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LINEAR STABILITY OF THIN LIQUID FILM ON SOLID
SURFACE UNDER EFFECT OF APOLAR AND POLAR FORCES

EL-HARBAWI M.1*, MUSTAPHA S.2, IDRIS A.3, JAMEEL A.T.4 & CHUAH T.G.5

Abstract. The total excess free energy per unit area (∆G) of a pure, uncharged thin film on a
support is solely derived from the apolar (Lifshitz - van der Waals) and polar (acid-base) intermolecular
interactions. Polar interactions are variously described as the hydration pressure, hydrophobic interaction
and acid base interaction. The total free excess energy (per unit area) of a thin film on a substrate
depends on the film thickness, and the apolar and polar spreading coefficients for the system. The film
is modelled as a two-dimensional Newtonian liquid of constant density, ρ and viscosity, µ, flowing on
a horizontal plane. The liquid film of mean thickness, h0, is assumed to be thin enough to neglect the
gravity effect and bounded above by a passive gas and laterally extends to infinity (two-dimensional
model). The body force term in the Navier-Stokes equation is modified by the inclusion of excess
intermolecular interactions (apolar and polar forces) between fluid film and the solid surface owing to
apolar and polar forces. The modified Navier-Stokes equation with associated boundary conditions is
solved under long wave approximation method to obtain a nonlinear equation of evolution of the film
interface. The apolar and polar forces were found to play the dominant role in characteristic of thin
films and the main effect on the behavior of the excess free energy, growth rate, maximum growth rate,
neutral wave, dominant wavenumber, dominant wavelength and rupture time. Hence, the linear
theory is inadequate to describe the stability characteristics of films.
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Abstrak. Tenaga lebihan bebas Gibb per unit luas (∆G) bagi suatu saput nipis yang tulen, tanpa
cas pada satu sokongan hanya diterbitkan daripada interaksi antara molekul apolar (Lifshitz - van der
Waals) dan polar (acid-bes). Interaksi polar dapat dinyatakan secara berasingan sebagai tekanan
penghidratan, interaksi hidrofobik dan intekrasi asid-bes.  Jumlah tenaga lebihan bebas Gibb per unit
luas (∆G) bagi satu saput nipis pada satu lapisan bergantung kepada ketebalan saput, dan angkali
penyebaran apolar dan polar untuk sistem tersebut. Saput dimodelkan sebagai cecair Newtonian 2-
dimensi dengan ketumpatan tetap, ρ, dan kelikatan, µ, mengalir di atas satu permukaan mengufuk.
Ketebalan purata saput cecair, h0, dianggapkan cukup nipis supaya kesan graviti boleh diabaikan dan
melambung atas oleh gas pasif dan menyambung secara lateral hingga infiniti (Model dua-dimensi).
Daya badan yang disebut dalam persamaan Navier-Stokes adalah diubahsuaikan oleh kandungan
interaksi antara molekul lebihan (daya apolar dan polar) antara saput bendalir dan permukaan pepejal
bergantung kepada daya-daya apolar and polar. Persamaan Navier-Stokes telah diubahsuai dengan
keadaan sempadan berkaitan diselesaikan bawah kaedah pendekatan gelombong panjang untuk
memperolehi persamaan perkembangan tak-linear bagi saput antara permukaan. Daya apolar dan
polar telah didapati memainkan peranan pencirian atas saput nipis dan kesan utama pada sifat tenaga
lebihan bebas, kadar penubuhan, kadar penubuhan maksimum, gelombong neutral, nombor
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gelombong yang dominan, jarak gelombong dominan dan masa memecah. Oleh demikian, teori
linear adalah kurang sesuai untuk menyatakan kestabilan pencirian selaput.

Kata kunci: Daya apolar, daya polar, kestabilan linear, kadar pertumbuhan, masa memecah

1.0 INTRODUCTION

The study of ultrathin (≤ 100 nm) fluid films has become more and more important
and popular recently since it is frequently applied in mechanical, chemical, biomedical
engineering, and high-tech processing among other applications     as they allow the
modelling of various disperse systems. These include free aqueous films as models
for foams, a film of one liquid in another as a model for emulsion and thin liquid film
between solids as a model for colloidal suspensions. From its formation, the aqueous
film gradually becomes thinner, either until reaching a stable thickness or until
rupturing. This latter case is caused by the undamped growth of fluctuations at the
film surfaces [1]. A film is simply a layer of material and while the term ‘thin’ is imprecise,
it is generally used to describe a layer of thickness of less than about 1 µm. The study
of thin films of solid materials is old by modern standards, but recent years have seen
a burgeoning of activity, which has now become so great that the subject is a major
component of today’s physics of solid state. A thin film, being simply a thin slice from
a material, has all the properties of that material, albeit modified by the special way in
which it has, been made and by the fact that it has a very large ratio of surface to
volume. Interest in thin films arises because of the range of uses and applications that
they offer [2]. For extremely thin films of thickness, i.e., less than 50 µm, the free surface
becomes unstable and deforms when the force per unit volume; i.e., the second
derivative of the total free energy with respect to the film thickness, becomes negative
[3,4]. The total excess free energy of a pure, un-charged thin film on a support is solely
derived from the apolar and polar intermolecular interactions. The polar interactions
[5,6] have been var-iously described as the hydration pressure, hydrophobic
in-teractions, hydrogen bonding, acid base interactions [6,7] among others, and are
clearly important for films of polar liquids (e.g., water) bounded by apolar or polar
media. Polar inter-actions may be quantified by direct force measurements [5,8], or
by more facile measurements of macroscopic parameters such as Interfacial tensions
and equilibrium contact angles [5,7], all of which are rather profoundly af-fected by
the polar interactions. Since the free energy of a thin film is but a remnant of the
interfacial energy between bulk phases, stability of a thin film is also altered by the
energy of polar interactions [9]. Previous investigations of thin film stability have largely
focused on the role of apolar (Lifishitz van der Waals) forces, which always engender
a true rupture of the film [4, 10] whenever the effective Hamaker constant is positive,
i.e., the apolar (LW) component of the spreading coefficient (SLW) is negative. These
conditions also ensure that the second derivative of the free energy (force per unit
volume) is negative for all film thickness. However, as is shown later, the system
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consisting of substrate, film and bounding fluid are completely apolar only when the
film is fluid and at least one of the bounding media is apolar (e.g., hydrocarbon films
bounded by a gas), in which case the polar component of the spreading coefficient
vanishes. It is only in this particular case that the total free energy of the system is
derived from the sum of apolar interactions. Based on the linear stability analysis of
Navier Stokes equations for the thin film, we have recently derived conditions for the
initial growth of infinitesimal perturbations in the apolar and polar systems [11]. Thin
liquid films have been the objects of many investigations, and model studies, which
are difficult to realize with real dispersion systems, are carried out with thin liquid
films. In this way, phenomena that are connected with the type and distribution of the
surfactants on the interface and affect the hydrodynamic behavior and interactions in
thin liquid films and their stability are studied [12].

The present work aims at examining linear effects in stability of thin film. This
study extends the work of Ruckenstein & Jain [13], Williams and Davis [10], Burelbach
et al., [14] and Jameel and Sharma [15] to include the effect of the apolar and polar
forces on the stability of the thin liquid film on solid surface.

2.0 MODEL

Two-dimensional fluid motion in thin film (Figure 1) is governed by the Navier-Stokes
equations with the inclusion of excess body forces derived from apolar and polar
intermolecular interactions. The equations of motion and associated boundary
conditions at the free surface are simplified considerably whenever the film deformation
occurs on a length scale that is large compared to the film thickness. The long
wavelength reduction procedure [16,17], when applied to a laterally unbounded, pure
thin film resting on a substrate, gives the following leading order nonlinear equation
of evolution for the film thickness, ( )txh ,  [10,17,18]:

3
23

1
[ ( )] 0

3t x xxx xh h hφ γ
µ

− − = (1)

where subscripts denote differentiation; µ,, xt  and 23γ  are denoted as time, lateral
space coordinate, film viscosity, and film surface tension respectively and φ  is denote

Figure 1 Schematic presentation of interfacial instability of thin fluid, 3 bounded by a substrate, 1
and a semi-infinite fluid, 2.
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to the excess potential energy per unit volume of the film due to intermolecular
interactions. Equation (1) is a fourth order nonlinear equation which is solved for the
film profile, ( )txh , , if the appropriate form of excess free energy for the film is known,
is obtained when the viscosity of the bounding fluid is small compared to the viscosity
of the film (e.g., gas-film interface). The same form of the equation (with numerical
constant 3 being replaced by 12) is also obtained if the bounding fluid has a large
viscosity [19].

The total excess free energy of interaction (per unit area) of two electrically neutral
pure bulk phases (1 and 2) separated by a film of fluid 3 is the sum of apolar ( )hGLW∆
and polar ( )hGP∆  excess energies of interactions [20]:

( ) ( ) ( )hGhGhG PLW
T ∆∆∆ += (2)

The excess free energy due to apolar force expressed in terms of macroscopic
parameter of wetting the separation coefficient due to apolar interactions [15, 20]:

( )22
0 hdSG LWLW =∆ (3)

where (SLW) is the apolar component of spreading coefficient and d0 is equilibrium
separation distance between two bulks phase at contact. The equilibrium distance
between Kihara shells of the molecules is given as 0.158 nm [21,22].

The excess free energy due to polar force is given as [20]:

0 0( ) exp[( ) / ]P PG h S d h l∆ = − (4)

where (SP), the polar component of spreading coefficient and l0, is correlation (decay)
length for the polar fluid. l0 for water lies in the range (0.2 to 1.2) nm, with the best
estimate of about 0.4 nm [23].

By replacing Equation (3) and Equation (4) into Equation (2); total excess energy of
interaction per unit area is given as:

( ) ( ) ( )[ ]00
22

0 exp lhdShdShG PLW
T −∆ += (5)

The second derivative of Equation (5) is:

( )=∂∆∂= 22 hGhφ ( ) ( ) ( )[ ]00
2
0

42
0 exp6 lhdlhdS PLW S −+ (6)

Now, Equation (1) can be rearranged as:

( ) ( ) ( ) ( ){ }{ }[ ] 0631 0
2
0

2
0

42
0

33
23 exp =+−+ x

PLW
xxxxt ldlShSdhhhhh γµ (7)

Where the x-component of the body force, φx is evaluated as φhhx where φh is the
second derivative of the surface free energy due to intermolecular interactions [20].

3.0 METHOD OF SOLUTION

3.1 Linear Stability Analysis

The initial (short time) evolution of the film profile is adequately described by linearized
equation (about the trivial state) whenever the amplitude of initial disturbance is much
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smaller than the mean film thickness. Linearization of the general equation of evolution
in dimensional form, Equation (1) around the mean film thickness, h = 1, leads to the
following solution, [10]:

( ) ( )txhhtxh ,, 10 += (8)

( ) txetxh ωλε sin,1 = (9a)
txeth ωλεω sin1 = (9b)

xexh t λελ ω cos1 = (9c)

xexxh t λελ ω sin2
1 −= (9d)

xexxxh t λελ ω cos3
1 −= (9e)

xexxxxh t λελ ω sin4
1 −= (9f)

Here, ω is the disturbance growth rate, λ, is the wavenumber and ε, is the dimen-
sional amplitude disturbance. Equation (1) can be rewritten as:
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If we substitute Equation (9a–9f) into Equation (10), we obtain the characteristic equation:

[ ]
µ
λλγφω

3

23
02

230

h
h ×+−= (11)

Small disturbance grow if ω > 0 and decay if ω < 0. Hence, it is obvious from
Equation (11) that whenever (φho) > 0, i.e., the force field is purely repulsive, the growth
coefficient is negative and real quantity as (λ) is always positive. In this case, any
imposed disturbances are attenuated and a stable planar film is eventually formed.
Therefore, the film becomes unstable, viz., ω < 0 any when (φho) (force per unit volume)
> γ 23λ2.

The linear theory predicts unhindered growth of surface deformation (ω > 0) up to
the point of film rupture whenever condition is satisfied. However in reality, the linear
theory can predict neither the time scale on which instability evolves, nor the eventual
fate of the growing deformations when the (repulsive) nonlinear interactions become
important in Equation (1). The growth of instability may lead either to true rupture
(but on a time scale different from that predicated by the linear theory), or to a complex
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time stationary shape for the film. In essence, the linear theory assumes a constant
force during all stages of film deformation, whereas in reality, thinner and thicker
portions of the film encounter different (nonlinear) force fields as perturbations grow.
The total force may even reverse its sign over a part of the film. In order to assess the
role of nonlinearities, we may take the linear theory seriously up to the point of film
breakup, and determine a time of rupture by setting h = 0 at λx = –1 in equation below
[15]:

texh ωλε sin1 0+= (12)

This gives a linear estimate for the time of film rupture for a disturbance of wave, λ:

ελω
1ln

)(
1=lt (13)

The shortest time of rupture from the linear theory is clearly obtained for the dominant
wave, λ = λm.

4.0  RESULTS AND DISCUSSION

It is obvious from Equation (11) that the growth rate (ω) depends on the thickness of
the film (h0), wavenumber (λ) and excess free energy (φho). The linear theory predicts
that the growth rate can only appear if the second derivative of the free energy with
respect to film thickness, (φh) evaluated at the mean film thickness, (h0) is negative.
The function (∂2∆G/∂h2) = φh(h) (Equation (6)), displays five qualitatively distinct
shapes depending upon the sign and magnitude of (SLW) and (Sp). The growth rates
of various models are illustrated in relation to film thickness, (h0) in Figures (2) to (11)
for cases when λ = (0.02 to 0.1) and λ =  (0.2 to 1.0). The growth rate in the Figures (2)
to (5) are positive, hence the film is stable, since the values of components of free
energy  and  are negative and the growth rate in the Figures (6) to (11) are negative,
hence the film is unstable and the values of components of free energy (SLW) and (Sp)
are positive. It is clearly seen from these figures, the values of the growth rate are too
small, which means that the rupture time in case of thin film with apolar and polar
forces will take a longer time to occur.
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Figure 2 Growth rate as a function of h0 at λ = (0.02 – 0.1) from linear theory. For SLW and Sp =
–100 mJ/m2.

Figure 3 Growth rate as a function of h0 at λ = (0.2 – 1.0) from linear theory. For SLW and Sp =
–100 mJ/m2.
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Figure 4 Growth rate as a function of h0 at λ = (0.02 – 0.1) from linear theory. For SLW and Sp =
–50 mJ/m2.

Figure 5 Growth rate as a function of h0 at λ = (0.2 – 1.0) from linear theory. For SLW and Sp =
–50 mJ/m2.
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Figure 6 Growth rate as a function of h0 at λ = (0.02 – 0.1) from linear theory. For SLW and Sp =
0 mJ/m2.

Figure 7 Growth rate as a function of h0 at λ = (0.2 – 1.0) from linear theory. For SLW and Sp =
0 mJ/m2.
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Figure 8 Growth rate as a function of h0 at λ = (0.02 – 0.1) from linear theory. For SLW and Sp =
50 mJ/m2.

Figure 9 Growth rate as a function of h0 at λ = (0.2 – 1.0) from linear theory. For SLW and Sp =
50 mJ/m2.
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Figure 11 Growth rate as a function of h0 at λ = (0.2 – 1.0) from linear theory. For SLW and Sp =
100 mJ/m2.

Figure 10 Growth rate as a function of h0 at λ = (0.02 – 0.1) from linear theory. For SLW and Sp =
100 mJ/m2.
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5.0 CONCLUSION

The stability of thin liquid film (h0 ≤ 100 nm) is correlated to the macroscopic parameters
of wetting, by both the apolar and polar free energy components. The apolar and
polar free energy components (per unit area) of a thin film on a substrate depend on
the film thickness, and the apolar and polar components of spreading coefficient for
the system. The free interface of the film becomes unstable and deforms when the
growth rate is negative. The stable film will only be formed if both the apolar, (SLW)
and the polar, (Sp) components of free energy are in negatives values. The small growth
rate indicates that the rupture time may be not appear or will take longer time to
happen. In this present case, a small growth rate was found in thin film.
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