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Graphical abstract 
 

 

Abstract 
 

This paper investigates the depth control of an unmanned underwater remotely operated 

vehicle (ROV) using neural network predictive control (NNPC). The NNPC is applied to 

control the depth of the ROV to improve the performances of system response in terms of 

overshoot. To assess the viability of the method, the system was simulated using 

MATLAB/Simulink by neural network predictive control toolbox. In this paper also 

investigates the number of data samples (1000, 5000 and 10,000) to train neural network. 

The simulation reveals that the NNPC has the better performance in terms of its response, 

but the execution time will be increased. The comparison between other controller such as 

conventional PI controller, Linear Quadratic Regulation (LQR) and fuzzy logic controller also 

covered in this paper where the main advantage of NNPC is the fastest system response on 

depth control.  

 

Keywords: Depth control, unmanned underwater remotely operated vehicle, neural 

network predictive control 

 

Abstrak 
 

Kertas kerja ini mengkaji kawalan kedalaman bagi kenderaan bawah air kawalan jauh 

tanpa pemandu (ROV) menggunakan kawalan ramalan rangkaian neural (NNPC). The 

NNPC digunakan untuk mengawal kedalaman ROV untuk meningkatkan prestasi sistem 

tindak balas dari segi lajakan. Untuk menilai kaedah daya maju, sistem itu menggunakan 

simulasi MATLAB / Simulink oleh kawalan ramalan rangkaian neural kotak-alatan. Dalam 

kertas kerja ini juga menyiasat bilangan sampel data (1000, 5000 dan 10,000) untuk melatih 

rangkaian neural. Simulasi ini menunjukkan bahawa NNPC mempunyai prestasi yang lebih 

baik dari segi lajakan, tetapi masa pelaksanaan yang akan bertambah. Perbandingan 
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antara pengawal lain seperti pengawal konvensional PI, Linear kuadratik Peraturan (LQR) 

dan juga pengawal logik kabur di dalam artikel ini di mana kelebihan utama NNPC adalah 

tindak balas sistem terpantas bagi kawalan mendalam. 

 

Kata kunci: kawalan kedalaman, kenderaan bawah air kawalan jauh tanpa pemandu, 

kawalan ramalan rangkaian neural 

 

© 2015 Penerbit UTM Press. All rights reserved 

  

 

 
1.0  INTRODUCTION 
 

The neural network predictive control is considered 

as a basic type of model based predictive system 

which is the model is a trained neural network using 

neural network toolbox in MATLAB as shown in Figure 

1. It is consists of four components (i.e. the plant to be 

controlled, the desired performance of the plant, a 

neural network that models the plant, and an 

optimization process that determines the optimal 

inputs needed to produce the desired performance 

for the plant) [1]. The neural network predictive 

control normally optimizes the plant responses over a 

specified time horizon [2-3]. The role of neural 

network model predictor, which uses the error e 

between the system output yp and the neural 

network model output ym, as neural network training 

signal. The nonlinear neural network model is to 

predict the future performance, determine the 

control signal u by minimizing cost function, J as in 

Equation (1) [4]. The steps of the neural network 

predictive algorithm as shown in Figure 2. 

 

 

Figure 1 Block diagram of neural network predictive control 

system [1] 

 

 

Neural network predictive control is a control 

method that finds the control input by optimizing a 

cost function subject to constraint. The cost function 

used to calculates the desired control signal by using 

a model of the plant to predict future plant output 

[5-6]. A fundamental part of this method is the actual 

optimization problem that obtains future control 

inputs by minimizing a cost function subject to 

constraints on the system. Typically, the cost function, 

J consists of the error between the reference 

trajectory r and the predicted outputs y in addition to 

the control effort, u. A.S.M Nor et al. using NNPS for 

control deep submergence rescue vehicle (DSRV) 

[1]. In [7-8] used the DSRV model to design an 

intelligent controller that called single input fuzzy 

logic controller. Based on [1], the NNPC will used to 

control the ROV that was develop by Underwater 

Technology Research Group (UTeRG) from faculty of 

electrical engineering Universiti Teknikal Malaysia 

Melaka. The model of ROV obtained from system 

identification technique as can referred to [9-11]. The 

parameter for NNPC almost the same just varied on 

number of data samples (e.g. 1000, 5000 and 10,000). 

 

 
Figure 2 Steps of the neural network predictive algorithm 
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where: 

N1  = the minimum costing   horizon 

N2  = the maximum costing horizon 

Nu  = the control horizon 

ym  = predicted output of the neural network 

yr   = reference trajectory 

ρ   = the control input weighting factor. 

yr    = reference trajectory u is control signal 
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2.0  THE MODELLING OF ROV USING SYSTEM 

IDENTIFICATION 
 

As mention previous the modeling of the ROV using 

system identification method. The ROV was 

developed by UTeRG Group as shown in Figure 3-5. 

The focused on depth control only. Experiment on an 

open loop system was done on the ROV for depth 

control with set point at 3 m in a swimming pool using 

NI USB-6009 data acquisition card and multi-meter. At 

least two experiments were considered. Based on 

Figure 6, set point will be represented as x, Exp 1 and 

Exp 2 is represented as y and y1, respectively. Where 

x, y and y1 where the input and outputs of the 

system, respectively.  

 

 

Figure 3 Components of the ROV and integrated sensor 

 

 

Figure 4 ROV’s system for depth control 

 

 

Figure 5: ROV tested in the swimming pool 

 
Figure 6 Experiment results testing open loop system for the 

ROV 

 

 

Normally, the red colour is the default choice as 

shown in Figure 7. For infer the ROV modelling, third 

order was selected. The best fits of the measured and 

simulated model output were 89.46%. A model 

output window shown in Figure 8 was displayed. 

Percent best fit value displayed in the best fits 

window. 

 

 

Figure 7 Model singular values vs. order 

 

 

Figure 8 Measured and simulated model output 
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Transfer function state space technique yields: 
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And the ROV system also can be written as 

continuous time-invariant as in Equation (3) and (4). 

By using MATLAB® command transfer function 

equation can change to state-space model as 

written in Equation (5).  
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The model obtained from system identification 

technique will be analyse in terms of controllability 

and observability and also asymptotically stable.  

Based on Equation (5), the system is both controllable 

and observable because the system has a rank of 3. 

This system is asymptotically stable when all 

eigenvalues of A have negative real parts. Figure 9 

shows the block diagram Neural Network Predictive 

Control for control the depth of the ROV based on 

model obtained using system identification 

technique. 

 

 

 

Figure 9 Block Diagram Neural Network Predictive Control 

for the ROV 

 

 

3.0  NEURAL NETWORK PREDICTIVE CONTROL 

(NNPC) 
 

This section illustrates a simple way of controlling a 

nonlinear and 4th order system using neural network 

predictive control. The design procedure utilizes 

MATLAB® Neural Network Predictive Control toolbox 

and was implemented using SIMULINK® version 7.6.A 

Neural Network Predictive Control (NNPC) was 

designed to control the ROV as shown in Figure 10. A 

neural network was designed to be used as the 

predictive model of the MPC. The NNPC will then be 

compared with conventional controllers such as PI,  

fuzzy logic Controller, and Observer-LQR controllers to 

determine its performance and characteristics. 

Control design methods based on MPC was found to 

be widely used in many industrial applications [12]. 

The ability of MPC in handling constraints contributes 

to a significant advantage in a context of the overall 

operating objectives of many process industries. The 

optimization determines the control signal that 

optimizes plant behaviour over the time horizon [13]. 

Figure 10 shows the window for designing the model 

predictive controller.  

 

 
(a) Neural Network Predictive Control 

 
(b) Plant Identification 

 
Figure 10 Neural Network Predictive Control Block  

 

 

4.0  RESULT AND ANALYSIS 
 
Figure 11 shows the input and output of the system 

based on 5000 data samples. This input and output 

system based on model ROV that used for open loop 
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system. Figure 12 shows then validation data and 

training data for NN Predictive Control based on 5000 

data samples. Figure 13 shows the input and output 

of the system based on 1000 data samples based on 

open loop model ROV. Figure 14 shows the validation 

data and training data for NN Predictive Control 

based on 1000 data samples. Figure 15 shows the 

Neural Network toolbox in MATLAB. From this figure 

the number of layer for NN can be seen and also the 

progress of neural network performances can be 

obtained as shown in Figure 16 until Figure 18. 

The results based on three data samples (e.g. 1000, 

5000, 10,000) as shown in Figure 19. Figure 19 shows 

the results for each data samples, respectively. Based 

on this results, the number of data samples doesn’t 

not affected the performances of NNPC. The results 

of three data samples is almost the same. Figure 20 

shows the different set point based on the best data 

samples (5000 data samples).  

 

 

Figure 11 Input and Output of the system based on 5000 

data samples 

 

 
(a) 

 

 
(b) 

 
Figure 12 Validation data and Training Data for NN 

Predictive Control for 5000 data samples 

 

 

Figure 13 Input and Output of 1000 data samples 

 
(a) Validation 
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(b) Training 

 
Figure 14 Validation data and Training Data for NN 

Predictive Control for 1000 data samples 

 

 

Figure 15 Neural Network Toolbox 

 

 

Figure 16 Best Validation Performances 

 

 

Figure 17 Time for Training state 

 

 

Figure 18 Regression 

 
10,000   data samples                                                                    
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5000 data samples 

 

 

1000 data samples 

Figure 19 System response of depth control  

 

 

4.1  Controller Comparison 

 

Comparison is made on the response with other 

controllers (e.g. PI controller, FLC controller, and 

Observer based on output feedback control). Figure 

10 shows all simulation system response results for 

ROV vertical trajectory. The set point is varied for a 

given time of 100 seconds. The simulation shows that, 

all five controllers give a zero steady-state error and 

zero overshoot. However, neural network predictive 

control gives a better performance in terms of the 

transient response. As can be seen in Figure 21, 

neural network predictive control gives a faster 

settling time and rise time, followed by Observer-LQR, 

PI controller, and FLC controller. The simulation results 

expressed the steady-state performance. The 

steady-state performance indexes are summarized in 

Table 1. From the table, the depth response of the 

neural network predictive control achieved a better 

transient and steady-state performance than an 

improved SIFLC, Observer-LQR, PI controller, and 

SIFLC. An advantage of an improved SIFLC over 

other controllers is, the simulation time, which is the 

time required to compute the simulation. Table 2 

shows the comparison of computational time 

between the neural network predictive controller, 

LQR controller, PI controller, SIFLC and an improved 

SIFLC. It can be observed that an improved SIFLC has 

faster than other controllers and neural network 

predictive controller is the slowest among them. The 

NNPC cannot meet the requirement of rapid 

response. Here it can conclude that an NNPC is 

better for the system need accuracy and precision 

task where the task doesn’t care about 

computational time. The reason is why NNPC more 

suitable for forecasting and prediction application. 

For underwater application, NNPC more suitable for 

recognition of images on underwater and prediction 

of underwater environments where the important 

issues should be covered when implemented in real 

time system especially in the ocean. The research of 

NNPC is not end, because a lot of parameter can be 

studied to give better results (e.g. Neural Network 

predictive Block). To many parameter can be 

changes to improved the performances of system 

response. 

 

 
(a) 

 
(b) 

Figure 20 Neural Network Predictive Controller system 

response 
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Figure 21 Comparison for all method applied for ROV depth 

control 

 

 
Table 1 Comparison controller techniques for depth control 

 SIFLC PI NNPC Observer- 

LQR 

Improved 

SIFLC 

Peak Time, 

Tp (s) 

100 80 65 75 70 

Rise Time, Tr 

(s) 

90 70 50 70 60 

Settling 

Time, Ts (s) 

110 80 65 75 70 

Overshoot 

(%) 

0.1 0.

1 

0.1 0.7 0 

Steady 

state error 

ess 

0 0 0 0.2 0 

 

Table 2 Simulation Time 

Controller 

Method Computation 

time 

NNPC 212.5 s 

PI 0.29 s 

SIFLC 0.322 s 

Observer- LQR 0.3 s 

Improved SIFLC 0.29 s 

 

 

5.0  CONLUSION 
 

The NNPC is applied to control the depth of the ROV. 

The system was simulated using MATLAB/Simulink and 

NNPC toolbox. The simulation reveals that the NNPC 

has the better performance, and it exactly resembles 

an improved SIFLC in terms of its response, but the 

execution time will be higher than others. The main 

advantage of NNPC is the fastest system response on 

depth control but execution time for simulation take 

longer time. A lot of parameter can be studied to 

give better results (i.e. Neural Network predictive 

Block) where many parameters can be changes to 

improve the performances of system response. For 

future recommendation applied this NNPC to real 

time system by using Micro-box 2000/2000C where 

Micro-box 2000/2000C is an XPC target machine 

device to interface between an ROV with the 

MATLAB 2009 software. 
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