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Abstract 
 

This paper presents an adaptive identification method based on recently developed 

control oriented model called U-model for online identification of underwater glider. It is 

indicated from obtained results that the proposed technique can accurately and 

adaptively model nonlinearity and dynamics of underwater glider even in presence of 

hydrodynamic disturbances. Since the proposed identification U-model scheme is control 

oriented in nature, hence it can be further utilized to synthesize a simple law for depth and 

pitch control of glider. 
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Abstrak 
 

Kertas kerja ini membentangkan satu kaedah pengenalan penyesuaian berdasarkan 

model adaptif kawalan yang dibangunakn baru-baru ini dipanggil U-model untuk 

mengenal pasti talian gelungsur air. Ia menunjukkan keputusan yang diperolehi bahawa 

teknik yang dicadangkan boleh ketaklelurusan model dengan tepat dan adaptif dan 

gelungsur air dinamik walaupun dalam kehadiran gangguan hidrodinamik. Disebabkan 

cadangan pengenalan skim U - model adalah kawalan berorientasikan alam semula jadi, 

oleh itu ia boleh terus digunakan untuk mensintesis undang-undang yang mudah untuk 

kedalaman dan kawalan bunyi gelungsur . 

 

Kata kunci: Adaptif algoritma, RBFNN, kestabilan, robotik dalam air 
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1.0 INTRODUCTION 
 

Underwater glider has revolutionized the way that 

oceanographic data is collected. Gliders are winged 

autonomous mobile platform that use changes in 

buoyancy and changes in its center of mass as their 

source of propulsion [1]. This novel method of 

propulsion uses very little energy and allows the glider 

to perform long endurance missions at slow speed. 

These gliders are equipped with internal sensors that 

monitors the vehicle’s heading, depth and attitude 

and external sensors that are constantly scanning the 

ocean to determine environmental properties. Gliders 

are more efficient mainly because they spend most of 

their time in stable steady motion, expending control 

energy only when changing their equilibrium state [1]. 

Motion control of glider thus reduces to varying the 

parameters (buoyancy and center of mass) that 

affect the state of steady motion.  

Designing an effective control scheme for 

multivariable glider that can control its motion in highly 

dynamic nature of water is a key requirement for its 

smooth operation.  Most controllers designed for UWG 

are model based, requiring to mathematically model 

dynamics and kinematics of glider. So performance of 

controller strongly depends on the accuracy of the 
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derived mathematical model [2]. Each time, the 

dynamics change, the identified model has to be 

updated and as a result, controller has to be 

redesigned. Hence, this kind of offline identification 

method consumes lot of time and requires continuous 

effort from control engineer in redesigning the 

controller. Recently online techniques have been 

suggested to identify nonlinear systems that adapt 

itself to varying dynamics of system [3]. One of such 

attractive approach is based on state variable filter 

(SVF) and recursive least square (RLS) estimator that is 

used to rapidly identify autonomous underwater 

vehicle (AUV) online [4]. Similarly, intelligent modeling 

techniques like Fuzzy logic [5-7] and Neural network [8-

9] offers an advantage as they don’t explicitly need to 

derive mathematical model based on laws of physics 

and yet can approximate the system with high 

accuracy. However, intelligent techniques demands 

substantial computational power and with limited on-

board computational power embedded on glider, use 

of controller based on artificial techniques becomes 

impractical and unfeasible.  Further presence of 

hydrodynamic disturbances caused by ocean have to 

be taken into consideration for accurate identification 

and robust control design. 

In this regards, a recently developed control-

oriented identification method for multivariable 

systems called U-model can be beneficial [10]. U-

model has the ability of adaptively identifying the 

dynamics of the system along with the external 

disturbances. Further U-model simplifies the control 

synthesis part by modelling the unknown system in a 

polynomial form. Based on this model, the plant 

inverse can be easily evaluated using standard root 

solving algorithms such as Newton Raphson Method. 

The focus of this paper is limited to system 

identification that is the building block on which 

controller can be designed. U-model has been 

successfully implemented in modelling and controlling 

in simulation [11-14] and real time [15-18] for nonlinear 

plants and robotic applications. The main advantages 

of the proposed approach are its generality and 

simplistic control law. 

 

 

2.0  METHODOLOGY 
 
2.1  The U-model Structure 

 

The U-model structure is depicted in Figure 1, where 

the UWG is modeled adaptively by U-model in 

presence of hydrodynamic disturbances.  
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Figure 1 The U-model structure 

 

 

To obtain U-model, consider a single input single 

output (SISO) nonlinear dynamic plant represented 

with a polynomial NARMAX model as given in Equation 

(1).  

 
𝑦(𝑡) = 𝑓[𝑦(𝑡 − 1), … . , 𝑦(𝑡 − 𝑛), … 𝑢(𝑡 − 1), … , 𝑢(𝑡 −
𝑛), 𝑒(𝑡), … , 𝑒(𝑡 − 𝑛)]                                     (1) 
 

where f(.) is nonlinear function, y(t) and u(t) are 

output and input signals of the plant respectively at 

discrete time instant t while n represents the order of 

the plant. The error due to measurement noise, model 

mismatch, uncertain dynamics, plant variation is 

represented by e(t). The U-model is obtained by 

expanding the nonlinear function f(.) of Equation (1) as 

a polynomial with respect to past input only that is u(t-

1) as given in Equation (2). The expanded view of U-

model is as given in Equation (3). 
 

𝑦𝑚(𝑡) = ∑ 𝛼𝑗(𝑡)𝑢𝑗(𝑡 − 1)𝑀
𝑗=0                                                (2) 

 

𝑦𝑚(𝑡) = 𝛼0(𝑡) + 𝛼1(𝑡)𝑢(𝑡 − 1) + 𝛼2𝑢2(𝑡 − 1) + ⋯ +
𝛼𝑀(𝑡)𝑢𝑀(𝑡 − 1)                                                                  (3) 
 

𝛼𝑗(𝑡) = [𝛼1, 𝛼2, … , 𝛼𝑀]                                                        (4) 
 

where M is the degree of model input u(t-1), αj(t) is a 

function of past inputs and outputs. Now the model 

can be treated as a pure power series of the input u(t-

1) with associated time varying parameters αj(t). As 

compared with other modelling techniques, U-model 

has following benefits.  

 The discrete form of many nonlinear continuous 

time systems can be represented in the form given 

in Equation (2) 

 Since the model exhibits a polynomial structure in 

the current control term u(t-1), the control law can 

be synthesized simplistically using Inverse Model 

Control (IMC). This implies to design a controller 

that is inverse of polynomial expression based on 

u(t-1). The inverse of polynomial expression can be 

computed using various nonlinear methods such 

as Newton Raphson, Bisection method etc. This is a 

clear advantage as many other methods leads to 

complex nonlinear equations. 
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Figure 2 U-model filter with RBF 

 

 

To assist system identification and achieve higher 

modelling accuracy in presence of additional 

disturbances and noises, Radial basis function neural 

network (RBFNN) is incorporated with U-model [19-20] 

to compute α0(t).  

 

𝛼0(𝑡) = �̂�0(𝑡)𝛷(𝑢(𝑡 − 1)) + �̂�1(𝑡)𝛷(𝑢(𝑡 − 1)) + ⋯ +

�̂�n(𝑡)𝛷(𝑢(𝑡 − 1))                                                (5)                                 
 

𝑊(𝑡) = [�̂�0, �̂�1, … , �̂�𝑛 ]                                                  (6) 

 

Figure 2 shows structure of proposed U-model based 

RBF identification filter. Polynomial preprocessor 

generates the power series of the input signal u(t-1) as 

given by Equation (7), whereas RBFNN transforms input 

space into higher space by using Equation (8).  
 

𝜑𝑖(𝑢(𝑡 − 1))  =  𝑢𝑖(𝑡 − 1)                  for i = 1, 2, 3,…, M  (7) 
 

𝛷𝑖(𝑢(𝑡 − 1)) = exp (−
∥𝑢(𝑡−1)−𝐶𝑖∥2

𝛽2 )    for i = 1, 2, 3,…, n    (8) 

U-model time varying parameters αj(t) and weights 

of RBFNN W(t) are updated online using Normalized 

Least Mean Square (nLMS) as given by Equation (9) 

and Equation (10).  

 

 𝛼𝑗(𝑡 + 1) = 𝛼𝑗(𝑡) + 𝜇(𝑡)𝐸𝑟𝑟𝑜𝑟(𝑡)𝑈(𝑡)                          (9) 
 

𝑊(𝑡 + 1) = 𝑊(𝑡) + 𝜇(𝑡)𝐸𝑟𝑟𝑜𝑟(𝑡)𝛷(𝑡)                        (10) 

 

Here µ(t) represents learning rate ranging from 0 to 1. 

Error(t) is the mismatch error between actual and 

modeled output. 

 

𝐸𝑟𝑟𝑜𝑟(𝑡) = 𝑦(𝑡) − 𝑦𝑚(𝑡)                                                   (11) 

2.2  Adaptive Identification of Underwater Glider 

U-model is a simplistic modelling technique that not 

only identifies unknown systems effectively but also 

lends itself to simplistic controller design. The purpose 

of adaptively identifying UWG using U-model is to 

simplistically synthesize control law based on Internal 

Model Control (IMC) Scheme. This study aims to 

adaptively identify USM underwater glider for depth 

and pitch control in simulation environment. The 

transfer function relating input ballast rate to depth 

and pitch angle of UWG as obtained from literature 

[21-22] is given in Equation (12) and (13) respectively.  

 

𝐺𝐷𝑒𝑝𝑡ℎ(𝑧) =
−0.662𝑧3+1.327𝑧2−0.665𝑧

𝑧4−2.02𝑧3+0.063𝑧2+1.934𝑧−0.977
         (12) 

 

𝐺𝑃𝑖𝑡𝑐ℎ(𝑧) =
10.1𝑧6+21.94𝑧5+16.84𝑧3−21.7𝑧2+9.56𝑧

𝑧7−1.95𝑧6+1.083𝑧5−1.17𝑧4+1.69𝑧3−0.37𝑧2−0.33𝑧+0.05
   (13) 

 

 
Figure 3 Open loop response for depth 

 

 
Figure 4 Open loop response for pitching angle 
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Figure 5 Proposed U-model Identification Filter 

 

 

From open loop response as shown in Figure 3 and 4, 

it can be inferred that glider dynamics for controlling 

both depth and pitch angle are unstable. In order for 

U-model to be stable, the glider dynamics to be 

identified has to be stabilized priori. An unstable system 

will lead the whole structure of U-model and IMC to be 

unstable. Hence if the system is inherently unstable, it 

must be stabilized using robust techniques prior to 

applying proposed identification scheme.   
 

 

2.2.1  Stabilization of UWG 

 

In this section, the technique used to stabilize UWG 

before identifying is discussed. The structure of U-

model is modified to add an inner stability loop 

consisting of a PID compensator C(s) as shown in 

Figure 5. By trial and error method, the gain values for 

PID compensator that stabilizes depth and pitching 

angle are selected.  
For depth control of UWG, compensator selected to 

stabilize is as given in Equation 14. The open loop 

response after stabilization (as shown in Figure 6) gives 

a bounded response and settles to desired value. 

 

𝐶𝑑𝑒𝑝𝑡ℎ(𝑠) =
−25𝑠−40

𝑠
                                                           (14) 

 

𝐺𝑑𝑒𝑝𝑡ℎ(𝑠) =
−0.6764𝑠4−6.605𝑠3−26.44𝑠2+0.2396𝑠−5.031𝑒−13

𝑠5+0.9004𝑠4+39.48𝑠3+0.1198𝑠2+2.336𝑒−13𝑠+1.692𝑒−14  (15) 

 
𝐷𝑑𝑒𝑝𝑡ℎ(𝑧) =

0.9419𝑧5−2.383𝑧4+1.976𝑧3−0.517𝑧2+0.03571𝑧+0.0008807

𝑧6−2.62𝑧5+2.344𝑧4−0.8347𝑧3+0.1166𝑧2−0.005582𝑧+0.0001357
           (16) 

 

For pitch control of UWG, compensator is obtained 

from [22] as given in Equation 17. The open loop 

response after stabilization (as shown in Figure 7) gives 

a bounded response and settles to desired value with 

oscillation at the beginning.  

 

𝐶𝑝𝑖𝑡𝑐ℎ(𝑠) =
82𝑠2+0.00003𝑠+1.5

𝑠
                                               (17) 

 

𝐺𝑝𝑖𝑡𝑐ℎ(𝑠) =
−2.265𝑠7−103.5𝑠6−230.2𝑠5+1379𝑠4−9344𝑠3

+3.147𝑒4𝑠2+1.23𝑒5𝑠+2.428𝑒5

𝑠8+7.978𝑠7+75.23𝑠6+299𝑠5+942.5𝑠4+2714𝑠3

+276.8𝑠2+78.92𝑠+19.82

               (18) 

   

𝐷𝑝𝑖𝑡𝑐ℎ(𝑧) =
1.005𝑧9−9.246𝑧8+5.288𝑧7−16.12𝑧6+75.9𝑧5

−95.67𝑧4+49.88𝑧3−11.48𝑧2+0.3063𝑧−0.001263
𝑧9−9.201𝑧8+5.234𝑧7−16.04𝑧6+75.5𝑧5−94.91𝑧4

+49.24𝑧3−11.21𝑧2+0.2536𝑧+1.087𝑒−10

            (19) 

                                                                                                                                                               

                                                                                                           

 
Figure 6  Open loop Response for depth (stabilized) 

   

 
Figure 7  Open loop response for pitch (stabilized) 

 

 

3.0  RESULTS & DISCUSSION 
 

In this section, proposed U-model identification filter is 

implemented in simulation environment to identify 

UWG under hydrodynamic disturbances for depth and 

pitch control. The hydrodynamic disturbances 

considered in this work are simulated using signal 

builder block function in MATLAB as shown in Figure 8. 

Hence, it’s an approximation of actual water current 

wave. 
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Figure 8 Water current wave 

 

 
Figure 9 to 12 shows recorded identification results 

for depth and pitch control with and without 

consideration of hydrodynamic disturbances. The 

recorded results are obtained from third order U-model 

with learning rate of 0.5. The centers of RBFNN are 

chosen between -2 and 2 with a constant width of 

0.25 to cover large input space for both control 

variables. Initial values of U-model parameters αj(t) 

and RBFNN weights W(t) are chosen randomly and 

adjusted through NLMS algorithm until modeled output 

tracks the actual output with minimal error. In order to 

verify the proposed U-model scheme, the modelled 

output Ym(t) as obtained from U-model is compared 

with actual output Y(t) that is obtained from given 

transfer function. It is evident from the result that within 

first few time samples, modelled output adapts to the 

actual output with nearly zero error.  Further, it is also 

apparent that performance of proposed identification 

filter remains unchanged even under hydrodynamic 

disturbances caused by approximated water wave 

current.  

 
Figure 9 U-model Identification for depth control 

 

 

 

 

 

 

 

 

 

 

Figure 10 U-model identification for depth control under 

hydrodynamic disturbances 

 
Figure 11 U-model identification for pitch control 

 
Figure 12 U-model identification for pitch control under 

hydrodynamic disturbances 
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4.0  CONCLUSION 
 
In conclusion, an adaptive identification scheme 

based on U-model is proposed. RBFNN is combined 

with U-model to achieve higher accuracy in modelling 

underwater glider. The performance of proposed 

identification filter has been evaluated in presence of 

hydrodynamic disturbances caused by approximated 

water wave current. It is shown that the U-model is 

able to identify underwater glider adaptively and 

accurately even under presence of hydrodynamic 

disturbances. Since the proposed identification filter is 

control oriented in nature, hence it can be further 

used to synthesize a simple law for control inputs to 

control depth and pitch of UWG. 
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