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Abstract 

 
This paper presents the controller tracking performance of Underwater Glider. The 

controllers are designed based on linearised model. The equations of motion are 

restricted to longitudinal plane. The controllers are designed and tested for the glide 

path moving from 45 to 30 downward and upward. The model is linearised using 

Taylor’s series expansion linearisation method. The controller developed here is Sliding 

Mode Control (SMC), and Linear Quadratic Regulator (LQR). The performance of both 

controllers are compared and analysed. The simulations show SMC produce better 

performance with about over 30% faster than LQR based its convergence time.  

Keywords: Underwater glider, linearisation, internal mass, longitudinal plane, 

dynamical model, Taylor’s series expansion, LQR; SMC 

Abstrak 
 

Kertas kerja ini membentangkan prestasi kawalan penjejakan kenderaan Gelungsur 

Air. Pengawal direkabentuk berdasarkan model yang dilinearkan. Persamaan 

gerakan adalah terhad kepada satah membujur. Pengawal direka dan diuji untuk 

jalan meluncur bergerak daripada 45 kepada 30 ke bawah dan ke atas. Model 

dilinearkan menggunakan kaedah pelinearan pengembangan siri Taylor. Pengawal 

yang dibangunkan adalah Sliding Mode Control (SMC) dan Linear Quadratic 

Regulator (LQR). Prestasi kedua-dua pengawal dibandingkan dan dianalisis. Simulasi 

menunjukkan SMC menghasilkan prestasi lebih baik iaitu lebih kurang 30% lebih cepat 

daripada LQR berdasarkan masa penumpuan. 

 

Kata kunci: Gelungsur bawah air, pelinearan, jisim dalaman, satah membujur, model 

dinamik, pengembangan siri Taylor, LQR, SMC 
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1.0  INTRODUCTION 
 

An underwater glider is considered a special class of 

AUVs. The underwater glider concept was initially 

proposed by Stommel (1989), where later has 

motivated many researchers to produce several 

operational and laboratory scale gliders. The basic 

concept of underwater glider is a buoyancy-

propelled and fixed-winged glider that shifts internal 

actuators to control its attitude.  

The use of feedback control is the most commonly 

used method that provides a measure of robustness to 

uncertainty and disturbances [1], [2], [3], [4], [5], [6], 

[7]. PID controller is mostly used in many applications 

due to its simple architecture and proven algorithm 

used in actual platform implementation. 

The optimal control approach, Linear Quadratic 

Regulator (LQR) is another approach has been used 

especially when linear system is used for designing 

control approach. In this approach two important 

tuning knobs, Q and R are varied to obtain an optimal 

gain that minimize the cost function and be a solution 

for Ricatti equation. Model Predictive Control (MPC) 

also recently become another candidate to be used 

to control underwater glider as used in [8], [9]. 

Francesco Tatone et al. in [8] using Model Predictive 

Control (MPC) to control the attitude of Slocum glider. 

They have divided the control architecture into two 

level controllers which is higher-level and lower-level 

controllers which control the internal configurations of 

the glider and make the actuator to execute actions 

for maintaining the imposed internal configuration 

respectively. Yuan Shan et al. proposed the MPC 

based on recurrent neural network. They formulated 

the control system using a time-varying constrained 

quadratic programming problem, which is solved by 

using a recurrent neural network called the simplified 

dual network in real time. 

This paper presents tracking performance 

assessment of LQR and SMC based on Taylor’s series 

expansion model. The simulation works are performed 

in Matlab/Simulink software and the results of the 

responses are presented in time domain.  

The paper is organised as follows. In section 2, 

discusses on glider system (glider coordinates) and 

model linearization process. The controller designs are 

discussed in section 3. The results and discussion 

section discuss the performance of the controllers 

designed through simulation works. Finally, the section 

5 conclude the paper which reiterates the main 

contributions of the work and highlights some of the 

possible future improvements. 

 

 

2.0  GLIDER SYSTEM 
 

The glider model include both kinematic and dynamic 

of rigid body, internal actuation system (ballast and 

movable sliding mass) and related hydrodynamics. 

The glider motion equations are derived by 

computing the kinetic energy and using kinetic 

energy we determine the momenta. The Newton-

Euler formulation is then used to determine the forces 

and moments. The glider model is shown in figure 1. 

The model obtained is restricted to longitudinal plane. 

The detail working of modelling process is published in 

[10].  

 

 
 

Figure 1 Coordinate systems of underwater glider 

 

 

2.1 Model Linearisation 

 

In this paper Taylor’s series expansion method [11][12] 

is used to linearize the nonlinear model. Consider the 

following general nonlinear model with n state 

variables, m input variables and r output variables. 
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Therefore the elements of linearization matrices are 

given by: 
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With the elements in (2) define the linear system as 

 

uBxAx                                                             (3) 

 

Where  

dxxx 
  duuu 

 
 

The longitudinal motion equations are given by 

Equation 4(a)–4(k) 

 

 sincos 31 vvx
                                               (4a) 

 cossin 31 vvz 
                                                   (4b) 
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The linearization about a steady glide path (ξ) is 

determined for the above motion equations. We 

adopt the method to calculate the equilibrium glide 

path from [13] . Define the state vector, x = [z’, θ, ω2, 

v1, v3, rp1, rp3, Pp1, Pp3, mb] and input vector, u = 

[u1, u3, u4] where (u1, u3) are the forces acting on the 

internal point mass (mp) in x and z axes respectively 

and u4 is ballast pumping rate. Applying the Taylor’s 

series expansion (1) and (2) to the motion Equations 

4(a)–4(k) we obtain system matrix, A and input matrix, 

B.  
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Replace all the desired parameters into matrix A and 

B we obtain : 

 

Gliding Down: 
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Gliding Up: 
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The controllability matrices of open loop system for 

both systems are 10 which indicate the open loop 

systems have full rank of controllability. 

 

 

3.0  CONTROLLER DESIGN APPROACH 
 

Controllers are designed to control the motion of the 

underwater glider. Here equations of motion are 

restricted to longitudinal plane. Two control 

techniques are designed that are Linear Quadratic 

Regulator (LQR) and Sliding Mode Control (SMC). 

 
3.1  Linear Quadratic Regulator (LQR) 

 

LQR is a method in modern control theory that uses 

state-space approach to analyse such a system. This 

the standard optimal control design which produces 

a stabilising control law that minimizes a cost function, 

J that is weighted of sum of squares of the states and 

input variables. Suppose we want to design state 

feedback control u = Kx to stabilise the system. By 

determines the feedback gain matrix that minimises J, 

we can establish the trade-off  between  the use of 

control effort, the magnitude, and the speed of 

response that will guarantee a stable system. Assume 

that all the states are available for feedback. The cost 

function is to be minimised is defined as: 

 

dttuRtutQxtxJ TT )()()()(
0
 


                          (5) 

 

Q is an n × n symmetric positive semi-definite matrix 

and R is an m × m symmetric positive definite matrix, 

(A, B) is stabilisable. Choosing Q relatively large than 

those of R, then deviations of x from zero will be 

penalised heavily relative to deviations of u from zero. 

On the other hand, if R is relatively large than those of 

Q, then control effort will be more costly and the state 

will not converge to zero as quickly as we wish. The Q 

and R matrices gliding down and gliding up are 

defined as: 

 

Gliding down 

 

Q = diag(800,500,200,200,50,50,20,10,10,50) 

 

R = diag(1,1,1) 

 

Gliding up 

 

Q = diag(0.5,0.5,1,2,2,0.1,0.1,1,1,0.05) 

 

R = diag(1,1,1) 

 

3.2  Sliding Mode Control (SMC) 

 
In this section, a SMC control scheme is proposed and 

described in detail. The design objective is to examine 

the performance of the controller. The controller 

parameters (S, ueq, and usw) of SMC controller are 

tuned heuristically.  

The design procedure of sliding mode control 

comprises two steps. The first step is to design the 

sliding surfaces that satisfy the designer’s 

specifications. The second is chosen n the control law 

such that the output trajectory is reach and stay on 

the sliding surfaces after a finite time. The sliding 

surface is given by 
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where 
mxnS   is full rank. The S is chosen such that 

mxnSB   is non-singular. From the underwater glider 

state-space system m = 2 and n =8, hence S has 3 x 10 

matrix structure.The second component of SMC 

design is control law. Often used structure for control 

law is 
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where )(tueq is the equivalent control associated with 

the nominal system and unique solution which satisfy 

0)()(  txSt   and )(tusw is the switching control 

which satisfies the reaching condition 0)()( tt   . 

The equivalent control is determined using 
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The switching control )(tusw adopted from [15] is 

given by : 
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where   is a design parameter that is specified by the 

designer and δ is the boundary layer . The following 

sliding surface matrices,  , and δ are obtained force 

and acceleration control inputs. 
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Gliding UP: 
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ρ= 100; δ = 0.0 

 

 

 

4.0  RESULTS AND DISCUSSION 
 

In this section, the proposed control schemes are 

implemented and tested within the simulation 

environment of the glider system and the 

corresponding results are presented. The output 

responses namely pitching angle (θ), gliding angle (ξ), 

horizontal (v1) and vertical velocities (v3) are 

observed. The controllers are evaluated using 

parameters adopted from [1]. 

Here only responses for gliding and pitching angles are 

depicted in figure 2 to figure 9 for downward and 

upward glide paths. Initial gliding angles are set to be 

-45o (downward) and 45o (upward). All figures are 

plotted for nonlinear open loop system and 

performance comparison between SMC and LQR. 

The summarized performances of both controllers 

are tabulated in Table 1 for all the observed output 

responses. All the controller parameters are 

heuristically tuned until desired output are obtained. 

Overall results for both downward and upward glides 

reveal that SMC perform better than LQR with faster 

convergence time (at least 30% or better).   
 

 
 

Figure 2 DOWNWARD pitching angle 

 

 
 

Figure 3 DOWNWARD gliding angle 
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Figure 4 DOWNWARD Velocity, v1 

 

 
 

Figure 5 DOWNWARD Velocity, v3 

 

 
 

Figure 6 UPWARD pitching angle 

 

 
 

Figure 7 UPWARD gliding angle 

 

 
 

Figure 8 UPWARD velocity, v1 

 

 
 

Figure 9 UPWARD velocity, v3 
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Table 1 Output tracking convergence time 
 

 

Output tracking 

  

LQR (secs) 

 

     SMC (secs) 

Down Up Down Up 

 

Gliding angle 

(deg.) 

 

11.5 

 

24 

 

7 

 

8 

 

Pitching angle 

(deg.) 

 

12 

 

25 

 

9 

 

10 

 

Horizontal 

velocity (m/s) 

 

5 

 

10 

 

5.2 

 

5 

 

Vertical velocity 

(m/s) 

 

6 

 

20 

 

13 

 

8 

 

 

5.0  CONCLUSION 
 

In this paper, the LQR and SMC are successfully 

designed and simulated on underwater glider model. 

Based on the results and analysis, a conclusion has 

been made that SMC reveals a better results with 

comparing to LQR. In future, nonlinear controller 

algorithm will be implemented and feedback 

linearization approach will be used so that more results 

can be produced and analyzed for further 

improvement. 
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