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Graphical abstract 
 

 

Abstract 
 

A nonlinear control method is considered for stabilizing all attitudes and positions (x, 

y or z) of an underactuated X4-AUV with four thrusters and six degrees-of-freedom 

(DOFs), in which the positions are stabilized according to the Lyapunov stability 

theory and angles are stabilized using backstepping control method. A dynamical 

model is first derived, and then a sequential nonlinear control strategy is 

implemented for the X4-AUV, composed of translational and rotational subsystems. 

A controller for the translational subsystem stabilizes one position out of x-, y-, and z-

coordinates, whereas controllers for the rotational subsystems generate the desired 

roll, pitch and yaw angles. Thus, the rotational controllers stabilize all the attitudes of 

the X4-AUV at a desired (x-, y- or z-) position of the vehicle. Some numerical 

simulations are conducted to demonstrate the effectiveness of the proposed 

controllers.  

 

Keywords: Underactuated system, X4-AUV, backstepping control, Lyapunov stability 

theory 

 

Abstrak 
 

Kaedah kawalan tidak linear dipertimbangkan untuk menstabilkan pusingan dan 

kedudukan (x,y atau z) sebuah X4-Autonomous Underwater vehicle yang kurang 

penggerak dengan empat penujah dan enam darjah kebebasan (DOF), dimana 

kedudukan distabilkan berdasarkan kepada teori kestabilan Lyapunov dan sudut 

distabilkan dengan kaedah kawalan langkah kebelakang. Model dinamik 

diterbitkan dahulu, kemudian strategi kawalan sekuen tidak linear dilaksanakan 

untuk X4-AUV yang terdiri daripada peralihan dan putaran. Kawalan untuk 

subsistem peralihan menstabilkan satu kedudukan daripada koordinat x-,y- dan z-, 

manakala kawalan untuk subsistem putaran menjanakan sudut roll, pitch dan yaw 

yang dikehendaki. Oleh itu, pengawal putaran menstabilkan semua kedudukan X4-

AUV pada kedudukan (x-, y- or z-) kenderaan tersebut. Simulasi berangka 

dijalankan untuk menunjukkan keberkesanan pengawal yang dicadangkan. 

 

Kata kunci: Sistem kurang penggerak, X4-AUV, kawalan langkah belakang, teori 

kestbilan Lyapunov 
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1.0  INTRODUCTION 
 

In the last few years, there has been major interest in 

developing stabilizing algorithms for underactuated 

systems. Underactuated systems are systems with 

fewer independent control actuators than degrees 

of freedom to be controlled. Hence, the dynamical 

equations of the vehicle exhibit so-called second-

order nonholonomic constraints, i.e., non-integrable 

conditions imposed on the acceleration in one or 

more DOFs directions due to the lacks of capability 

to command instantanenous accelerations in these 

directions of the configuration space [1]. As pointed 

in a celebrated paper of Brockett in 1983 [2], such 

nonholonomic systems cannot be stabilized by usual 

smooth, time-invariant and state feedback control 

algorithms. Underactuation arises out of the need to 

reduce the actuators cost and weight or to increase 

the reliability of the system in case of actuator failure. 

The interest comes from the need to stabilize systems 

like ships, underwater vehicles, helicopters, aircraft, 

airships, hovercrafts, satellites, walking robots, etc., 

which may be underactuated by design.  

Several control strategies based on passivity, 

Lyapunov theory, feedback linearization, etc. have 

been developed for the fully actuated case. 

However the techniques developed for fully 

actuated systems do not apply directly to the case 

of underactuated nonlinear systems. 

An X4-AUV with an ellipsoid hull shape was studied 

by Zain [3][4], in which it makes only use of four 

thrusters to control the vehicle without using any 

steering rudders, falls into the class of underactuated 

AUVs since it has 6-DOFs (position (x, y, z), pitch, roll 

and yaw) and has nonholonomic features. The 

consideration of nonholomic systems is an interesting 

study from a theoretical standpoint, because as 

pointed out in the earlier works of Brockett, they 

cannot be asymptotically stabilized to a fixed point in 

the configuration space using continuously 

differentiable, time-invariant and state feedback 

control laws [2]. 

In this paper, we present a dynamic model of an 

underactuated X4-AUV with 6-DOFs and four control 

inputs and propose a control scheme based on the 

Lyapunov approach and backstepping control 

strategy to stabilize one position out of x-, y-, and z-

coordinates and all the angles. The controller for the 

translational subsystem stabilizes the position and the 

controllers for the rotational subsystems generate the 

desired roll, pitch and yaw angles.  

Chapters are organized as follows. In section 2, the 

coordinate system of an AUV is presented. The 

dynamic system of an X4-AUV is discussed in Section 

3. Section 4, we present the control strategy to 

stabilize the X4-AUV. The discussion and simulation 

results are given in Section 5. Section 6 concludes the 

paper 
 

 

 

 

2.0  DEFINITION OF COORDINATE SYSTEM 
 

In order to describe the underwater vehicle's motion, 

a special reference frame must be established. There 

have two coordinate systems: i.e., inertial coordinate 

system (or fixed coordinate system) and motion 

coordinate system (or body-fixed coordinate system). 

The coordinate frame {E} is composed of the 

orthogonal axes {Ex Ey Ez} and is called as an inertial 

frame. This frame is commonly placed at a fixed 

place on Earth. The axes Ex and Ey form a horizontal 

plane and Ez has the direction of the gravity field. 

The body fixed frame {B} is composed of the 

orthonormal axes {X, Y, Z} and attached to the 

vehicle. The body axes, two of which coincide with 

principle axes of inertia of the vehicles, are defined in 

Fossen13 as follows:  

 

X is the longitudinal axis (directed from aft to fore)       

Y is the transverse axis (directed to starboard)   

Z is the normal axis (directed from top to bottom)   

 

Figure 1 shows the coordinate systems of AUV, which 

consist of a right-hand inertial frame {E} in which the 

downward vertical direction is to be positive and 

right-hand body frame {B}. 

 
Figure 1 Coordinate systems of AUV 

 

 

Letting  Tzyx  denote the mass center of 

the body in the inertial frame, defining the rotational 

angles of X-, Y- and Z-axis as  T , the 

rotational matrix R from the body frame {B} to the 

inertial frame {E} can be reduced to: 












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


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(1) 

where cα denotes cos α and sα is sin α. 
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3.0  SYSTEM DESCRIPTION 
 

Defining  T    T q , the dynamical model of an X4-

AUV is described in the following matrix form: 

)()()()( qq qqqqq BGVM m        ,  (2) 

where 66)( qM  is the symmetric, positive definite 

inertia matrix, 66)( qq   ,mV  is the centrifugal and 

Coriolis matrix, 6)( qG  is the gravitational vector, 

46)( qB  is the input transformation matrix, and 

4  is a generalized force vector consisting of 

force or torque components.  

Note also that each matrix in the dynamical model 

can be reduced to 
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Here, m1, m2 and m3 is a total mass in the x-, y- and 

z-direction, Ix, Iy  and Iz is a total inertia in the  x-, y- 

and z- direction, Jt is a total thruster inertia, l is a 

horizontal distance from the propeller center to the 

center of gravity, mb is a mass of the vehicle, Jb is an 

inertia matrix of the vehicle, I denotes the unit matrix, 

Mf is an added mass matrix, and Jf  is an added 

moment of inertia matrix. Assuming that the fluid 

density is  and the present AUV form is ellipsoid, it is 

found that suitable Mf and Jf are obtained.15 

Furthermore assume that the X4-AUV is in the state of 

neutral buoyancy to neglect the potential energy, so 

that 0)( qG . From the rotational matrix (1), the 

kinematic equation for X4-AUV. 

vqq )(S  (3) 

can be reduced to 













































































































bx

s

sc

cc

z

y

x

1000

0100

0010

000

000

000

 
(4) 

because the lateral type X4-AUV has only the total 

thrust in the X-direction, where   Tbxv   , 

where bx denotes the X-directional translational 

velocity and  T   is the rotational angular 

velocity vector in the body frame. 

 

Therefore, the dynamic equations of motion for an 

X4-AUV in Equation (2) can be written as 

4

3

2

13

12

11

)(
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
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 (5) 

The whole system is setup by connecting the PI 

camera module to the CSI port on the Raspberry PI 

board via ribbon cable while the LCD screen is 

connected to the board via HDMI cable. The wireless 

keyboard and mouse is connected to the board 

using wireless USB adapter. This is only needed when 

manipulation of code is required. The power is 

supplied to the board by connecting a micro USB to 

USB cable to a wall socket USB adapter or power 

bank.  

 

 

4.0  CONTROL STRATEGY OF AN X4-AUV 
 

The model (5), can be rewritten in a state-space form 

),( UXfX  by introducing  𝑋 = (𝑥1⋯𝑥12)
𝑇 𝜖 ℜ12 as 

state vector of the system as follows: 
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𝓍1 = 𝓍 
𝓍2 = 𝓍̇1 = 𝓍̇ 
𝓍3 = 𝑦 
𝓍4 = 𝓍̇3 = 𝑦̇ 
𝓍5 = 𝑧 
𝓍6 = 𝓍̇5 = 𝑧̇ 

𝓍7 = ∅ 

𝓍8 = 𝓍̇7 = 𝜙̇ 
𝓍9 = 𝜃 

𝓍10 = 𝓍̇9 = 𝜃̇                     
𝓍11 = 𝜓 

𝓍12 = 𝓍̇11 = 𝜓̇ 
 

(6) 

 

where the inputs  𝑈 = ( 𝑢1⋯𝑢2)
𝑇 𝜖 ℜ4.  

 

 
 
Figure 2 Connection of rotational and translational 

subsystems 

 

 

From (5) and (6), we obtain: 

 

𝑓(𝑋, 𝑈) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝓍2

(cos 𝜃 cos𝜓)
1

𝑚1
𝑢1

𝓍4

(cos 𝜃 sin 𝜓)
1

𝑚2
𝑢1

𝓍6

(− sin 𝜃)
1

𝑚3
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𝓍8
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Iy − Iz

Ix
) +

𝑙

Ix
𝑢2

𝓍10

𝓍8𝓍12 (
Iz − Ix
Iy

) −
Jt
Iy
𝓍12Ω +

𝑙

Iy
𝑢3

𝓍12

𝓍8𝓍10 (
Ix − Iy

Iz
) +

Jt
Iz
𝓍10Ω +

𝑙

Iz
𝑢4)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (7) 

 

with: 

 𝒶1 = (Iy  − Iz)/Ix 

 𝒶2 = (Iz  − Ix)/Iy 

 𝒶3 =  Jt/Iy 

 𝒶4 = Jt/Iz 

 𝒶5 = (Ix  − Iy)/Iz 

𝑏1 = 1/ Ix 

𝑏2 = 𝑙/ Iy  

𝑏3 = 𝑙/ Iz   

 

It is worthwhile to note in the latter system that the 

angles and their time derivatives do not depend on 

translation components. On the other hand, the 

translations depend on the angles. We can ideally 

imagine the overall system described by (7) as 

constituted of two subsystems, the angular rotations 

and the linear translations, see Figure 2. 

4.1  Control of the Rotations Subsystem 

 

Using the backstepping approach, one can 

synthesize the control law forcing the system to follow 

the desired trajectory. For the first step we consider 

the tracking-error: 

𝓏1 = 𝓍7𝑑 − 𝓍7 (8) 

And we use the Lyapunov theorem by considering 

the Lyapunov function 𝓏1 positive definite and it’s 

time derivative negative semi-definite: 

 

V (𝓏1) =
1

2
𝓏1
2 (9) 

V̇(𝓏1) = 𝓏1(𝓍̇7𝑑 − 𝓍8) (10) 

 

The stabilization of  𝓏1 can be obtained by 

introducing a virtual control input𝓍8: 
 

𝓍8 = 𝓍̇7𝑑 + α1𝓏1with: α1 > 0 (11) 

The Equation (6) is then: 

 

V̇(𝓏1) = −α1𝓏1
2 (12) 

Let us proceed to a variable change by making: 

 

𝓏2 = 𝓍8 − 𝓍̇7𝑑  − α1𝓏1 (13) 

For the second step we consider the augmented 

Lyapunov function: 

 

𝑉(𝓏1, 𝓏2) =
1

2
 𝓏1

2  +
1

2
𝓏2
2 (14) 

And it’s time derivative is then: 

 

V̇ (𝓏1, 𝓏2) = 𝓏2( 𝒶1𝓍10𝓍12 + 𝑏1𝑢2)
− 𝓏2(𝓍̈7d − α1(𝓏2 + α1𝓏1 ) )

− 𝓏1𝓏2 − α1𝓏1
2 

(15) 

 The control input 𝑢2 is then extracted (𝓍̈1,2,3d = 0), 

satisfying V̇ (𝓏1𝓏2)  < 0: 
 

𝑢2 =
1

𝑏1
(𝓏1 −  𝒶1𝓍10𝓍12 − α1(𝓏2 + α1𝓏1 )– α2𝓏2) (16) 

The term α2𝓏2  with α2 > 0 is added to stabilize 𝓏1. the 

same steps are followed to extract 𝑢3 and 𝑢4 
 

𝑢3 =
1

𝑏2
((𝓏3 −  𝒶2𝓍8𝓍12 −  𝒶3𝓍12Ω)

− α3(𝓏4 + α3𝓏3 )– α4𝓏4) 
(17) 

𝑢4 =
1

𝑏3
((𝓏5 −  𝒶5𝓍8𝓍10 −  𝒶4𝓍10Ω)

− α5(𝓏6 + α5𝓏5)– α6𝓏6) 
(18) 

with:  
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{

𝓏3 = 𝓍9d − 𝓍9
𝓏4 = 𝓍10  − ẋ9d– α3𝓏3
𝓏5 = 𝓍11d − 𝓍11 
𝓏6 = 𝓍12 − ẋ11d − α5𝓏5

 (19) 

Note that this technique also used for a Quadrotor 

studied in [5].  

 

4.2  Control of the Linear Translations Subsystem 

 

Let us consider the simple task for the X4-AUV to be 

translated to a particular position 𝓍 = 𝓍𝑑. The 

dynamics of the position are described by lines 1 and 

2 of system (3), i.e., 

 

(
𝑥̇1
𝑥̇2
) = (

𝓍2

 (cos 𝓍9  cos 𝓍11 )
𝑢1
𝑚1
 ) (20) 

By the considerations in the control for the subsystem 

of the angular rotations in [3], we ensure that starting 

from an initial condition where V(X𝛼)<  𝜋/2 the angles 

and their velocities are constrained in this 

hypersphere ofℜ6. In this case cos𝓍9  cos 𝓍11 ≠
0  during all the trajectories of the system under the 

previous control law. If the latter condition is satisfied, 

we can linearize system (20) by simply compensating 

the weighted force by: 

𝑢1 =
𝑚1𝑢̂1

cos𝓍9  cos 𝓍11  
 (21) 

where 𝑢̂1 is an additional term. By this partial 

feedback linearization, (16) becomes: 

 

(
𝑥̇1
𝑥̇2
) = (

𝓍2
𝑢̂1
) (22) 

or 

 

(
𝑒̇1
𝑒̇2
) = (

e2
−𝑢̂1

) (23) 

in the error form, where 𝑒𝑖 ≜  𝑥𝑖
𝑑 − 𝑥𝑖, 𝑖 = 1,2. Adopting 

a simple linear state feedback stabilization law 

22111
ˆ ekeku  , we can stabilize the position by 

placing the poles of the subsystem in any position in 

the complex left half plane.  

 

 

5.0  DISCUSSIONS 
 

A nonlinear control strategy is implemented to 

stabilize the X4-AUV. The position and angles of the 

X4-AUV are stabilized by using control input u1, u2, u3, 

and u4 respectively. Backstepping controllers were 

introduced for controlling each orientation angle 

and the positions are stabilized according to the 

Lyapunov stability theory. The angles and their time 

derivatives of rotational subsystem do not depend on 

translation components, whereas the translations 

depend on the angles. Ideally, it can be imagined as 

two subsystems: the angular rotations and the linear 

translations. Due to its complete independence from 

the other subsystem, the angular rotation-related 

subsystem is tuned first. The rotational control keeps a 

3D orientation of the X4-AUV to the desired state and 

the translational control moves the vehicle to the 

desired position.  

The controllers have been implemented on 

MATLAB and the simulation results for stabilizing the 

X4-AUV in x-positions are shown in Figure 3. The 

system started with an initial state 

T
X )0,

4
,0,

4
,0,

4
,0,0,0,0,0,0(0


 and we wanted 

the final x-positions, at 3 m with all zero orientation 

angles. As shown in Figure 2, it is seen that all 

orientation angles, and x-positions converge to the 

targets, where α1 = 1, α2 = 2, α3 = 3, α1 = 1, α4 = 1, α5 = 

1, α6 = 1, k1 = 1.0, K2 = 2.0. The physical parameters for 

X4-AUV that has been used for simulating the 

dynamic model presented in Table 1. Note that the 

simulations for stabilizing the X4-AUV in x-, y- and z-

positions were implemented independently. The 

other results for y- and z-position are not included in 

this paper. 

 

 

 
 

(a) Attitude and attitude rate control for x-position 
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(b) A Position and position rate control for x-position 

 

 
 

 
(c) A control inputs and control inputs in rotation 

 
Figure 3 A case for stabilizing the orientation angles and x-

axis position 

 

 

 

Table 1 Physical parameters for X4-AUV 

Parameter Description Value Unit 

mb 

ρ 

Mass 

Fluid density 

21.43 

1023.0 

Kg 

kg/m3 

l 

r 

Distance 

Radius 

0.1 

0.1 

M 

m 

b 

d 

Thrust factor 

Drag factor 

0.068 

3.617e4 

Ns2 

Nms2 

Jbx 

Jby 

Jbz 

Jt 

Roll inertia 

Pitch inertia 

Yaw inertia 

Thrust inertia 

0.0857 

1.1143 

1.1143 

1.1941e4 

kgm2 

kgm2 

kgm2 

Nms2 

 

 

6.0  CONCLUSIONS 
 

In this paper, a nonholonomic control method has 

been presented for stabilizing all attitudes and 

positions (x, y or z) of an underactuated X4-AUV with 

four thrusters and 6-DOFs. The controller design was 

separated into two parts: the rotational and 

translational dynamics-related control designs. The 

stabilization strategy is based on the Lyapunov 

stability theory and backstepping control method. 

For the future work, an underactuated controller will 

be constructed by combining such three types of 

controllers to realize an underactuated control 

system. 
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