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Graphical abstract 
 

 

Abstract 
 

Hydrogen gas production via glycerol steam reforming using nickel (Ni) loaded zeolite 

(HZSM-5) catalyst was focused on this research. 15 wt % Ni(HZSM-5) catalyst loading has 

been investigated based on the parameter of different range of catalyst weight (0.3-0.5g) 

and glycerol flow rate (0.2-0.4mL/min) at 600 ºC and atmospheric pressure. The products 

were analyzed by using gas-chromatography with thermal conductivity detector (GC-

TCD), where it used to identify the yield of hydrogen. The data of the experiment were 

analyzed by using Response Surface Methodology (RSM) and Artificial Neural Network 

(ANN) in order to predict the production of hydrogen. The results show that the condition 

for maximum hydrogen yield was obtained at 0.4 ml/min of glycerol flow rate and 0.3 g of 

catalyst weight resulting in 88.35 % hydrogen yield. 100 % glycerol conversion was achieved 

at 0.4 of glycerol flow rates and 0.3 g catalyst weight. After predicting the model using RSM 

and ANN, both models provided good quality predictions. The ANN showed a clear 

superiority with R2 was almost to 1 compared to the RSM model. 

 

Keywords: Hydrogen gas, glycerol steam reforming, Ni-HZSM-5, response surface 

methodology, artificial neural network 

 

Abstrak 
 
Penukaran gliserol terhadap gas hidrogen yang menggunakan HZSM-5 yang telah diubah 

suai dengan nikel merupakan fokus utama dalam kajian ini. 15 % nikel(HZSM-5) digunakan 

untuk menjalankan eksperimen pada perbezaan berat pemangkin (0.3-0.5 g) dan kadar 

aliran gliserol (0.2-0.4 mL/min) pada tekanan atmosfera dan suhu 600 º C. Produk ini akan 

dianalisis dengan menggunakan gas kromatograf (GC-TCD) untuk mengkaji peratus 

hydrogen terhasil. Kemudian, eksperimen data dianalisa menggunakan kaedah gerak 

balas permukaan (RSM) dan rangkaian neural tiruan (ANN) untuk menjangka hidrogen 
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yang terhasil. Keputusan eksperimen menunjukkan 88.35 % penghasilan optimum gas 

hidrogen telah terhasil pada kadar aliran gliserol = 0.4 mL/min and berat pemangkin = 0.3 

g dengan 100% penggunaan gliserol pada kadar aliran gliserol = 0.4 mL/min dan berat 

pemangkin = 0.3 g. Selepas membuat perbandingan menggunakan RSM dan ANN, kedua-

dua model menunjukkan kualiti yang baik. Namun, ANN memberikan keputusan yang lebih 

jelas dengan mempunyai R2 hampir 1 berbanding dengan RSM. 

 

Kata kunci: Gas hidrogen, pembaharuan wap gliserol, Ni-HZSM-5, kaedah gerak balas 

permukaan, rangkaian neural tiruan 

 

© 2015 Penerbit UTM Press. All rights reserved 

  
 

  
 

 

 
1.0  INTRODUCTION 
 

Glycerol is a byproduct during manufacturing of several 

chemicals such as petroleum, soap and biodiesel. 

Biodiesel is an alternative fuel for diesel engines that 

produced from vegetable oil or animal fat with a simple 

monohydric alcohol such as methanol. The reaction 

requires a catalyst, usually a strong base, such as 

sodium hydroxide, and produces new chemical 

compounds called methyl esters that also known as 

biodiesel. According to Gerpen [1] and Shawn and 

Conley [2], biodiesel is the mono alkyl esters of long fatty 

acids derived from renewable lipid feedstock such as 

animal fats or vegetable oil that can be used in 

compression ignition diesel engines. 

Generally, biodiesel was produced through a process 

known as transesterification, which involves altering the 

chemical properties of the oil by using methanol. It is a 

simple process that gives high conversions of yields with 

only glycerol as a byproduct. Glycerol production 

increased as the production of biodiesel increased due 

to the crude glycerol as a byproduct of biodiesel 

production. The generation of crude glycerol gives a 

yield at about 10% (wt/wt) of biodiesel during the 

process of biodiesel production. In that case, the global 

biodiesel market was estimated to reach 37 billion 

gallons by 2016 with an average annual growth of 42%, 

in which about 4 billion gallons of crude glycerol will be 

produced [3]. 

Therefore, it is imperative to find alternative uses for 

glycerol. Glycerol has many uses in different industries, 

such as food, paint, pharmaceutical, cosmetic, soap, 

toothpaste and others. Besides, glycerol also can 

produce value-added chemicals by a conversion 

process such as citric acid, lactic acid, hydrogen, 

ethanol, etc [3]. The simplest and most abundant 

element is hydrogen, which is growing from time to time 

due to the technological advancements in fuel cell 

industry. Nowadays, almost 95% of hydrogen is 

produced from fossil fuel. Fossil fuels are not renewable 

resources. So, renewable resources based on the  

technologies for hydrogen production are attractive 

options for the future due to the carbon neutral nature 

of these technologies give a minor effect to the 

environment.  Last few years, a great interest in utilizing 

glycerol for the hydrogen production [4]. 

Hydrogen can be produced from glycerol by 

undergoing some processes such as steam reforming, 

autothermal reforming, aqueous-phase reforming and 

supercritical water reforming [4] and they found that 

the best conditions are at a temperature above 627 ºC, 

9:1 of the molar ratio of water/glycerol and at 

atmospheric pressure. While, Adhikari et al. [5] found 

that the nickel loaded on cerium(IV) oxide (Ni/CeO2) 

was the best performing catalyst compared to the 

nickel loaded on magnesium oxide (Ni/MgO) and 

nickel loaded on titanium dioxide (Ni/TiO2) in terms of H2 

selectivity and glycerol conversion under the 

experimental conditions investigated. Ni/CeO2 gave 

74.7 % of H2 selectivity (maximum H2 selectivity) 

compared to the Ni/MgO (38.6%) and Ni/TiO2 (28.3%) at 

a water/glycerol molar ratio (WGMR) of 12:1, 600 ºC 

and 0.5 ml/min of feed flow rate.  

Besides, Iriondo et al. [6] studied that the noble metals 

were active and stable for steam reforming, but the 

cost was quite high. For that reason, the non-noble 

metals such as nickel (Ni) and copper (Cu) were 

decided to be used as metal catalysts in this study due 

to availability and lower cost than noble metals [7]. In 

addition, Nichele et al. [7] has investigated that the best 

result for hydrogen production via glycerol steam 

reforming was achieved with nickel loaded zirconium 

dioxide (Ni/ZrO2) at 650 ºC, where the hydrogen yield 

and glycerol conversion was 65% and 72%, respectively. 

Another study by Buhari [8] reported that 15wt% of Ni-

ZSM-5 has the best performance on hydrogen 

composition in a product with 58.37% at temperature 

600 ºC. Therefore, nickel loaded HZSM-5 catalyst was 

chosen in this study. 

The representative of reaction using the application 

of experimental design and mathematical technique is 

essential. Response Surface Methodology (RSM) is a 

mathematical and statistical method that can be used 

to analyze the problems and optimize the response, in 

which several independent variables influence a 

dependent variable (known as a response) [9-11]. 

Many researchers have successfully applied the 

optimization of enzyme production from microorganism 

using RSM [12-14] and also optimizing hydrogen 

production from methane [15]. However, the Artificial 

Neural Network (ANN) is more interesting in chemical 

industries compared to the RSM. ANN is a powerful 
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modeling technique that offers several advantages 

compared to the conventional modeling techniques 

[16-18]. ANN is an accuracy, flexibility and efficiency 

since it has an attractive feature and also has the ability 

to learn linear and nonlinear relationships between 

variables directly from a set of examples [7, 16-19]. The 

ANN also able to train new data accurately ANN has a 

universal approximation capability where it can 

approximate almost non-linear functions including 

quadratic functions, while RSM only can use for 

quadratic approximation. In other words, the ANN can 

be concluded as higher accuracy modelling technique 

compared to the RSM as it represents a much better 

way for non-linearities [21]. 

The objectives of this study are to determine the 

relationship of catalyst weight (range = 0.3-0.5g) and 

glycerol flow rate (range = 0.2-0.4mL/min) at 

temperature 600 ºC on 15wt% of the nickel loading and 

to select the best model from RSM and ANN.   

 

 

2.0  METHODS 
 
2.1  Catalyst Preparation  

 

10.2 g of HZSM-5 and 8.92 g of nickel(II) nitrate 

hexahydrate loading were dissolved in 100 ml of distilled 

water (15.0 wt% Ni, 85.0 wt% ZSM-5). The mixed solution 

was stirred continuously overnight and dried in an oven 

for overnight at 105 ºC. Then, the calcination process 

occurs where calcined in the furnace for 5 hours at 

500ºC. Finally, the sample was put in the vial and stored 

in the desiccator. 

 

2.2  Reactivity Test  

 

The performance of the catalyst for glycerol conversion 

was tested using the quartz tube in a fixed bed reactor 

as shown in Figure 1. The modified catalyst was placed 

in the core of the reactor that supported by quartz 

wool. The modified catalyst was activated by packing 

between glass wool inside the reactor at 600 ºC of study 

temperature. Nitrogen gas was emerged in the reactor 

for about 10-50 ml/min. WGMR was introduced in the 

process at the range of study flow rate (0.2-0.4ml/min). 

Then, the heating process of glycerol was carried out in 

the preheater at a temperature about 250 ºC. The 

reactor was activated for 30 minutes at 600 ºC of study 

temperature. The production flows through the 

condenser where the liquid product was collected 

while gas products continuously flow into a silica bed to 

trap any moisture in the product. The production of 

gaseous was analyzed by GC (Agilent Technologies, 

6890 System) with thermal conductivity detector (TCD) 

and being illustrated using computer. 

 

 

 
Figure 1 Schematic layout of the rig of the glycerol conversion 

 

 

2.3  Experimental Design  

 

The experimental conditions were defined using 

central composite design (CCD) techniques in RSM 

that developed by Statsoft Statistica Release 7.0 

software. This software was chosen due to the friendly 

user. The central composite design (CCD) was used to 

predict the condition of optimum process for hydrogen 

yield and to study the interaction of process variables. 

The range and the coded level of the independent 
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process variables studied are listed in Table 1. The 

process variables studied were catalyst weight (𝑥1) and 

glycerol flow rate (𝑥2). Each variable consisted of three 

different levels from low (-1) to medium (0) and to high 

(1). 

 
Table 1 Experimental range and level coded of independent 

variables 

 
Factors Symbol Range and 

levels 

-1 0 +1 

Catalyst weight,  

g 

X1 0.3 0.4 0.5 

Glycerol flow rate, 

ml/min 

X2 0.2 0.3 0.4 

 

 

The central composite design (CCD) that used in this 

research was 22 factorial designs, two central points 

and four star points. The total number of the experiment 

was 10 where 8 experiments with two replications at the 

central point to identify the errors. The method of least 

squares was employed to establish the full quadratic 

model for glycerol conversion and hydrogen yield. RSM 

model was used to determine the relationship of the 

glycerol flow rate and catalyst weight and also to 

optimize the reaction conditions. 

 

Yu = β0 + β1X1 + β2X2 + β12X1X2 + β11X1
2 + β22X2

2    

 

where, β0 is the intercept coefficient (offset), β1 and 

β2 the linear terms, β11 and β22 the quadratic terms, β12 

the interaction terms and X1 and X2 the encoded 

independent variables. The statistical analysis of this 

model was performed in the form of analysis of 

variance (ANOVA) in order to test for significant 

differences between means. The conversion of glycerol 

was the percentage of glycerol convert to the product 

and it was defined by the following expansion: 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

=
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑊𝐺𝑀𝑅 − 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑊𝐺𝑀𝑅 𝑎𝑓𝑡𝑒𝑟 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑊𝐺𝑀𝑅
 𝑥 100% 

 

The hydrogen yield is calculated based on the 

following equation: 

 𝑌𝑖𝑒𝑙𝑑 =
𝑀𝑜𝑙𝑒 𝑜𝑓 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑀𝑜𝑙𝑒 𝑜𝑓 𝑔𝑙𝑦𝑐𝑒𝑟𝑜𝑙 𝑟𝑒𝑎𝑐𝑡𝑒𝑑
× 100%   

In chemical engineering application, most 

commonly used of ANN is the multi-layer perceptron, 

which is a back propagation feed forward neural 

network due to the fast computation capacity and 

generalization ability of data even chemical 

engineering problems composed by complex systems 

[22]. In this study, multi-layer feed forward network 

generated by JMP version 11 for simulation because 

the application of ANN in JMP 11 is flexible and easy to 

use [18] compared to the Statsoft Statistica Release 7.0 

software. The same experimental data that had been 

used in RSM design were applied in the ANN design. 

Catalyst weight and glycerol flow rate as an 

independent variable (input variables) while, hydrogen 

yield and glycerol conversion were used as dependent 

variables (output variables). The training of the network 

was performed using Levenberg Marquardt Learning 

Algorithm that can provide a numerical solution to the 

problem of minimizing a function. The best 

performance of the models was described based on 

the correlation of determination (R2) and mean square 

error (MSE). The R2 is mathematically described as 

based on Ahmad and Daniel [23]. 

 

𝑅2 = 1 − 
∑ [(𝑦𝑖 − ȳ𝑖

1−𝑛
𝑖=1 )^2]

∑ [(𝑦𝑖 −  ȳ)^2]1−𝑛
𝑖=1

 

 

where yi is the actual output value from observation, ŷi 

is the output value predicted from observation i, y is the 

mean of y values, and n is the total number of data. A 

perfect fit would result in R2 should be at least 0.80 for 

the best fit of a model [24]. The MSE is calculated based 

on Demuth et al. [25] by following equation: 

 

𝑀𝑆𝐸 =  
1

𝑄
∑(𝑡𝑘 −  𝑎𝑘)2

𝑄

𝑘=1

 

 

Where, Q is the number of data, t is the output target 

and a is the output network. Figure 2 showed the feed 

forward hierarchical neural network architecture for 

the prediction of hydrogen yield and glycerol 

conversion.
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Figure 2 Architecture of feed forward hierarchical neural network 

 

 

3.0  RESULTS AND DISCUSSION 
 
3.1  Polynomial Empirical Model 

 

In this study, the RSM models were developed using 

Statsoft Statistica Release 7.0 software. The 

experimental value and predicted response of 

hydrogen yield from statistical model for 10 runs were 

presented in Table 2. The relationship between the 

independent variables and response variables was 

estimated using regression analysis of the experimental 

data. Equation 3.1 presented a quadratic model for 

predicting the optimal point for the hydrogen yield. 

 

Y1 = 94.6077 + 11.0625X1 + 22.1120X2 – 28.7500X1X2 – 

3.3750X1
2 – 18.6250X2

2     -------(3.1)  

 

The regression equation (Eq. 3.2) obtained for the 

glycerol conversion.  

 

Y2 = -183.35+ 418.73X1 + 987.34X2 – 1334.74X1X2 + 

66.49X1
2 – 581.21X2

2       --------(3.2)    

 

Where, Y1 and Y2 are the response variables 

corresponding to the hydrogen yield and glycerol 

conversion respectively, while X1 and X2 represent the 

catalyst weight and the glycerol flow rate respectively, 

as independent variables.  

 

3.1.1  Analysis of Variance (ANOVA) Responses 

 

The analysis of variance (ANOVA) with a 5 % level of 

significance was used to test the empirical model for 

hydrogen yield and glycerol conversion as well as 

demonstrated the total, error and regression of sum of 

squares. The total, error and regression of sum of 

squares for hydrogen yield and glycerol conversion as 

shown in Table 3.  

 

 

Table 3 Analysis of variance (ANOVA) for quadratic model 

 

Sources 
Sum of 

squares (SS) 

Degree of 

freedom 

(d.f) 

Mean 

squares 

(MS) 

F-value F0.05 

Hydrogen yield model 

Regression (SSR) 2209.119 5 441.824 6.282 6.26 

Residual 281.322 4 70.331   

Total (SST) 2490.441 9    

      

Glycerol conversion model 

Regression (SSR) 0.532 5 0.106 10.113 6.26 

Residual 0.042 4 0.011   

Total (SST) 0.574 9    
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Table 2 Experimental value and predicted response of hydrogen yield and glycerol conversion 

 

 

Run 

Variables Hydrogen yield, Y1 Glycerol conversion, Y2 

Catalyst 

weight, X1 

(g) 

Glycerol flow 

rate, X2 

(ml/min) 

Experimental Predicted Experimental Predicted 

1 0.258579 0.300000 77.08704 69.72072 100.00 99.9696 

2 0.500000 0.200000 81.79643 83.38060 100.00 100.0976 

3 0.541421 0.300000 85.84106 89.94400 100.00 99.8954 

4 0.400000 0.300000 78.50265 78.50265 100.00 100.0000 

5 0.400000 0.300000 78.50265 78.50265 100.00 100.0000 

6 0.400000 0.441421 77.65270 81.68843 99.61 99.5479 

7 0.500000 0.400000 84.06105 77.63027 99.32 99.4099 

8 0.300000 0.400000 88.34577 90.02499 100.00 100.0374 

9 0.400000 0.158579 59.36768 52.06857 99.78 99.7071 

10 0.300000 0.200000 32.69169 42.38585 99.53 99.5751 

 

 

From Table 3, the F-value indicates a ratio between 

the mean square of regression and mean square of 

error. Generally, the model is the best predictor of the 

experimental results with high confidence level of 95 % 

if the calculated F value greater than the tabulated F 

value. Therefore, the statistical model of the hydrogen 

yield in this research was the F value of 6.282, greater 

than F0.05 = 6.26. While, for the glycerol conversion, the 

calculated F value was 10.113, greater than F0.05 = 6.26. 

Both of the statistical models of hydrogen yield and 

glycerol conversion showed a good prediction model.  

Besides, the comparison between the observed 

value and predicted value of hydrogen yield and 

glycerol conversion were shown in the Figure 3. The 

result indicates that the R2 value for hydrogen yield was 

0.88704 (88.70 %) of the variation. Meanwhile, the R2 

value of the glycerol conversion was 0.92670 which 

92.67 %, indicating of the variation of data can be 

accounted to the model. The empirical model should 

be at least 0.75 to adequately explain most of the 

variability in the assay reading [26]. 

 

 

           (a) 

 
           

 

 

 

 

 

 

 

R2= 0.88704 
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 (b) 

 
Figure 3 Parity plot for a) hydrogen yield and b) conversion 

 

 

3.1.2  Interactive Effects of Variables on Hydrogen Yield 

and Glycerol Conversion 
 

The interaction between variables in this study that 

gave impact to the hydrogen yield and glycerol flow 

rate was illustrated by using an empirical model which 

is plotted as three dimensional surfaces. Figure 4 

depicts the effect of glycerol flow rate and catalyst 

weight interaction in the presence of 15 wt% of nickel 

loading and 600 ºC on hydrogen yield and glycerol 

conversion, respectively. Based on the contour plot, 

the interaction between glycerol flow rate and catalyst 

weight gives the biggest impact to the hydrogen yield 

and glycerol conversion. 

Previous researcher, Yun [27] found that the hydrogen 

yield was increased at 0.25 ml/min to 0.50 ml/min but 

then, the value of hydrogen yield starting to decrease 

with the increasing of feed flow rate. It had been 

proven by Slinn et al. [28], which stated that the 

conditions for water gas-shift, a reactant molecule 

needs to be met at available active site. It was contact 

with a water molecule for a certain period of time and 

the enough energy to overcome the activation energy 

barrier.  Hence, the faster flow rates would decrease 

the hydrogen yield because of the conditions for 

water-gas-shift was not being met.  However, if the flow 

rate was too slow, it could also reduce the hydrogen 

yield due to the increasing of by-products. 
 

 

Figure 4 Response surface plot of the combination between glycerol flow rate and catalyst weight on a) hydrogen yield and b) 

glycerol conversion 

 
 

3.2  Feed Forward Neural Network Model 

 

In this study, two neural network models were 

developed for predicting the hydrogen yield and 

glycerol conversion. All the ANN models were trained 

by using Levenberg Marquardt Learning Algorithm. 

Table 4 shows the experimental and predicted values 

for all conditions of the reaction.  

In overall, the percentages of hydrogen yield obtained 

were high as well as glycerol conversion based on 

Table Almost all of the experiment shows 100% 

conversion of glycerol obtained. Table 5 summarizes 

the statistical parameters of selected ANNs: Number of 

hidden nodes, R2, MSE and sum frequency.

R2= 0.92670 

 

a) b) 
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Table 4 Experimental value and predicted response of hydrogen yield and glycerol conversion 

 

 

Run 

Variables Hydrogen yield, Y1 Glycerol conversion, Y2 

Catalyst 

weight, X1 

(g) 

Glycerol flow 

rate, X2 

(ml/min) 

Experimental Predicted Experimental Predicted 

1 0.258579 0.300000 77.087040 77.610693 100.00 99.78 

2 
0.500000 0.200000 81.796430 83.172634 

100.00 100.00 

3 0.541421 0.300000 85.841060 85.808672 100.00 100.00 

4 
0.400000 0.300000 78.502654 78.417956 

100.00 100.00 

5 0.400000 0.300000 78.502654 78.417956 100.00 100.00 

6 0.400000 0.441421 77.652700 77.610659 99.61 100.00 

7 
0.500000 0.400000 84.06105 83.963236 

99.32 99.32 

8 0.300000 0.400000 88.345770 84.030456 100.00 100.00 

9 
0.400000 0.158579 59.367680 56.382686 

99.78 99.78 

10 
0.300000 0.200000 32.691690 34.586376 99.53 99.61 

 

 

Table 5 The parameters of selected ANNs 

 

 ANNH2 ANNG 

 Training Validation Training Validation 

Number 

of hidden 

nodes 

3 3 3 3 

R2 0.94215 0.59076 0.99935 0.53991 

MSE 4.37916 6.88171 0.00638 0.14709 

Sum Freq 6 4 6 4 

*ANN-H2: ANN for hydrogen yield 

*ANNG: ANN for glycerol conversion 

 

Selection of the network for prediction of hydrogen 

yield and glycerol conversion was carried out with a 

trial and error method on the optimum number of 

nodes and the R2 and MSE obtained. Two variables 

were used as input (catalyst weight and glycerol flow 

rate) into the ANN network with three hidden nodes. 

The best network model was chosen based on the 

highest R2 and lowest MSE [16-18, 29]. 

In this study, the highest R2 and MSE values in the 

training phase for ANN-H2 were 0.94215 and 4.37916, 

respectively. For the validation phase, the R2 and MSE 

values were 0.59076 and 6.88171, respectively. The 

highest R2 and MSE values for ANN-G in the training 

phase, were 0.99935 and 0.00638, respectively. For the 

validation phase, the highest R2 and MSE values were 

0.53991 and 0.14709, respectively. Figure 5 shows the 

plot diagram for training and validation phase for 

hydrogen yield and glycerol conversion. 
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Figure 5 Training and validation phase for a) hydrogen yield and b) glycerol conversion 
 

 

3.3  Comparison of RSM and ANN Models 

 

The estimation of the capability of the RSM and ANN 

techniques was also evaluated in this study in order to 

predict the responses at 10 experiment points. The 

comparative values of R2 and MSE was given in Table 

6. 

 
Table 6 Comparison between RSM and ANN 

 

Statistical 

parameters 

Hydrogen yield 
Glycerol 

conversion 

RSM ANN RSM ANN 

R2 0.88704 0.88987 0.92670 0.93091 

MSE 70.331 8.28052 0.011 0.09958 

 

 

Based on Table 6, the R2 values of hydrogen yield for 

RSM and ANN were 0.88704 and 0.88987, respectively, 

and the MSE values of hydrogen yield for RSM and ANN 

were 70.331 and 8.28052, respectively. For glycerol 

conversion, the R2 values for RSM and ANN were 

0.92670 and 0.93091, respectively, and the MSE values 

for RSM and ANN were 0.011 and 0.09958, respectively.  

By comparing the R2 and MSE values, the ANN 

technique is more precise compared to the RSM even 

with the fewer number of the experiment. Geyikci et al. 

[30] stated that the ANN technique may require a total 

number of data compared to the RSM technique. 

However, despite the ANN model developed using a 

fewer number of data, but it still gives a good 

correlation between observed and predicted value for 

training value [21, 31, 32].  

 

 

4.0 CONCLUSIONS  
 

This study compares the performance of RSM and ANN 

technique with their modelling using experimental data 

in the hydrogen gas production using nickel loaded 

zeolite. Both models provide reliable result. However, 

the ANN gives high accuracy compared to the RSM 

even with a limited number of the data  
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