
FREE CONVECTION BOUNDARY LAYER OVER A NONISOTHERMAL 61

Jurnal Teknologi, 39(C) Dis. 2003: 61–74
© Universiti Teknologi Malaysia

FREE CONVECTION BOUNDARY LAYER OVER A
NONISOTHERMAL VERTICAL FLAT PLATE

ROSLINDA NAZAR1 & NORSARAHAIDA AMIN2

Abstract. Numerical solutions are presented for the free convection boundary layer problems on
a vertical flat plate with prescribed temperature or heat flux distributions, namely the sinusoidal wall
temperature and the exponential heat flux variations. The numerical computation is carried out using
a very efficient implicit finite difference scheme known as the Keller-box method. Illustrative
computational examples are carried out and the present results are compared with previously available
theoretical results obtained using other methods of solution, and they are found to be in good agreement.
Comparisons of nondimensional temperature gradient for sinusoidal wall temperature variation and of
nondimensional wall temperature with exponential variation in wall heat flux are made between the
present and previous results. New results for the variation of the surface shear stress with various Prandtl
numbers are also presented. In addition, for the case of sinusoidal wall temperature variation,
representative velocity and temperature profiles are presented for Prandtl numbers 0.7, 1, 10 and 100,
while for the case of exponential heat flux distribution, the velocity and temperature profiles for various
transformed streamwise coordinate ξ = 0, 1, 10 and 100 are illustrated.

Keywords: Free convection, boundary layer, nonisothermal vertical plate, numerical method

Abstrak. Penyelesaian berangka bagi masalah lapisan sempadan olakan bebas terhadap plat
menegak dengan taburan suhu atau fluks haba yang ditetapkan akan dibincangkan. Perbincangan
tertumpu kepada dua jenis syarat sempadan iaitu, variasi sinusoid suhu dinding dan variasi eksponen
fluks haba. Dalam kajian ini, pengiraan berangka dilakukan menggunakan suatu skema beza terhingga
tersirat yang efisien, yang dinamakan kaedah kotak Keller. Ilustrasi pengiraan dijalankan dan keputusan
baru yang diperolehi dibandingkan dengan keputusan-keputusan lepas yang diperolehi menggunakan
kaedah-kaedah penyelesaian yang lain, dan didapati bahawa hasil perbandingan adalah baik.
Perbandingan melibatkan kecerunan suhu tak berdimensi bagi variasi sinusoid suhu dinding dan suhu
tak berdimensi bagi variasi eksponen fluks haba. Keputusan baru bagi variasi tegasan ricih permukaan
dengan pelbagai nombor Prandtl juga dibincangkan. Di samping itu, bagi kes variasi sinusoid suhu
dinding, profil halaju dan suhu diberikan bagi beberapa nombor Prandtl iaitu 0.7, 1, 10 dan 100,
manakala bagi kes variasi eksponen fluks haba, profil halaju dan suhu juga diketengahkan untuk
beberapa nilai koordinat mengikut-strim yang terjelmakan ξ iaitu 0, 1, 10 and 100.

Kata kunci: Olakan bebas, lapisan sempadan, plat menegak tak isoterma, kaedah berangka
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1.0 INTRODUCTION

Since the Schmidt and Beckmann experiments in 1930 [1], the study of free convection
along a vertical flat plate has been intensively studied due to its extensive applications
in engineering like electronic cooling equipment, building applications or crystal growth
processes. It remains a subject of interest either theoretically or experimentally due to
the number of possible variations in the boundary conditions.

The free convection problem on a nonisothermal vertical plate under boundary
layer approximations has been studied by several authors [2–5] using approximate
methods such as the integral and series expansion methods. Similarity solutions for
free convection over nonisothermal vertical plates have been provided by Sparrow
and Gregg [6] and Finston [7]. Yang [8] has verified that the similarity possibilities
have essentially been covered by these authors, namely the cases of power law and
exponential wall temperature distributions.

However, many problems of interest in boundary layer flow and heat transfer do
not admit similarity solutions. A number of solution methods have been proposed to
deal with such problems. Similarity transformations are limited to some specific cases,
hence research has been undertaken in order to expand available solutions to include
problems with non-similar surface conditions. The non-similarity of boundary layer
may stem from a variety of causes. The most common is perhaps the nonsimilarity of
the velocity boundary layer [9]. A number of solution methods involving different
degrees of approximations and various levels of numerical effort have been proposed
to deal with such problems.

Sparrow and co-workers [9,10] presented an approximate method known as the
local nonsimilarity method for solving nonsimilar boundary layer problems and to
improve the local similarity method. This method gives more accurate results than the
series and integral approximate methods. For the case of free convection boundary
layer over a vertical flat plate, the local non-similarity method was employed by Kao
[11] in which only the case of sinusoidal wall temperature variation is considered. Kao
and Elrod [12] have developed another approximate method known as the strained
coordinate method, for the solution of nonsimilar boundary layer problems. The results
are found to be slightly more accurate than those of the local nonsimilarity method.
Kao et al. [13] have applied this technique to study the free convection problem on a
vertical flat plate with sinusoidal and exponential wall temperature variations and linearly
varying and exponentially increasing heat flux. The general theory of this technique is
developed with local similarity as a first approximation, and universal functions for
improvement. Yang et al. [14] applied appropriate coordinate transformation and the
Merk-type series to solve a similar type of free convection problems with variable
surface temperature and heat flux as considered in [13]. Previous works [11,13,14]
have demonstrated the need for a study of this problem by an efficient numerical
method. Numerical computations, using finite difference methods, have been reported

JTKK39C[7].pmd 2/16/07, 6:29 PM62



FREE CONVECTION BOUNDARY LAYER OVER A NONISOTHERMAL 63

for the cases of uniform, step jump discontinuity, power law, sinusoidal and exponential
variations of wall temperature [15–17].

In this paper, a numerical study is considered for the problem of free convection
boundary layer over a nonisothermal vertical plate for the cases of sinusoidal wall
temperature and exponential heat flux variations using a very efficient finite difference
scheme known as the Keller-box method [18]. The present numerical method yields
accurate results, and this method has been successfully used recently by the present
authors [19]–[22]. Graphs and table are provided for the cases of Prandtl number equal
to 0.7 to facilitate such computation.

Comparisons of nondimensional temperature gradient for sinusoidal wall
temperature variation and of nondimensional wall temperature with exponential
variation in wall heat flux are made between the present method and the corresponding
similarity [6], local similarity [13,14], local nonsimilarity [11], strained coordinate [13],
and the Merk-type series [14] solutions. The results of the present numerical method
are found to be in good agreement particularly with [13] and [14]. New results for the
variation of the surface shear stress for various Prandtl numbers are presented.
Representative results of velocity and temperature profiles for different values of Prandtl
number (Pr = 0.7, 1, 10 and 100) and transformed streamwise coordinate (ξ = 0, 1, 10
and 100) are also presented. The different values of Prandtl number, i.e. Pr = 0.7, 1, 10
and 100 are chosen because, Pr = 0.7 is well known for convection in air, while significant
differences may exist in the convection styles of fluids due to changes in Prandtl number
in the intermediate range from Pr = 1 to Pr = 100. Fluids in this range have important
industrial applications: gases, with Pr ∼ 1; water depending on temperature, with Pr ∼
10; and oils or water solutions, with Pr ∼ 100. On the other hand, different values of the
streamwise coordinate, i.e. ξ = 0, 1, 10 and 100 are presented in order to see how the
velocity and temperature profiles change as the streamwise coordinate increases from
0 to 100.

2.0 BASIC EQUATIONS AND TRANSFORMATIONS

The governing equations for the steady state laminar boundary layer free convection
over a vertical flat plate are given as follows:

Continuity 0
u v
x y

∂ ∂+ =
∂ ∂ (1)

Momentum ( )
2

2β ∞
∂ ∂ ∂+ = − +
∂ ∂ ∂
u v u

u v g T T v
x y y (2)

Energy
2

2

T T T
u v

x y y
α∂ ∂ ∂+ =

∂ ∂ ∂ (3)
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The boundary conditions are

( ) ( ) ( ) ( )0 0 0 0u x, v x , , u x , , T x, T∞= = ∞ = ∞ = (4)

( ) ( ) ( ) ( )0
0 or w

w
T x, q x

T x, T x
y k

∂= = −
∂ (5a,b)

The fluid density is assumed to be constant (Boussinesq approximation), and u, v,
T, Tw, T∞ , ν , g, β , α , k and qw are velocity components in x- and y-direction,
respectively, local temperature, surface temperature, ambient temperature, kinematic
viscosity, gravitational acceleration, coefficient of thermal expansion, thermal diffusivity,
thermal conductivity and heat flux, respectively. The coordinate system is shown in
Figure 1 below.

Figure 1 Physical model and coordinate system

A stream function ψ  is defined as

andu v .
y x
ψ ψ∂ ∂= = −

∂ ∂ (6)

The continuity equation (1) is automatically satisfied by the introduction of the stream
function. The (x,y) coordinate system is transformed into the ( ),ξ η  system by
introducing [13,14]

( )
0

x
F x dx,ξ = ∫ (7)

and ( )1 2
1 1 4

/
/

y
C F xη

ξ
= (8)

where ( ) ( )wF x T x T∞= − (9)

for the case of prescribed variable wall temperature,
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and ( )
1 5

2 3 2 3

0

5
6

/
x/ /F x Q Q dx , =   ∫ (10)

where  ( ) ( )

1

wq x
Q x ,

C k
=  and 

1 4

1 24

/g
C ,

β
ν

 =   
(11)

for the case of prescribed variable wall heat flux.
The following non-dimensional stream function and temperature function are

introduced:

( ) ( )1 2 3 4
14/ /f , F x C ,ξ η ψ νξ= (12)

( ) ( )
T T

, .
F x

θ ξ η ∞−= (13)

With these substitutions, the set of the conservation equations (2) and (3), governing
laminar free convection adjacent to a vertical wall are transformed into the following
ordinary differential equations:

( ) 23 2 2 4θ ξ
ξ ξ

∂ ∂ + − − + = − ∂ ∂ 

f ' f
f '" B ff " f ' f ' f " , (14)

( )3 2B Pr 4BPr 4Pr
θθ θ θ ξ θ
ξ ξ

∂∂ + − − = − ∂ ∂ 

f
'' f ' f ' f ' ' , (15)

where ξ , η , and Pr are the transformed streamwise coordinate, transformed normal
coordinate and Prandtl number, respectively. Primes denote derivatives with respect
to η , and B is defined as

( )2B
dF

,
dxF x

ξ= (16)

where F is as defined previously in (9) and (10).
The transformed boundary conditions associated with the transformed equations

are:

( ) ( ) ( ) ( )0 0 0 0 0F , f ' , , f ' , , , ,ξ ξ ξ θ ξ= = ∞ = ∞ = (17)

( )0 1,θ ξ =       or     ( )0 1' ,θ ξ = − (18a,b)

3.0 NUMERICAL METHOD

Equations (14) and (15) consisting of nonlinear, coupled equations are solved
simultaneously by numerical integration subject to boundary conditions (17) and (18).
They were solved numerically using a very efficient finite difference scheme. The
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scheme employed is the box method developed by Keller [18]. This method has been
shown to be particularly accurate for parabolic problems. It is much faster, easier to
program and it is chosen because it seems to be the most flexible of the common
methods, being easily adaptable to solving equations of any order. The Keller-box
method is essentially an implicit finite difference scheme, which has been found to be
very suitable in dealing with nonlinear problems. Details of the method may be found
in many recent publications, and here we have used the procedure outlined in [23].

One of the basic ideas of the box method is to write the governing system of equations
in the form of a first order system. First derivatives of u and other quantities with
respect to η  must therefore be introduced as new unknown functions. With the resulting
first order equations, the “centered-difference” derivatives and averages at the midpoints
of net rectangles and net segments are used, as they are required to get accurate finite
difference equations.

The resulting finite difference equations are implicit and nonlinear. Newton’s method
is first introduced to linearize the nonlinear system of equations before a block-
tridiagonal factorization scheme is employed on the coefficient matrix of the finite
difference equations for all η  at a given ξ . The solution of the linearized difference
equations can be obtained in a very efficient manner by using the block-elimination
method [23]. All the results quoted here were obtained using uniform grids in both
the ξ  and η  directions.

4.0 RESULTS AND DISCUSSIONS

A numerical example involving a sinusoidal surface temperature distribution will be
considered. The distribution is given by

( ) sinwT x T x.∞− =

With this surface condition, the parameters required for the heat transfer calculation
can be expressed as

1 cos x,ξ = − and
cos

B
1 cos

x
.

x
=

+
The resulting dimensionless wall temperature gradients are compared with the results

obtained by other methods in Figure 2. The numerical data for comparison are given
in Table 1. The present numerical method shows excellent agreement with the Merk-
type series method [14] and good agreement with the strained coordinate [13] and
local non-similarity [11] methods.

Further, Figure 3 shows the variation of the surface shear stress, ( )0f " x , , with x for
sinusoidal variation in wall temperature, when Pr = 0.1, 0.7, 1, 7 and 10. Since these are
new results, there are no previous results available for comparison. From Figure 3, we
notice that as the Prandtl number increases, the surface shear stress decreases. The
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Figure 2 Comparison of dimensionless temperature gradient for sinusoidal variation in wall
temperature (Pr = 0.7)

Table 1 Comparison of dimensionless wall temperature gradients: sinusoidal wall temperature variation
for Pr = 0.7

θθθθθ’’’’’ Present Merk-type Strained Local Non-
x Series [14] Coordinate [13] similarity [11]

0.0 –0.628 –0.628 –0.630 –0.630

0.2 –0.627 –0.627 –0.627 –0.627

0.4 –0.624 –0.624 –0.625 –0.625

0.6 –0.619 –0.619 –0.620 –0.620

0.8 –0.612 –0.611 –0.612 –0.612

1.0 –0.600 –0.600 –0.600 –0.600

1.2 –0.584 –0.584 –0.585 –0.585

1.4 –0.564 –0.563 –0.564 –0.570

1.6 –0.530 –0.532 –0.530 –0.545

1.8 –0.485 –0.489 –0.475 –0.515

2.0 –0.425 –0.410 –0.390 –0.480

2.2 –0.320 –0.290 –0.230 –

Present
Merk – type series
Strained coordinate
Local similarity
Local nonsimilarity
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velocity and temperature profiles for various Prandtl numbers (Pr = 0.7, 1, 10 and 100)
at ξ  = 0 are as given in Figures 4 and 5 below. As the value of Prandtl number
increases, the value of velocity and temperature decreases.
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Figure 3 Variation of the surface shear stress ( )0,(xf ′′ ) with x for sinusoidal variation in wall
temperature and various Prandtl number, Pr
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Figure 4 Velocity profiles (x = 0)
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Another numerical example for specified surface heat flux is also considered. In
the case of exponentially increasing surface heat flux, the variable surface heat flux is
written as

( )
( )1

mxwq x
C Q x Ae ,

k
= =

where A has units of temperature divided by length. For comparison, A, m and C1 are
given the value unity. With this surface condition, the parameters required for the heat
transfer calculation can be expressed as

( )
6 5

2 35
1

4

/
x /eξ  = −  

and
2 35

B 1
6

x /e−= −

The results for the dimensionless surface temperature for Pr = 0.7 are presented in
Figure 6 at several streamwise locations, along with the results obtained by other
solution methods. The present numerical method shows good agreement with the
strained coordinate method [13] as well as the Merk-type series method [14].

The variation of the surface shear stress, ( )0f " x, , with x is shown in Figure 7 for
exponential variation in surface heat flux, and Pr = 0.1, 0.7, 1, 7, 10 and 100. We notice
from this figure that as the Prandtl number increases, the surface shear stress decreases.
The velocity and temperature profiles for various ξ (ξ  = 0, 1, 10 and 100) with Pr = 0.7
are as given in Figures 8 and 9. As the value of ξ  increases, the value of velocity and
temperature decreases, but as ξ  gets larger, the decrease is small.
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Figure 5 Temperature profiles (x = 0)
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Figure 6 Comparison of dimensionless temperature for exponential variation in surface heat flux
(Pr = 0.7)
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Figure 7 Variation of the surface shear stress ( )0,(xf ′′ ) with x for exponential variation in surface
heat flux and various Prandtl number, Pr
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     Figure 8 Velocity profiles (Pr = 0.7)

  Figure 9  Temperature profiles (Pr = 0.7)
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5.0 CONCLUSIONS

A numerical method of determining the temperature and heat flux relations in laminar
free convection along a nonisothermal vertical plate has been described. The problems
have been solved numerically using the Keller-box scheme for the cases of sinusoidal
variation in wall temperature and exponentially increasing surface heat flux. The results
for the dimensionless surface temperature ( )0x,θ  and for the dimensionless
temperature gradient, ( )0' x ,θ−  for Pr = 0.7 are obtained and graphed at several
streamwise locations x, along with the results obtained by other solution methods,
namely the local similarity, local nonsimilarity, Merk-type series and the strained
coordinate method. The numerical solutions show good agreement with other
methods particularly methods by [13] and [14]. This numerical method is found to be
simpler and accurate. Further, the variation of the surface shear stress for various values
of Prandtl number, as well as the representative temperature and velocity profiles for
different values of Prandtl number and transformed streamwise coordinate are also
presented for both cases.
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