given by Equation (3). 

 

         𝑖 (𝑡) = 𝑒
(

‖𝑥(𝑡)−𝑐𝑖 (𝑡)‖
2

𝜓𝑖
2 )

                                    (3) 

 

𝑥 is the input vector, 𝑐 is the center of the hidden node, k is the 

number of hidden nodes and 𝜓 is the width of hidden node. 𝑤 is 

the weight number of output layer. 𝑦 indicates the output of the 

network. 

 

2.3  Data Structure 

 

In this work, the nonlinear autoregressive with exogenous input 

(NARX) is used for the flux prediction. This structure employed 

past input and past output data to predict the current output. This 

method is more suitable for time series prediction. The general 

equation of NARX is given in Equation (4) 
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ŷ𝑖(𝑡) = 𝑓𝑖(𝑦1(𝑡 − 1), … , 𝑦1(𝑡 − 𝑛𝑦1 

𝑖 ), … , 𝑦𝑛𝑎(𝑡 − 1), … , 𝑦𝑛𝑎(𝑡 −

              𝑛𝑦𝑛𝑎

𝑖 )), (𝑢1(𝑡 − 1), … , 𝑢1(𝑡 − 𝑛𝑢1 

𝑖 ), … , 𝑢𝑛𝑏(𝑡 −

              1), … , 𝑢𝑛𝑏(𝑡 − 𝑛𝑢𝑛𝑏

𝑖 )) + 𝑒𝑖(𝑡)                                 (3) 

 
Where i=1, 2…..na 

 

ŷ(t) is the predicted output. y(t+1…ni
y1) and u(t+1… ni

u1)  is the 

past input and past output lag respectively. na is the number of 

output and nb is the number of input. e(t) is the residual and f 

represents the nonlinear function of the structure. 

 

2.4  Performance Evaluation 

 

In this work the performance of permeate flux prediction for all 

methods was based on three criteria which are correlation 

coefficient (R2), mean square error (MSE) and mean absolute 

deviation (MAD). The equations of MSE and MAD are given in 

Equation (5) and (6) respectively. 

                                                                                                 

                                                                                                          

                                                                                                     (5) 

 

Where 𝑦̂𝑖  is the predicted value and 𝑦𝑖 is the actual value from the 

measurement data and N is the number of data point. 

 
                                                                                                     (6) 

  
 

Where 𝑥𝑖 is the predicted value and the 𝑥̅𝑖is the mean of the 

predicted value. 

 

 

3.0  EXPERIMENTAL SETUP 

 

The experiments were carried out in three double-walled 

cylindrical column bioreactors working volume of 20 L palm oil 

mill effluent (POME) taken from Sedenak Palm Oil Mill Sdn. Bhd. 

in Johor, Malaysia. The working temperatures for the bioreactors 

were at 27 ± 1 °C. The plant was operated with 90 second permeate 

and 30 second for relaxation period. The airflow rate is maintained 

around 8 SLPM at the first half of the experiment while the second 

half of the experiment the airflow was lowered down to about 5 

SLPM. Figure 3 shows the pilot plant setup for the experiment. The 

data plant was controlled and monitored using National 

Instruments, Labview 2009 software with NI USB 6009 interfacing 

hardware. 

 

 
Figure 3  Schematic diagram of the submerged MBR 

 
Table 1 shows the list of instruments used in the pilot plant development. 

 

Table 1  List of instruments/parts 

 

Tag No Description 

C-101 20L 2HP Air compressor 

PV-101 Proportional Valve 

FA-101 Airflow Sensor 
PI-101 Pressure Transducer 

SV-101 Solenoid Valve Permeate Stream 

SV-102 Solenoid Valve Backwash stream 
P-101 Peristaltic Pump 

P-102 Diaphragm Pump 

FM-101 Liquid Flow Meter 
Membrane Hollow Fiber Membrane 

 

 

  In this work, Polyethersulfone (PES) material with 

approximately 80-100kda pore size membrane was used in the 

filtration system.  

 

3.1  Filtration Measurement 

 

The TMP during filtration was measured using WIKA pressure 

transducer ranging from -1 to 1.5 bar. The permeate flux of the 

filtration was measured using RS 508-2704 flow sensor range from 

0.05 to 10 liter per minute (LPM). The permeate flux equation is 

given by Equation (7). 

 

                                            J =
V

At
                                              (7) 

 

Where J is the permeate flux in (l/m2 h), V is the volume flow rate 

in litter and t is the time (h). The airflow was measured using 

Honeywell airflow sensor AWM5104V ranging from 0 to 20 

standard liter per minute (SLPM) while the Watson Marlow 

peristaltic pump is used for permeate suction. Figure 4 shows the 

data collected from the experiment. 

  From the data it can be observed that the permeate flux has an 

impact with the plant operation which are airflow rate, pulsating 

and TMP. Figure 5 shows the comparison between the permeate 

flux at high and low airflow rate. At the high airflow rate setting, 

permeate flux is higher than at the low airflow rate setting. The flux 

slope for each cycle also shows that the decrement of flux is much 

faster in high TMP at the low airflow rate compared to high airflow 

rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4  Data from filtration experiment 

𝑀𝑆𝐸 =
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           𝑀𝐴𝐷 =
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Figure 5  Comparison flux flow at low and high airflow rate 
 

 

3.2  Data Preparation 

 

The data collected in Figure 3 was divided into three blocks M1, 

M2 and M3. The first block was taken in the middle of the data 

where this block included the transition between high to low 

airflow rate and this data was used in the training of the neural 

network. Figure 6 shows the M1 for training data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6  M1 data set 
 

 

  M2 is the first block for the testing data set. This data set was 

taken from the high airflow filtration. Figure 7 shows the M2 data 

set. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 7  M2 data set 

M3 is the second block for the testing data set. This data set was 

taken from the low airflow filtration. Figure 8 shows the M3 data 

set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8  M3 data set 

 

 

4.0  RESULTS AND DISCUSSION 

 

The training result using M1 data set for permeate flux prediction 

shows a satisfactory performance from both methods used. Figure 

9 shows the comparison of M1 data set, which was used for training 

of the network. In terms of the evaluation performance, both 

methods gave almost similar performance which FFNN and 

RBFNN were able to match the flux decline and its slope for each 

cycle at high and low airflow rate. This performance can be proven 

by the evaluation criterion used where %R2, MSE and MAD 

showed almost similar result with the FFNN and RBFNN score 

94.1% and 94.2% respectively for R2. MSE performance is 0.0077 

and 0.0076 while MAD is 0.0422 and 0.0424.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 9 Training using M1 data set 

 

 

  Figure 10 shows the residual for the training using M1 data 

set. Only small deviations can be observed from both methods. 
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Figure 10  Training residuals using M1 data set 

 
 

  The first testing procedure was taken from M2 data set where 

this data is taken from the high airflow rate data set. This data has 

small decline of permeate flux for every next cycle. From the 

observation, both of the methods were able to predict the slope and 

the small flux reduction in the cycle. The % R2 for the FFNN and 

RBFNN are 93.5 and 93.7%, while the MSE are at the 0.01 and 

0.0096 respectively. The MAD score is 0.0513 for FFNN and 

0.0496 for RBFNN. Figure 11 shows the comparison between 

FFNN and RBFNN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11  Testing using M2 data set 

 

 

  Figure 12 shows the residual for the testing using M2 data set. 

Almost similar deviations can be observed from both of the 

methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 12  Testing residuals using M2 data set 

 

M3 data set was taken from the low airflow side. This data shows 

fast permeate flux decline in every cycle. The validation using these 

data sets shows different performance from each method. The 

FFNN gives more accurate and reliable prediction compared with 

the RBFNN technique. Figure 13 shows the comparison of both 

methods with the actual data. From the figure it can be seen that 

RBFNN predicts higher than the actual data while the FFNN and 

follow the reduction trend of the permeate flux. %R2 for both 

techniques shows FFNN score almost 93% while only 79.5% 

scored by the RBFNN method. For the MSE criteria, FFNN gives 

0.0069 while the RBFNN with 0.02. The MAD criteria show 

0.0406 achieved by the FFNN while the RBFNN shows poor 

performance with 0.0884 for this criteria evaluation. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 13  Testing using M3 data set 

 

 

  Figure 14 shows the residual for the testing using M3 data set. 

From the figure, it shows that FFNN gives better performance 

compared with the RBFNN with smaller deviations.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14  Testing residuals using M3 data set 

 

 

  Table 2 presents the performance evaluation for both methods 

in the training and testing using all data sets. 
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Table 2  Performance evaluation 

 

Data/Method %R2 MSE MAD 

M1/ FFNN (Training) 94.1036 0.0077 0.0422 

M1 /RBFNN (Training) 94.2249 0.0076 0.0424 

M2/ FFNN (Testing)  93.5030 0.0100 0.0513 
M2 /RBFNN (Testing) 93.7467 0.0096 0.0496 

M3 /FFNN (Testing) 92.9708 0.0069 0.0406 

M3/ RBFNN (Testing) 79.5611 0.0200 0.0884 

 

 

5.0  CONCLUSION 

 

This paper has presented the measurement and prediction of 

permeate flux in the submerged membrane bioreactor filtration 

using FFNN and RBFNN. The filtration process was done using 

hollow fiber membrane with palm oil mill effluent as an influent in 

the bioreactor. In this work, data sets were divided into  three blocks 

(M1, M2 and M3) where the training blocks were taken in the 

changing state from high to low aeration airflow rate. Both of the 

methods were able to give good prediction in the training and 

testing result for the M2 data (low aeration). However, the FFNN 

was more reliable and accurate for the permeate flux prediction 

using M3 data set. This makes the FFNN able to predict well in 

both high and low aeration airflows.The experiment also showed 

that the permeate flux at the low aeration airflow is faster to decline 

compared to the high aeration airflow. 
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