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Graphical abstract 
 

 

Abstract 
 

This paper presents the development of Spatial Habituating Self Organizing Map (SHSOM) 

network. This project is inspired by the challenges in underwater wall/pipe or cable 

inspection application using inspection robot. When exposed to the underwater natural 

elements, robot’s sensor readings are varied over space and time. Hence, the AUV need to 

be able to continuously adapt to its environment while performing inspection. For this 

reason, a new inspection system based on spatial Habituating Self Organizing Map (SHSOM) 

network is proposed. SHSOM allows the robot to continuously learn and adapt to new 

changes in its environment by using habituation principle which considers spatial 

information. WEBOT simulator is used to simulate an inspection scenario involving a mobile 

robot a changing environment. Simulation results show that the robot successfully learn and 

detect novel events during inspection. 

 

Keywords: Underwater inspection, neural network, habituating self-organizing map 

 

Abstrak 

 
Kertas kerja ini membentangkan pembangunan rangkaian Spatial Habituating Self 

Organizing Map (SHSOM). Projek ini diilhamkan oleh cabaran aplikasi pemeriksaan struktur 

paip/dinsing di bawah laut oleh sistem robot pemeriksa bawah laut. Bacaan pengesan 

berubah terhadap ruang dan masa kerana terdedah dengan unsur semulajadi bawah 

laut. Robot perlu sentiasa menyesuaikan diri terhadap persekitarannya. Justeru, sistem 

pemeriksaan baru berasaskan SHSOM dicadangkan. Dengannya, robot dapat berterusan 

belajar persekitaran baru menggunakan prinsip habituasi yang mengambil kira prubahan 

ruang. Simulator WEBOT digunakan untuk mensimulasi senario pemeriksaan robot dalam 

persekitaran yang berubah. Keputusan simulasi menunjukan robot berjaya belajar dan 

mengesan keadaan baru ketika pemeriksaan. 

 

Kata kunci: Pemeriksaan di bawah air, rangkaian neural, peta tabiat aturan sendiri  

 

© 2015 Penerbit UTM Press. All rights reserved 

  

 

 
1.0  INTRODUCTION 
 

Study on underwater inspection starts to grow based 

on the requirements of industries in maintaining 

concrete structures, pipelines, and cables that being 

installed under the water. The reason were to cater 

any deteriorate factors such as opening or cracking 

concrete, diminish wall thickness, checking marine 

growth at the surrounding area and detecting any 

metal corrosion [1]. Even though there are human 

divers for underwater inspection, the deep and cold 

water, poor visibility and high water stream make it 

difficult and hazardous for human to perform 

inspection task [2]. Thus it is more applicable if we able 

to robotize underwater inspection task. 
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Two main problems with regard to underwater 

inspection are inspection and navigation problems. 

Calvo et al. [3] use sonar images and image 

processing attached into their Automatic Underwater 

Vehicle (UAV) to sense underwater pipelines. Based on 

the data, they interpreted the next movement by 

using neural network. Loisy et al. [4] inspect water 

tunnel pressure by using attachable imaging 

instrument to remotely maneuverings underwater 

vehicle (ROV) to detect and locate the main leaks at 

the tunnel. Shin et al. [5] prototyped a UAV to inspect 

underwater harbor facilities and use image processing 

for inspection, while using Extended Kalman Filter (EKF) 

with kinematics to estimate the maneuverings position. 

Kim et al. [6] cover both maneuverings and inspection 

problems by using visual simultaneous localization and 

mapping algorithm (SLAM) along with their 

autonomous AUV. This technique improves the image 

processing performance in underwater system 

inspection. Jacobi [7] et al. maps data from various 

sensors in estimating the defect along the pipe lines. 

Instrumentation system consist of scan sonar to detect 

any anomalies in certain distance from the pipelines, a 

sub bottom profiler and a magnetometer detect the 

subsided pipelines and color camera that provide 

image which easy to be interpreted by humans. With 

this a map for path and colored image pipelines for 

inspection can be predicted.  

Based on the literature, most researchers use AUV as 

the main maneuverings mechanism in underwater 

inspection since ROV limits the distance travel from the 

surface and the period of monitoring. Most researchers 

also presented sensory system to the AUV as tools in 

path planning along the pipelines or underwater 

structure and as well as for anomalies detection. 

However, from the best of our knowledge, no system 

presents intelligent technique in adapting to and 

detecting the inspection information. Thus in this 

project we would like to propose a new intelligence 

technique that could adapt to normal measurement 

and detect novelty in the inspection environment. 

 

    (a)          (b) 

Figure 1 (a) usual HSOM network with all input associated to inspection sensor measurement. (b) HSOM network with spatial 

information as its input. 

 

 

2.0  ADAPTATION TO SPATIAL NORMALCY 
 

Habituating Self Organizing Map (HSOM) has been 

introduced by Marsland for robotic inspection 

application in [8] but the network does not consider 

spatial information. Miskon et al. then included 

spatial information into the network by using regional 

mapping [9, 10] hence the network able to learn 

spatial normalcy. Sha’abani et al. then attempted to 

include the spatial information as part of the network 

itself but in the form of hierarchical representation 

[10]. This means that the spatial information is 

associated but not clustered together with inspection 

sensory readings. 

In this paper, HSOM is applied in underwater 

inspection application to make inspection robot able 

to adapt to its environment. In order to do that, the 

author has modified HSOM to suits underwater 

application requirement where the position of the 

AUV is taken into account as one of the input vector 

(see Figure 1). By doing this, the network could also 

learn spatial normalcy and hence detect spatial 

novelty. The same principle could also be use in 

learning temporal normalcy and detecting temporal 

novelty. Spatial and temporal normalcy are 

phenomena that need to be considered when 

working in real environment since normalcy varies 

within space and time due to environmental 

condition along the cable/pipelines.  

In order to learn or adapt to the environment, first 

the robot moves in its environment. While moving, the 

robot takes measurement of the environmental 

states as well as its position. For each set of 

measurement (input vector), the robot compares the 

input vector to all neuron that it have. 

Each neuron, j is a vector that consist of its number 

of input vector, i (see the neuron weight matrix in 

Equation 1). Each neuron also is associated to a 

habituation counter, o. 

𝑤 =
𝑖 = 1
𝑖 = 2
𝑖 = 𝑛
𝑜𝑤(𝑗)

𝑗 = 1 𝑗 = 2 𝑗 = 𝑛

[

𝑤11 𝑤12  … 𝑤𝑛

… … …
𝑤𝑛1 𝑤𝑛2 𝑤𝑛𝑛

𝑜1 𝑜2 𝑜𝑛

]
 (1) 
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A neuron wins when input vector, s is highly similar to 

the neuron weight, 𝑤𝑖𝑗. In this project Euclidean 

distance, d as shown in Equation 2 is used as the 

measure of similarity. Since the input comes from 

different type of input such as GPS and IR, 

weightage, 𝑘𝑖 is multiplied on the each type. The 

purpose of 𝑘𝑖 is to determine how much each type 

contribute to the total Euclidean distance. 

𝑑𝑖𝑗 = √∑(𝑘𝑖 ∗ (𝑤𝑖𝑗 − 𝑠𝑖)2)

𝑛

𝑖=1

 (2) 

Two values will be updated whenever a neuron 

wins i.e. the weight, w_ij and the habituation counter, 

o. Habituation counter of a winning neuron simply 

adds up discreetly. Whereas the weight of a winning 

neuron is updated by using Equation 3; 

𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡) + 𝜃 × 𝛼 × (𝑠𝑖(𝑡)

− 𝑤𝑖𝑗(𝑡)) 
(3) 

where θ is the SOM neighborhood function that 

governs how neighboring neurons are updated and 

α is the learning rate that governs how fast a weight 

becomes similar to a given input.  

Neighborhood function, θ takes the form of a 

Gaussian function as shown in Equation (4); 

𝜃(𝑑, 𝑟) = 𝑒−
𝑑

2𝑟2. (4) 

where d is the distance between the neighboring 

neuron to the winning neuron by using Euclidean 

distance and r is the neighborhood size decreases 

over time according to an exponential function as 

shown in Equation 5. The value of γ in the equation 

controls the rate of the decay. 

𝑟 = 𝑒
−𝑡
𝛾  (5) 

 

Habituation h_w(j)  is modeled by using an 

exponential formula as shown in Equation 6; 

ℎ𝑤(𝑗) = 𝐴𝑒−
𝑜

𝜏. (6) 

 

where A is the novelty initial value, o is the number 

of times a neuron matches the input vector and τ is 

the parameter to increase or decrease the 

habituation speed. As the habituation counter, o 

increases, h_w(j)  will decrease exponentially. When 

h_w(j)  is below a set novelty threshold, nt, the AUV 

artificial intelligence will consider the neuron, w(j) to 

be habituated. If the weight of habituated neuron, 

w_ij matches an input vector, s below a set Euclidean 

distance, the input vector is considered as normal 

measurement of the environment. On the other 

hand, if either a neuron that is best match is not 

habituated or if no neuron matches the input vector, 

then the input vector is considered a novelty. 

In the actual operation, the robot first learns and 

habituates with/without human supervision. The robot 

continuously learns and habituates while monitoring.  

During monitoring, robot highlights novelty event 

when the input vector (sensor reading) does not 

match any neuron or if the habituated value of the 

working neuron is below a set threshold. When this 

happen, the robot could report the novelty event to 

a supervisory control system for further action. Figure 

2 illustrates the Spatial HSOM overall process.

Figure 2 Illustration of spatial habituating self-organizing map process 

Get sensory input 

Calculate distance between  
input and neuron weight 

Update weight of 
best matching neuron 

and neighboring neuron 

Determine the 
best matching neuron 

Distance<treshold? 

Highlight novelty 

Create new neuron.  
weight =input 

Habituation<treshold? 

Highlight novelty 

Yes No 

Yes 
No 

Move robot  

Initialize SHSOM parameters 
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3.0  RESULTS AND DISCUSSION 
 

In order to test the feasibility of the spatial HSOM, a 

simulation using E-puck mobile robot in WEBOT 8 was 

conducted. WEBOT 8 [12] is commercial mobile robot 

simulation software developed by Cyberbotics Ltd. E-

puck mobile robot is 7.4 cm in diameter and 4.5 cm 

high. It has 8 infra-red sensors (ps0-ps7 shown in Figure 

3) measuring ambient light and proximity of obstacles 

in a 4 cm range. 

Figure 3 E-puck mobile robot 

 

 

In the simulation, an E-puck robot was moved in 

forward and reverse motion between -0.5 m and 0.5 

m along y axis in a 1 m x 1 m rectangle arena. 

Rectangular boxes with size of 0.1 m x 0.1 m x0.1 m 

were placed alongside the y axis within the 

detectable range of the E-puck infrared sensors.  

Figure 4(a) shows the environment first setting 

which represents normal scenario. The first setting is 

done to validate that the robot could learn spatial 

normalcy. To create variation of normal 

measurement in different position, there are at least 

two variations of infrared sensor readings along the 

robot route i.e. measurement near and away from 

the boxes. The position of the boxes center along x-

axis is -0.2 m and 0.2 m each. Figure 4(b) shows the 

second environment setting which represents novel 

scenario. In the second setting, 2 additional boxes 

are added. The position of the boxes center along x-

axis is 0m and 0.4 m each. All boxes are aligned at -

0.12 m along y-axis. The robot maintained its position 

at y-axis at -0.233 m when it travel forward and 

reverse direction along x-axis. 

During the simulation, the E-puck continuously 

performs learning and inspection by using spatial 

habituation principles. The inputs provided to the 

robot are its x and y position information as well as 

the infrared distance measurement (ps0-ps7). The 

robot is made to travel at least 5 times back and 

forth in the first setting before the environment is 

change to the second setting. Table 1 summarized 

the parameter settings for the simulation. 

Figure 5 shows the resulting neurons and their 

habituation values when the learning parameters; 

learning rate, 𝛼 as well as the number of training runs 

were changed. From the results, we can see that 

when the learning rate is higher, neuron weights are 

easily influenced by the input vectors. Since the 

neurons are influenced by the positional input, the 

neuron weight accommodated to the neighboring 

positional input as the robot moves to the next 

position. This explains the vacuum space that occurs 

in Figure 5(b) between position -0.4 m and -0.3 m on 

x-axis. 

Figure 5(c) and Figure 5(d) show as the learning 

rate is decrease, neurons weight is less influenced by 

input. The neuron is more evenly distributed. We can 

see that more neurons are created when the 

surroundings changes state near the box and the 

wall areas. As a consequence, as we can see in 

Figure 5(f) even after the run was increased to 18 

times, neurons near the walls is not habituated since 

they are competing with other similar neurons 

created in the areas. 

 

 
(a) 

 

 
(b) 

Figure 4 Environment settings in WEBOT simulator 

 

Table 1 Simulation parameter settings 

 

Variables Settings 

Learning rate, 𝛼 0.1, 0.01, 0.001 

Neighborhood size decay rate, 𝛾  1 

Habituation speed constant, 𝜏 10 

Novelty threshold, 𝑛𝑡 0.7 

Euclidian Distance threshold, 𝑒𝑑𝑡 40 

Length of structure learned and 

inspected , m 

1 m 

Robot step size, m 0.02 m 

Initial number of neurons 1 

Number of training runs 2, 8, 18 times 

IR distance weightage, 𝑘𝑖𝑟 0.1 

GPS position weightage, 𝑘𝐺𝑃𝑆  1 
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    (a)          (b)  

    (c)          (d) 

    (e)          (f) 

 
Figure 5 (a) A look at habituation value of all neurons after the first run where 22 neurons are created. The dotted blue line 

indicates the novelty threshold. (b) After 8 runs at learning rate = 0.1, neurons become more habituated where their habituation 

values continuously decreasing after several training runs. The number of neurons also increases to 38 neurons and their position 

changed. (c) After 8 runs at learning rate = 0.01, the number of neurons created is 43. Notice that all area are represented by 

neurons. Not all neurons are habituated. (d) After 8 runs at learning rate = 0.001, the number of neurons created is 37. Notice that 

all area are represented by neurons. More neurons are habituated when compared to the others. (e) After 18 runs at learning 

rate = 0.01, the number of neurons created is 50. Notice that all area are represented by neurons. More neurons are habituated 

when compared to the others. (f) After 18 runs at learning rate = 0.001, the number of neurons created is 59. Notice that all areas 

are represented by neurons. More neurons are habituated when compared to the others 
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    (a)          (b)  

 

         (c)           

     
Figure 6 (a) After 18 runs at learning rate = 0.01, with neighboring habituation function turned on (b) The forgetting function 

unhabituated and remove anomalous neuron (c) Inspection using learned neuron from Figure 6 (b). New boxes are positioned on 

0m and 0.4m of the x-axis. New neurons are created near 0m and 0.4m indicating detection of unknown object 

 

 

To reduce the unhabituated neuron problem, 

neighboring neurons that are similar to the best 

matching neuron is habituated. The selection of 

neighboring neuron is done by finding the Euclidean 

distance between the best matching neuron and all 

the other neurons. If the distance between them is 

less than neighborhood threshold, n, the neuron is 

categorized as neighboring neurons. All neighboring 

neurons are habituated like the best matching 

neuron. Figure 6(a) is the result of network with 

learning rate of 0.01 and 18 runs with the 

neighborhood habituating function. The percentage 

of unhabituated neuron has lowered from 34% to 

25%.  

Upon further investigation on the reading of the 

unhabituated neuron, noisy sensor reading also play 

a major role in creating anomalous neuron. This 

problem can be overcome by using a more reliable 

sensor. On top of that, the network should also have 

the capacity to remove anomalous neuron by 

forgetting anomalous event as proposed by 

Marsland et al. [8]. By using this approach, all 

anomalous neuron is removed as shown in Figure 

6(b). 

Finally, the trained network is tested on the second 

environment. As expected the network was able to 

highlight the newly introduce boxes it their respected 

position as shown in Figure 6(c). 

 

4.0  CONCLUSION 
 

From the results, we can conclude that spatial HSOM 

network is a feasible method to learn spatial 

normalcy for novelty detection purposes. The 

limitation of the method is that since spatial 

information becomes part of the input vector of the 

HSOM network, the position information can be 

changed and the mapping is not exact. This is 

evident when the learning rate is high where the 

neuron position changed by an unacceptable 

distance. This can be solved with proper tuning of the 

network parameters. In the future, more simulations 

and experiments will be conducted to test the 

robustness of the method and to understand the 

influential factors that affect the performance of the 

method. On top of that, a new approach to 
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associate temporal information with a neuron will be 

further investigated.   
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