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NEURAL NETWORK PARADIGM FOR CLASSIFICATION OF
DEFECTS ON PCB

RUDI HERIANSYAH1, SYED ABDUL RAHMAN AL-ATTAS2,
& MUHAMMAD MUN’IM AHMAD ZABIDI3

Abstract. A new technique is proposed to classify the defects that could occur on the PCB using
neural network paradigm. The algorithms to segment the image into basic primitive patterns, enclosing
the primitive patterns, patterns assignment, patterns normalization, and classification have been developed
based on binary morphological image processing and Learning Vector Quantization (LVQ) neural
network. Thousands of defective patterns have been used for training, and the neural network is tested
for evaluating its performance. A defective PCB image is used to ensure the function of the proposed
technique.

Keywords: PCB, defects classification, morphological image processing, LVQ

Abstrak. Satu teknik baru dicadangkan untuk mengkelaskan kerosakan yang boleh terjadi pada
PCB menggunakan paradigma rangkaian neural. Algoritma untuk membahagi-bahagikan imej menjadi
corak primitif, melingkupi corak primitif berkenaan, penandaan corak, normalisasi corak, dan
pengkelasan telah dibangunkan berdasarkan pemprosesan imej morfologi penduaan dan rangkaian
neural Learning Vector Quantization (LVQ). Ribuan corak rosak telah digunakan untuk tujuan
latihan, dan rangkaian neural diuji untuk menilai prestasinya. Satu imej PCB yang rosak digunakan
untuk memastikan teknik yang dicadangkan berfungsi.

Kata kunci: PCB, pengkelasan kerosakan, pemprosesan imej morfologi, LVQ

1.0 INTRODUCTION

A printed circuit board (PCB) is a basic component of many electronic devices. The
quality of PCBs will have a significant effect on the performance of many electronic
products. Conventionally, visual inspection of PCBs is done manually by inspectors.
It is known that humans are subject to make mistakes, and they are slow and less
consistent, whereas automatic inspection systems remove the subjective aspects and
provide fast quantitative dimensional assessments [1], [2]. When applied at each
appropriate step of the assembly process, they can reduce rework costs. All of these
mean better quality at a lower cost. Undoubtedly, the automation of visual inspection
will increase productivity and improve product quality [3].

1, 2&3 Dept. of Microelectronis & Computer Engineering (MiCE), Faculty of Electrical Engineering,
Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia. Tel.: 07-5535274, Fax: 07-
5566272. e-mail: rudi_hn@ieee.org

JTMKK39(D)bab9.pmd 2/16/07, 7:15 PM87



RUDI, SYED ABDUL RAHMAN & MUHAMMAD MUN’IM88

The process in PCB inspection (in term of the defects identification) could be separated
into two main stages: (1) The defects detection, and (2) The defects classification. In
defect detection, it is not important to know the type of defects. But in defect
classification, it is desired to know the type of the detected or identified defects. Usually,
the defects classification will take place after the defect detection mechanism has been
carried out [1]. Presently, there has been a lot of work concentrating on the detection
of defects on PCB. In general, one can group the approaches of these defects detection
techniques into three major classes: (1) Reference based approaches, (2) Non-reference
based approaches, and (3) Hybrid based approaches (combination of the first two
groups) [1], [3]. In a PCB, the defects could be classified as either visual defects or
functional defects. Unlike the visual defects, the functional defects could seriously
affect the function of a PCB. Based on this reason, it is essential to classify the type of
defects that exist on a PCB. Hence the development of algorithms for PCB defects
classification is crucial. In addition, this work is also motivated by the fact that there
are not many algorithms or systems, which have been developed for PCB defects
classification. Many existing or developed algorithms just focus on PCB defects
detection [1], [3]. This work then, is undertaken to develop an algorithm for defects
classification in order to identify correctly the detected defects on a PCB.

Organization of this paper will be as follows. The design of training set and test set
data for neural network is briefly discussed, and followed by neural network design
discussion. Next section discusses on segmentation of the PCB image into basic
primitive patterns, and the windowing technique to enclose these primitive patterns is
briefly described. The patterns assignment is employed to determine the position of
the defects relative to the test image and the defect patterns with its position are called
then as the candidate patterns, and it is discussed in the next section. After that the
discussion is focused on the candidate patterns normalization before they are fed into
the neural network. The experimental result of the algorithm is given in the next section.
Discussion and summary of the experimentation are presented in the final section.

2.0 NEURAL NETWORK DATA DESIGN

Based on a study in [3] and [4], there are about 14 defects that could occur on the PCB
i.e. short, excessive short, missing conductor, conductor too close, missing hole,
breakout (c-pattern), wrong size hole, pinhole, open, mousebite, spur, underetch,
overetch, and spurious copper. In this work, short and excessive short defect will be
treated as the same as short defect. Underetched and overetched will also be treated
as the same as the etching problem defect. Hence, there will be only 12 defects that
will be classified.

In this approach for the purpose of training and testing the neural network, 11
defective patterns have been designed. The designed pattern is in 8 x 8 pixels size,
with binary format. Using this technique, spurious copper defect could be identified
during pattern assignment operation (discussed in Section 6.0), therefore training
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patterns for this type of defect is not needed. Figure 1 shows some of these designed
patterns.

3.0 NEURAL NETWORK DESIGN

The PCB defects could be formed into three groups: the defects on the foreground
only, the defects on the background only, and the defects on both foreground and
background (the defect is caused by interaction with other object). Figure 2 shows
these defects groupings.

To classify the defects, LVQ neural network has been selected as the classifier. The
designed patterns are trained and tested using this neural network. For the neural
network implementation, only two groups of defects will be used for training (i.e. the
foreground, and the background and foreground). Defects on background only
(spurious copper) could be classified directly without any need to pass it to the neural
network.
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Figure 1 Designed defective patterns for NN training and testing. (a) Open. (b) Pinhole.
 (c) Mousebite. (d) Spur. (e) Etching problem. (f) Missing hole. (g) Wrong size hole.

 (h) Breakout. (i) Short. (j) Missing conductor. (k) Conductor too close.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 2 The defects grouping

• Shot [SHOT]
• Missing Conductor [MCON]
• Conductor too Close [CTCL]

• Missing Hole [MHOL]
• Breakout (c-pattern) [BOUT]
• Wrong Size Hole [WSHO]

• Pin Hole [PHOL]
• Open [OPEN]
• Etching defeat [ETCH]
• Mousebite [MBIT]
• Spur [SPUR]

PCB Defects

Foreground Only Foreground & BackgroundBackground Only

• Spurious Copper [SCOP]

Holepad Only Trace Only
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The foreground only defects consist of two types of defects based on the defects
location: the defects on hole pad and the defects on trace only. Hence, there will be
three groups of defects: the defects on foreground and background (Group #1), the
defects on hole pad only (Group #2), and the defects on trace only (Group #3), which
will be the basis for designing the neural network. In the implementation of the neural
network, three neural network designs are used for detecting three defects groups.
The first network (LVQ #1) is for the foreground and background group which detects
the short, missing conductor, and conductor too close. The second network (LVQ #2)
is for the hole pad only group which identifies missing hole, wrong size hole, and
breakout. Finally, the third network (LVQ #3) is for the pads and line group only
(including rectangular pads, square pads, and lines), which classifies pinhole, open,
mousebite, spur, and etching problem defects.

4.0 SEGMENTATION INTO PRIMITIVE PATTERNS

Segmentation is carried out using binary morphological image processing [5]. To
simplify the operation, the primitive patterns are grouped into four main types: hole
pad, rectangular pad, square pad, and line. In segmentation operation, morphological
operators such as dilation, opening, and closing are used. This segmentation involves
a series of image processing operations (morphological image processing based
segmentation and subtraction operation). A detailed algorithm for this segmentation
could be found in [6].

5.0 PRIMITIVE PATTERNS WINDOWING

After segmenting the PCB image into basic primitive patterns, the next step is to
enclose each pattern so that only pixels under this window will be processed.
Windowing operation is also employed to the detected defective patterns. Further
details could be found in [6].

6.0 PATTERNS ASSIGNMENT

The flowchart for the defect classification based on the neural network is shown in
Figure 3. The segmentation into basic primitive patterns is applied only onto the PCB
reference image. The defects detection applied in this work is based on the image
subtraction operation [1]. The segmented primitive patterns of the reference image
will be enclosed using the windowing technique, and these window coordinates will
be mapped onto the test image to generate the same window coordinates for the test
image. At the same time, the detected defects from previous subtraction operation
will also be enclosed using the same windowing technique. At this stage there will be
three windows coordinates or three enclosed patterns: enclosed primitive patterns of
the reference image rpat[i] (with their window coordinates rowStartR, rowEndR,

JTMKK39(D)bab9.pmd 2/16/07, 7:15 PM90



NEURAL NETWORK PARADIGM FOR CLASSIFICATION OF DEFECTS ON PCB 91

colStartR, and colEndR), enclosed primitive patterns of the test image tpat[i] (with
their window coordinates rowStartT, rowEndT, colStartT, and colEndT), and enclosed
detected defects dpat[i] (with their window coordinates rowStartD, rowEndD, colStartD,
and colEndD), with i is the i-th pattern. See Figure 4 for the positions of these coordinates
in each of their patterns. Note that window coordinates of the test image tpat[i]
(rowStartT, rowEndT, colStartT, and colEndT) are equal to the window coordinates of
the reference image rpat[i] (rowStartR, rowEndR, colStartR, and colEndR).

The next step is to do the assignment operation. The aim of this assignment operation
is to define the position of the enclosed defect patterns dpat[i] (based on its window
coordinates) relative to the enclosed test image patterns tpat[i] and tpat[j], with i and
j are the i-th and the j-th pattern respectively. Therefore based on this, the dpat[i]
position can be either match, inside, outside, a part of, between, or close relative to tpat[i]
and tpat[j]. Remember that the active patterns in this assignment operation are dpat[i],
tpat[i], and tpat[j]. The need in using two enclosed test patterns tpat[i] and tpat[j] is
in order to check dpat[i] for the between case. Figure 5 shows active patterns for the
assignment operation.

Start
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PCB Image Segmentation

Windowing Operation

Patterns
Assignment Operation
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Trained Neural Network
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Figure 3 Neural network based PCB defects classification
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The position of dpat[i] whether it is match, inside, outside, a part of, between, or close to
tpat[i] is illustrated in Figure 6 to 11.

colStartR

rpat[i] tpat[i] dpat[i]

colEndR

rowStartR

rowEndR

colStartT colEndT

rowStartT

rowEndT
colEndDcolStartD

rowEndD

rowStartD

Figure 4 Window coordinates for each type of pattern

Figure 5 Active patterns for assignment operation
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rowEndT
colEndDcolStartD

rowEndD

rowStartD

Figure 6 The case for dpat[i] match tpat[i]

Figure 7 The case for dpat[i] inside tpat[i]

Figure 8 The case for dpat[i] outside tpat[i]
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Note that in determining these cases, the process is applied to every defective pattern
from dpat[1] to dpat[n], relative to tpat[1] to tpat[n]. Once every dpat[i] pattern position
has been determined with respect to tpat[i], dpat[i] will be assigned to a new pattern
name cpat[i].

Based on cpat[i] pattern position and tpat[i] pattern’s shape type (hole pad, pads,
and lines) where dpat[i] is attached to, cpat[i] pattern will be assigned to a new window
coordinates. These coordinates will either similar to its original dpat[i] coordinates
(rowStartD, rowEndD, colStartD, colEndD) or to tpat[i] coordinates (rowStartT,
rowEndT, colStartT, colEndT). In addition, the input image to the neural net, which
will be called as the source image, will also be determined based on these two criteria.
The other step in this stage is to decide to which neural network design (LVQ #1, #2,
or #3), cpat[i] belongs to. The description for these steps (assignment operation) is
listed in Table 1. Note from the table that the outside case is not included. The reason
is, any cpat[i] pattern with this case, will be automatically identified as spurious copper

Figure 9 The case for dpat[i] a part of tpat[i]

Figure 10 The case for dpat[i] between tpat[i] and tpat[j]

Figure 11 The case for dpat[i] close to tpat[i]
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defect. Hence it does not need further processing. Note that in Table 1, Ref. Image
means reference image, and Sub. Image means subtracted image (or image after
subtraction operation).

7.0 PATTERNS NORMALIZATION

The patterns are normalized into the size of 8 × 8 pixels. At this stage, any test pattern
(primitive pattern or defective pattern), which is less than 8 × 8, will be enlarged, while
the one that is larger will be reduced into 8 × 8 in size. The scaling algorithm is
described below.

Suppose that the pattern before the normalization is named as old_patij with i and j
denote the row and column respectively, where: ki ...1=  and lj ...1= . If both k and l
are less than 8 × 8, the pattern will undergo the enlargement operation. Otherwise, if k
and l are greater than 8 × 8, the pattern will undergo the minification operation.

Let the pattern after normalization due to minification or enlargement be represented
by new_patmn and     new_patpq, where: 8...1=m , ln ...1= , and 8...1== qp . Note
that  is the pattern after minification or enlargement of old_patij on the row (column)
side only, and  is the pattern after minification or enlargement of  on the column (or
row) side. See Figure 12 for the illustration of old_patij relationship with new_patmn and
new_patpq.

Table 1 Assignment operation

Position Shape type cpat[i] New window Source To
of tpat[i]  coordinates  image LVQ  identify

o Match Line dpat[i] Ref. Image #1 MCON
o Match, Hole pad tpat[i] Sub. Image #2 MHOL,

Inside WSHO,
BOUT

o Match Pad dpat[i] Sub. Image #3 ETCH
o Inside Pad, Line tpat[i] Test Image #3 PHOL,

OPEN,
MBIT

o A part of Any types dpat[i] Sub. Image #3 SPUR
o Between Any types dpat[i] Sub. Image #1 SHOT
o Close Line dpat[i] Sub. Image #1 CTCL
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7.1 Minification: Row

Let sa be a row combination factor, i.e. it indicates how many rows from old_patij need
to be combined in order to be a row in new_patmn, and a indicates the row in new_patmn.
In this situation, s1 and s8 will always equal to 1. In other words, this is to say that the
row of new_patmn is equal to row 1 and row k of old_patij. The reason for doing this is
to preserve the border area.

If for example, s3 = 2, this means that the 3rd row of new_patmn is composed of 2
rows of old_patij. In row composition or combination process, a certain rule will be
applied and this is discussed in Section 7.3. The following paragraphs discuss rules in
determining combination factor sa for a = 2, 3, 4, 5, 6, and 7.

As stated before s1 will be set to the first row of old_patij while s8 will be set to the
last row of old_patij. For the 2nd to the 7th rows of new_patmn, they are constructed
based on the combination factor s2 …, 7. Note that in minification of the row, for every
old_patij pattern, only the index i will be manipulated, the index j will be used in
minification of the column, once the minification of the row has been done. Since the
first row and the last row of new_patmn have already been assigned, there are 6 rows
more that need to be filled up. Let then restRow = i – 2, indicates the remaining row of

j = 1 l........
i = 1

k

.

.

.

.

.

.

.

.

old_patij

n = 1 l........
m = 1

2
3
4
5
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7
8

q = 1 8765432
p = 1

2
3
4
5
6
7
8

new_patmn new_pattpq

j = 1 l...
i = 1

.

.

.
k
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n = 1 l...
m = 1

2
3
4
5
6
7
8

new_patmn

q = 1 8765432
p = 1

2
3
4
5
6
7
8

new_pattpq

(a)

(b)

Figure 12 Relation between old_patij with new_patmn     and     new_patpq. (a) Minification operation.
(b) Enlargement operation.
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old_patij that need to be processed. Now, for every row in new_patmn, the combination
factor, sa, for a = 2, …, 7, is given in Equation (1). The ROUND operator in the equation
is to ensure that the result will always be an integer number.

 
  6
restRow

rowNum = ROUND (1)

To ensure whether all i have been used for s2 …,7, one of the combination factors,
for example s2 will be checked by using the following equation:

rowCheck = (restRow) – (5 × s2) (2)

There could be three cases for rowCheck.
o rowCheck > 0. If rowCheck > 0 then from Equation (1):

s2…6 = rowNum (3a)

s7 = rowCheck (3b)

To check whether the all-available rows i have been used correctly, the following
equation is used:

∑
7

2
a

a=

srestRow = (4)

o rowCheck < 0. There is only one case for rowCheck < 0 in which i = 11.
Then the combination factor sa for a = 2…4 is as given in Equation (5a). The
combination factor for the next three rows (a = 5…7), is given in Equation (5b):

s2…4 = rowNum (5a)

(5b)

o rowCheck = 0. For this case, the following equations are applied:

s2…5 = rowNum (6a)

s7 = 1 (6b)

s6 = s2 – s7 (6c)

7.2 Minification: Column

Minification for the column side is carried out once minification for the rows is already
completed. A new-reduced pattern new_pattpq is constructed based on the reduced
pattern new_patmn from the previous step. Basically, the rules are similar to the row
minification combination operation rule.
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7.3 Minification: Pixel Combinatiopn Operation

At this point, it is important to note that normalization process (either minification or
enlargement) should preserve the property of the original image. In this project, it has
been found that a simple logical AND operator could perform this task. Let p1 and p2
be the pixels in the 1st row (column) and 2nd row (column) respectively. Then the
result of combining these two rows (columns) p12 can be expressed as:

p12 = p1·  p2 (7)

7.4 Enlargement: Row

Enlargement operation is an opposite process from the minification operation.
Enlargement operation will be applied only when i < 8 and j < 8 of old_patij. If i < 8,
then old_patij will be enlarged row-wise to form a new pattern new_patmn, and if n < 8
then new_patmn will be enlarged column-wise to form another pattern new_pattpq.

Let the enlargement factor be denoted by sb, where b = 1,…, 7 indicates the position
of row of new_patmn. Unlike in the minification operation, enlargement operation uses
these enlargement factors sb to expand one row of old_patij to become several rows of
new_patmn. Similarly, these factors are used to expand one column of new_patmn into
several columns of new_pattpq. In other words, the enlargement factor is to duplicate
the numbers of the original row (column) accordingly.

In the event that old_patij has only one row or i = 1 then the enlargement for both in
row and column side will be enlarged 8 times as in Equation (8a).

rowCnt = 8 (8a)

But if i > 2, then Equation (8a) has to be modified as:

8
1

 
  

rowCnt = ROUND (8b)

where the ROUND operator is to ensure that the result will always be an integer. From
Equation (8b), the enlargement factor sb, for i = 1 to 7, will be as follows:

o i = 1 = 1 = 1 = 1 = 1. For i = 1, s1 is as in Equation (9).

s1 = rowCnt (9)

o i = 2 = 2 = 2 = 2 = 2. For i = 2, s1, 2 is as in Equation (10).

s1, 2 = rowCnt (10)

o i = 3 = 3 = 3 = 3 = 3. For i = 3, s1…3 is as given in Equations (11a) and (11b).

s1, 2 = rowCnt (11a)

s3 = 2 (11b)
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To check whether Equation (11a) and (11b) has distributed i correctly, Equation
(12) could be used.

1

8
=

=∑
i

b

sb (12)

o i = 4. For i = 4, s1…4 values are given in Equation (13).

s1…4 = rowCnt (13)

 o i = 5. For i = 5, s1…5 values are given in Equations (14a) and (14b).

s1…3 = rowCnt (14a)

s4…5 = 1 (14b)

o i = 6. For i = 6, s1…6 values are given in Equation (15a) and (15b).

s1…4 = rowCnt (15a)

s5, 6 = 2 (15b)

o i = 7. For i = 7, s1…7 values are given in Equation (16a) and (16b).

s1…6 = rowCnt (16a)

s7 = 2 (16b)

7.5 Enlargement: Column

The enlargement for column wise has the same rule as with the enlargement for the
row wise. All equations, Equation (9) to (16b), are employed for enlargement in column
wise. After enlargement on the row wise is applied (if i < 8), and if , then the enlargement
on column wise is carried out.

8.0 EXPERIMENTAL RESULTS

In PCB defects classification, neural network training is an off-line operation. Neural
network was trained using LVQ net. There are three LVQ nets for three groups of
defects. There are 64 inputs for each LVQ net, 3 outputs for LVQ #1 and #2, and 5
outputs for LVQ #3. Output was represented with [1 2 … n], where n indicates type of
n-th defect. Figure 13 shows neural network topology for LVQ #1, #2, and #3. In this
approach, the numbers of first layer neurons (hidden layer neurons) for each LVQ net
was selected by testing with various numbers of neurons, and by considering the
most optimum one. By using the optimum parameters as already described in the
previous section, each neural network was trained and tested by using various numbers
of data.
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There are 500 defective patterns for each type of defect as the training set (or a total
of 5500 defective patterns for all defects for the training data set) and 100 defective
patterns per set for the test data set for each type of defect. Classification result is
shown in Table 2. The table shows an overall correct classification result as 97.55%.

Figure 13 Neural network topology
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Table 2 Classification result

Defects Classification (%)

Foreground & Background
o Short [SHOT] 100
o Missing Conductor [MCON] 100
o Conductor too Close [CTCL] 100

Holepad Only
o Missing Hole [MHOL] 96.00 (4.00 WSHO)
o Wrong Size Hole [WSHO] 100
o Breakout [BOUT] 100

Trace Only
o Pinhole [PHOL] 92.00 (8.00 OPEN)
o Open [OPEN] 93.00 (7.00 PHOL)
o Mousebite [MBIT] 97.00 (1.00 PHOL, 2.00 SPUR)
o Spur [SPUR] 97.00 (3.00 ETCH)
o Etching Problem [ETCH] 98.00 (1.00 OPEN, 1.00 SPUR)

Figure 14(a) shows a synthetic 256 × 256 PCB image as the reference, and Figure
14(b) shows a defective image, both are in binary format, for an example, to test the
developed algorithm. The first step is to segment the reference image into basic primitive
patterns, and then to generate the window coordinates for these individual segmented
primitive patterns. The next step is to subtract the test image from the reference image
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in order to detect the defects, and again the same windowing technique is employed
to the defective patterns to generate the windows coordinates.

The third step is to define the position of the defective pattern dpat[i] relative to the
segmented test primitive patterns tpat[i], or to find out whether dpat[i] is in one of
these cases: inside, match, outside, a part of, between, or close to tpat[i]. After defining
the case for each defects patterns, it is to be decided to which neural network (LVQ
#1, #2, or #3) dpat[i] belongs to. A new pattern notation cpat[i] is introduced to
replace the previous notation of dpat[i]. In this stage also, the coordinates of cpat[i]
are defined whether they are taken from dpat[i] or tpat[i] coordinates, and the source
image of the pattern will also be determined in this step. From this result, the patterns
under the coordinates are then normalized based on the source image (working area)
for that pattern. After the normalization operation, all the normalized cpat[i] are fed to
the neural network for classification process. Every cpat[i] will be passed to appropriate
LVQ Net (#1, #2, #3) according to its LVQ IDLVQ IDLVQ IDLVQ IDLVQ ID.

Figure 14 (a) Reference image. (b) Test image.

(a) (b)

  

Figure 15 shows classification result for the test image. Table 3 is provided to
appreciate the results obtained. Numbers under column heading cpat[i] in Table 3 is
associated to the numbers shown in Figure 15.
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9.0 DISCUSSION

As shown in Figure 15 and Table 3, all defects could be successfully classified. For
performance comparison, a pixel-based approach developed by Wu et al. [1] was used.
At the time of writing this paper, this was the only algorithm designed for defect
classification. The pixel-based approach could classify seven defects (short, missing
hole, pinhole, open, mousebite, spur, and etching problem) [1], but the NN-based

Figure 15 Classification result

Table 3 Defects classification

Defects Type cpat[i]

Short [SHOT] 16
Missing Conductor [MCON] 1
Conductor too Close [CTCL] 18
Missing Hole [MHOL] 7, 12
Wrong Size Hole [WSHO] 6, 13
Breakout [BOUT] 5
Pinhole [PHOL] 8, 11
Open [OPEN] 10
Mousebite [MBIT] 9, 14
Spur [SPUR] 15,17
Etching Problem [ETCH] 2
Spurious Copper [SCOP] 3, 4
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approach proposed in this work could classify twelve defects (short, missing conductor,
conductor too close, missing hole, wrong size hole, breakout, pinhole, open, mousebite,
spur, etching problem, and spurious copper).

Another issue, which is worth addressing, is the processing time in classifying each
defect. In this approach there are few stages involved: segmentation, windowing (reference
image and detected defects), defects detection, pattern assignment, normalization, and
classification. For the neural network training part, since this process is done off-line, it
does not affect the overall processing time. Among these five stages, the windowing
task is the most time consuming operation (see Table 4), due to the operation working
at pixel level, meaning that every individual pixel is analysed. In addition, the results
of the windowing operation, i.e. window coordinates are saved into the hard disk,
which adds more processing time.

Table 4 shows overall processing time for the sample image. The first two stages
could be done separately and only once. By including segmentation and windowing
of the reference image operation processing time, it takes 16.39s to classify all 18 defects
on Pentium III 800 MHz with 256 MB RAM, while by excluding the segmentation
and reference image windowing as in real implementation, it takes about 3.97s to
classify all defects. The processing time for the classification stage is only 0.82s for 18
defects, or approximately 0.046s to classify each defects. For the pixel-based approach
reported in [1], the processing time is 15.68s. It takes 5.26s for the defect detection and
an average of 1.49s for classifying each defect.

Table 4 Classification time

Stages Processing Time (s)

Segmentation 0.55
Windowing (reference image) 11.87
Defects detection 0.11
Windowing (test image) 2.50
Patterns assignment 0.16
Normalization 0.38
Defects classification 0.82

10.0 CONCLUSION

This paper proposes a new technique for PCB defects classification. It has been
demonstrated that the proposed algorithm could classify correctly all possible type of
defects that could occur on the PCB. It also has been shown that the defects classification
technique based on neural network is better than pixel-based defects classification
technique in term of numbers of classified defects and processing time.
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