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Graphical abstract Abstract

Neural Nehvork Predictive Corirl This paper investigates the depth control of an unmanned underwater remotely operated
vehicle (ROV) using neural network predictive control (NNPC). The NNPC is applied fo

T | e control the depth of the ROV to improve the performances of system response in terms of
orvitmopy) 2 Spamly) i overshoot. To assess the viability of the method, the system was simulated using

MATLAB/Simulink by neural network predictive control foolbox. In this paper also
investigates the number of data samples (1000, 5000 and 10,000) to train neural network.

Pttt A= The simulation reveals that the NNPC has the better performance in terms of its response,
but the execution time will be increased. The comparison between other conftroller such as
conventional Pl controller, Linear Quadratic Regulation (LQR) and fuzzy logic controller also
covered in this paper where the main advantage of NNPC is the fastest system response on
depth confrol.
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Keywords: Depth contfrol, unmanned underwater remotely operated vehicle, neural
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Abstrak

Kertas kerja ini mengkaji kawalan kedalaman bagi kenderaan bawah air kawalan jauh
tanpa pemandu (ROV) menggunakan kawalan ramalan rangkaian neural (NNPC). The
NNPC digunakan untuk mengawal kedalaman ROV unfuk meningkatkan prestasi sistem
tindak balas dari segi lajakan. Untuk menilai kaedah daya maiju, sistem itu menggunakan
simulasi MATLAB / Simulink oleh kawalan ramalan rangkaian neural kotak-alatan. Dalam
kertas kerja ini juga menyiasat bilangan sampel data (1000, 5000 dan 10,000) untuk melatih
rangkaian neural. Simulasi ini menunjukkan bahawa NNPC mempunyai prestasi yang lebih
baik dari segi lajakan, tetapi masa pelaksanaan yang akan bertambah. Perbandingan
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antara pengawal lain seperti pengawal konvensional Pl, Linear kuadratik Peraturan (LQR)
dan juga pengawal logik kabur di dalam artikel ini di mana kelebihan utama NNPC adalah
findak balas sistem terpantas bagi kawalan mendalam.

Kata kunci: kawalan kedalaman, kenderaan bawah air kawalan jauh tanpa pemandu,
kawalan ramalan rangkaian neural

© 2015 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

The neural network predictive control is considered
as a basic type of model based predictive system
which is the model is a trained neural network using
neural network toolbox in MATLAB as shown in Figure
1. It is consists of four components (i.e. the plant to be
conftrolled, the desired performance of the plant, a
neural network that models the plant, and an
optimization process that determines the optimal
inputs needed to produce the desired performance
for the plant) [1]. The neural network predictive
control normally optimizes the plant responses over a
specified fime horizon [2-3]. The role of neural
network model predictor, which uses the error e
between the system output yp and the neural
network model output ym, as neural network fraining
signal. The nonlinear neural network model is to
predict the future performance, defermine the
conftrol signal u by minimizing cost function, J as in
Equation (1) [4]. The steps of the neural network
predictive algorithm as shown in Figure 2.
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Figure 1 Block diagram of neural network predictive control
system [1]

Neural network predictive control is a control
method that finds the confrol input by optimizing a
cost function subject to constraint. The cost function
used fo calculates the desired confrol signal by using
a model of the plant to predict future plant output
[5-6]. A fundamental part of this method is the actual
optimization problem that obtains future conftrol
inputs by minimizing a cost function subject fo
constraints on the system. Typically, the cost function,
J consists of the error between the reference
frajectory r and the predicted outputs y in addition fo
the control effort, u. AS.M Nor ef al. using NNPS for
confrol deep submergence rescue vehicle (DSRV)

[1]. In [7-8] used the DSRV model to design an
intelligent controller that called single input fuzzy
logic controller. Based on [1], the NNPC will used to
control the ROV that was develop by Underwater
Technology Research Group (UTeRG) from faculty of
electrical engineering Universiti Teknikal Malaysia
Melaka. The model of ROV obtained from system
identification technique as can referred to [?-11]. The
parameter for NNPC almost the same just varied on
number of data samples (e.g. 1000, 5000 and 10,000).
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WITH PREVIOUS CONTROL INPUTS

OPTIMIZATION TO MINIMIZE
THE COST FUNCTION

I

n ::
L]
o

YE

THE OPTIMAL CONTROL INPUT VECTOR
USED AS THE REAL CONTROL INPUT

NO
YES

Figure 2 Steps of the neural network predictive algorithm

J:4Nz;[yr(k+Hp)—ym(k+Hp)]2+p%1[u(k+Hp—1)—u(k+Hp—2)]2 (1)
=N J=

where:

Ni =the minimum costing horizon

N2 =the maximum costing horizon

Ny = the control horizon

ym = predicted output of the neural network
yr =reference frajectory

o =the control input weighting factor.

yr =reference trajectory u is control signal
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2.0 THE MODELLING OF ROV USING SYSTEM
IDENTIFICATION

As mention previous the modeling of the ROV using
system identification method. The ROV was
developed by UTeRG Group as shown in Figure 3-5.
The focused on depth control only. Experiment on an
open loop system was done on the ROV for depth
conftrol with set point at 3 m in a swimming pool using
NI USB-6009 data acquisition card and multi-meter. At
least two experiments were considered. Based on
Figure 6, set point will be represented as x, Exp 1 and
Exp 2 is represented as y and y1, respectively. Where
x, y and yl where the input and outputs of the
system, respectively.
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Figure 3 Components of the ROV and intfegrated sensor
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Figure 4 ROV'’s system for depth control

Figure 5: ROV tested in the swimming pool
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Figure 6 Experiment results testing open loop system for the
ROV

Normally, the red colour is the default choice as
shown in Figure 7. For infer the ROV modelling, third
order was selected. The best fits of the measured and
simulated model output were 89.46%. A model
output window shown in Figure 8 was displayed.
Percent best fit value displayed in the best fits
window.
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Figure 7 Model singular values vs. order
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Figure 8 Measured and simulated model output
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Transfer function state space technique vyields:

048715 +1.375 +67.31 voltage (depth)

s3+4.91152 +8.3095+76.09  Voltage to thruster (V)

TF =
(2)

And the ROV system also can be written as
continuous time-invariant as in Equation (3) and (4).
By using MATLAB® command transfer function
equation can change to state-space model as
written in Equation (5).

X(t) = AX(t) + Bu(t) )
y(t) = Cx(t) + Du(t) (4)

-5835 -9.826 -0.6262 3621
x(t)=|-2858 -159.3 5889 [x(t)+|-105.8 u(t)
2868 87.12  -326 38.18

y(t)=[5.358 0.1272 -0.02792Jx(t) 2

The model obtained from system identification
technique will be analyse in terms of confrollability
and observability and also asymptotically stable.
Based on Equation (5), the system is both controllable
and observable because the system has a rank of 3.
This system is asymptotically stable when all
eigenvalues of A have negative real parts. Figure 9
shows the block diagram Neural Network Predictive
Control for control the depth of the ROV based on
model obtained using system identification
technique.
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Figure 9 Block Diagram Neural Network Predictive Confrol
for the ROV

3.0 NEURAL NETWORK PREDICTIVE CONTROL

(NNPC)

This section illustrates a simple way of controling a
nonlinear and 4th order system using neural network

predictive confrol. The design procedure utilizes
MATLAB® Neural Network Predictive Confrol toolbox
and was implemented using SIMULINK® version 7.6.A
Neural Network Predictive Control (NNPC) was
designed to control the ROV as shown in Figure 10. A
neural network was designed fo be used as the
predictive model of the MPC. The NNPC will then be
compared with conventional controllers such as PI,
fuzzy logic Conftroller, and Observer-LQR controllers to
determine its performance and characteristics.
Control design methods based on MPC was found to
be widely used in many industrial applications [12].
The ability of MPC in handling constraints contributes
fo a significant advantage in a context of the overall
operating objectives of many process industries. The
optimization determines the control signal that
optimizes plant behaviour over the time horizon [13].
Figure 10 shows the window for designing the model
predictive controller.

Neural Network Predictive Control

st Harizon () ] Cartrol Weighting Factar (p) 0

tantral Harizan () 2 Search Parameter () 01

Mirization Fowing  csrehgal =

Plant identification

Perform plant identification before controller configuration,

feratiores Per Sample Time 1

0K ‘ Cancel‘ Apply ‘

(a) Neural Network Predictive Confrol
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Size of Hidden Layer 3 No. Delayed Plant Inputs | 2 =
Sampling Interval (sec) 0.2 Mo. Delayed Plant Outputs | 2 2
Normalize Training Data
Training Data
Training Semples | 5000 /] Limit Output Data
Mazimum Plant Input 0.5 Maximum Plart Output 50
Minimurm Plant InpLt 0.5 Minimum Plant Output 0
Maximum Interval Value (sec) 10 Simulink Plant Model: | Browse
Minimurm Intsrval Valus (sac) 5 ROVmodel
Generate Training Data Import Data Export Data |
Training Parameters
Training Epochs 500 Training Function |trainim -
/| Use Current Weights /| Use Validation Data Use Testing Data
| el =
Generate or import data before training the neural network plant.

(b) Plant Identification

Figure 10 Neural Network Predictive Confrol Block

4.0 RESULT AND ANALYSIS

Figure 11 shows the input and output of the system
based on 5000 data samples. This input and output
system based on model ROV that used for open loop
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system. Figure 12 shows then validation data and
training data for NN Predictive Control based on 5000
data samples. Figure 13 shows the input and output
of the system based on 1000 data samples based on
open loop model ROV. Figure 14 shows the validation
data and training data for NN Predictive Confrol
based on 1000 data samples. Figure 15 shows the
Neural Network toolbox in MATLAB. From this figure
the number of layer for NN can be seen and also the
progress of neural network performances can be
obtained as shown in Figure 16 until Figure 18.

The results based on three data samples (e.g. 1000,
5000, 10,000) as shown in Figure 19. Figure 19 shows
the results for each data samples, respectively. Based
on this results, the number of data samples doesn’t
not affected the performances of NNPC. The results
of three data samples is almost the same. Figure 20
shows the different set point based on the best data
samples (5000 data samples).

Plant Input
05
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time (s)
Plant Qutput

0 200 400 600 800
time (s)
‘ Sinulation concluded.

Accept Data | Reject Data Please Accept or Reject Data to continue.

Figure 11 Input and Outfput of the system based on 5000
data samples
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Figure 12 Validation data and Training Data for NN
Predictive Conftrol for 5000 data samples
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Figure 13 Input and Output of 1000 data samples
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Figure 14 Validation data and Training Data for NN

Predictive Control for 1000 data samples
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System response of depth contral
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Figure 19 System response of depth control

4.1 Controller Comparison

Comparison is made on the response with other
controllers (e.g. Pl controller, FLC controller, and
Observer based on output feedback control). Figure
10 shows all simulation system response results for
ROV vertical trajectory. The set point is varied for a
given time of 100 seconds. The simulation shows that,
all five confrollers give a zero steady-state error and
zero overshoot. However, neural network predictive
control gives a better performance in terms of the
fransient response. As can be seen in Figure 21,
neural network predictive confrol gives a faster
settling time and rise fime, followed by Observer-LQR,
Pl controller, and FLC controller. The simulation results
expressed the steady-state performance. The
steady-state performance indexes are summarized in
Table 1. From the table, the depth response of the
neural network predictive confrol achieved a better

fransient and steady-state performance than an
improved SIFLC, Observer-LQR, Pl controller, and
SIFLC. An advantage of an improved SIFLC over
other confrollers is, the simulation time, which is the
fime required to compute the simulatfion. Table 2
shows the comparison of computational time
between the neural network predictive conftroller,
LQR controller, Pl controller, SIFLC and an improved
SIFLC. It can be observed that an improved SIFLC has
faster than other controllers and neural network
predictive controller is the slowest among them. The
NNPC cannot meet the requirement of rapid
response. Here it can conclude that an NNPC is
better for the system need accuracy and precision
fask  where the ftask doesn't care about
computational time. The reason is why NNPC more
suitable for forecasting and prediction application.
For underwater application, NNPC more suitable for
recognifion of images on underwater and prediction
of underwater environments where the important
issues should be covered when implemented in real
fime system especially in the ocean. The research of
NNPC is not end, because a lot of parameter can be
studied to give better results (e.g. Neural Network
predictive Block). To many parameter can be
changes to improved the performances of system
response.
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Comparison for all method applied for ROV depth control
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Figure 21 Comparison for all method applied for ROV depth
control

Table 1 Comparison conftroller techniques for depth confrol

40 50 60 70 80 90 100

SIFLC Pl NNPC

Observer- Improved

LQR SIFLC
Peak Time, 100 80 65 75 70
To (s)
Rise Time, Tr 90 70 50 70 60
(s)
Settling 110 80 65 75 70
Time, Ts (s)
Overshoot 0.1 0. 0.1 0.7 0
(%) 1
Steady 0 0 0 0.2 0
state error
ess
Table 2 Simulation Time
Controller
Method Computation
time
NNPC 21255
PI 0.29s
SIFLC 0.322s
Observer- LQR 0.3s
Improved SIFLC 0.29 s

5.0 CONLUSION

The NNPC is applied to control the depth of the ROV.
The system was simulated using MATLAB/Simulink and
NNPC toolbox. The simulation reveals that the NNPC
has the better performance, and it exactly resembles
an improved SIFLC in ferms of its response, but the
execution fime will be higher than others. The main
advantage of NNPC is the fastest system response on
depth conftrol but execution time for simulation take

longer time. A lot of parameter can be studied to
give better results (i.e. Neural Network predictive
Block) where many parameters can be changes to
improve the performances of system response. For
future recommendation applied this NNPC to real
fime system by using Micro-box 2000/2000C where
Micro-box 2000/2000C is an XPC farget machine
device to interface between an ROV with the
MATLAB 2009 software.
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