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CONTAINER STACKING AND RETRIEVAL PROTOTYPE
SIMULATION USING GENETIC ALGORITHMS

AZIZI AB. AZIZ1 & AZIZI ZAKARIA2

Abstract. Container stacking problem is an NP (Non-Polynomial)-Hard problem. This type of
problem requires robust and adaptive algorithms, such as the Constraints Programming technique.
Rule-based programming is ineffective due to the complexity of container stacking problem. The
container stacking processes are restricted to certain heuristic rules, which is difficult to be coded in
algorithmic ways. Improper stacking will cause non-economical container forklift movement. As a
result it will increase the operational costs. This paper proposed a genetic algorithms technique to solve
container-stacking problem, where a prototype has been developed. The scope of the problem is based
on Kontena Nasional (KONNAS Malaysia) case study, which is restricted for one-year operational
basis. The container stacking mechanism is operated under several Genetic Algorithms operators such
as Selection, Mutation and Crossover. The prototype is coded using C++, ORACLE 7.0 as database
and runs under UNIX platform. The average optimal stacking result obtained ranged between 78-83
percent. This prototype was developed at Artificial Intelligence System Development Laboratory
(AISDEL), Sirim Berhad.

Keywords: Genetic algorithms, constraint programming, container stacking, heuristic rules, port
management system.

1.0 INTRODUCTION

Container Stacking and Retrieval System (CSRS) is a prototype system that
recommends the optimum stacking and allocation for a given number of containers.
The systems uses Genetic Algorithm technique, a constraint satisfactory solution that
generates the appropriate container location in response to a given constraint. The
allocation mechanism will search a suitable container placing, while the stacking engine
will generate a suitable stack level according to the optimization requirements [1]. The
user is required to provide relevant containers data as input. This system addresses
some major logistic management in Port Management System (PMS) Kontena
National.

2.0 PROBLEM DEFINITION

The three key elements of the logistic chain at container terminal are the quay cranes,
the intra-terminal transport and the container stack. The scope of this paper is on the
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container stack, the place where containers are stored prior to further transport. A
container stack consists of an area where containers can be placed, and one or more
cranes or forklift to handle the containers. Containers must be stacked in such away
that the stacking capacity is maximised and the retrieval task is minimised [1,2].

Stack capacity is basically the product of length, width and stacking height
(expressed as Tone Equivalent Unit / TEU). The real capacity is influenced by different
container sizes (20, 40, 45 ft and off-standard). For this stacking simulation purposes,
only twenty footer and forty footer containers were used. The main problem is the
retrieval cost. This cost is incurred when the forklift makes unnecessary movement
that can be eliminated if the containers location resides accordingly. Therefore, proper
container stacking is needed to overcome this problem [1,3].

Figure 1 General layout for container cluster and stack

A B C 

D E 

D7 

D6 

D5 

D4 

D3 

D1 

D2 

���������	


�������


���	


����

��������


����


�������

��������


����


Figure 1 depicts the general layout of containers placement. The containers A, B,
C, D and E represent each respective containers cluster. For example, container cluster
D contains stack of containers D1, D2,...,D7. The safety stacking level at Kontena
National is restricted to five containers for each cluster. For certain cases, the maximum
stacking is expanded up to seven containers per location. These containers are stacked
on side-by-side basis; not exceeding four groups in each location clusters.

2.1 Stacking Method and Strategy

A distinction is made between stacking method and stacking strategy. The stacking
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method relates to the choice of a stacking lane, while the stacking strategy relates to
the choice of position within stacking lane. Both choices are made separately, and not
necessarily at the same time. Firstly, the stacking method determines the stacking
lane, and only when the container is about to be moved inbound, the stack position is
chosen [2].

Typically, there are two methods to determine stack lane [4]. First, the Random
Assignment, and second, the Dedicated Stacking Lane. Random Assignment is a
simplest way to choose stacking lane. The only criterion is the availability of at least
one stack position (inbound), or at least x positions inbound (where x is the maximum
stacking height). The latter is chosen because extra positions are needed in case it is
necessary to reach the lowest container of a stack pile. Meanwhile, Dedicated Stacking
Lanes is the assignment of stacking lanes to the crane (especially Quay Cranes). Each
crane is serviced by one or more pre-determined stacking cranes. This method requires
that the load plan must be known at the moment stacking starts. But, in practice, this
rule is not used due to this limitation [2,4].

There are four main stacking strategies presented [2,4]. These strategies are:

• Random: uses no information about container or load plan. A random
position is drawn, until a position is found where container pile has not
reached its maximum heights.

• Levelling: uses no information about container and load plan. The stack
is filled layer by layer, therefore the maximum actual stack height will be
minimised.

• Closest Position: also uses no information about container or load plan.
The closest position in which the pile, which is not maximum is chosen.

• Maximum Remaining Stack Capacity: This strategy needs information on
the load category of a container. Containers with no information are placed
in a separate part of the stack.

Kontena Nasional, used the random stacking method. For stacking strategy, the
levelling technique is chosen. Other methods are not applicable at Kontena Nasional
because of main constraint in quay cranes assignment. Furthermore, Kontena Nasional
uses only forklift to lift and to move the containers for retrieval and re-stacking purposes.
Due to the limitation of these techniques, a genetic algorithm is implemented in our
prototype.

2.2 GENETIC ALGORITHMS

The idea of applying the biological principle of natural evolution to artificial systems
was introduced three decades ago with an impressive growth. Genetic algorithms
(GA) were proposed by John Holland where he has written a book “Adaptation in
Natural and Artificial Systems” published in 1975. GA has been successfully applied
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to wide range of problems, such as optimisation, automatic programming, machine
learning and social systems [5].

Basically, GA is an iterative, directive and random search procedure that consists
of constant-size population of individuals, each one represented by a finite string of
symbols known as genome (encoding possible solution in a given problem space)[6].
Solution to a problem solved by genetic algorithms is revolving in nature. The algorithm
started with a set of solutions, which is represented as chromosomes. These chromosomes
create a set of population. The generation of possible population can produce new
population that can improve the old one (through gene formation – crossover, mutation
and selection). Figure 2 depicts the flowchart of genetic algorithms process.
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Mutation
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Generate
Population

Creates New
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Optimise?

StartStartStartStartStart

No
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Figure 2 The flowchart of GA

A new solutions (offerings) are selected according to their fitness. This process is
repeated until some stopping conditions are satisfied. Generally, genetic algorithm is
applied to a search space, which is normally too large to be exhaustively searched.
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3.0 EXPERIMENTAL PARAMETERS AND DESIGN

3.1 Data Structures (Chromosomes Presentation)

This prototype system was developed using Hitachi C++ compiler, which runs under
UNIX operating system. ORACLE 7 serves as a database mechanism that holds data
for the system (refers Figure 3).

The permutation encoding is used in creating chromosomes structures [3]. The
important attributes in constructing data chromosomes are[2,4]:

• Container Identification
• Date In
• Types of Containers
• Stacking Priority
• Lane Priority
• Predicted Date Out

Table 1 shows the encoding representation for each attribute.

Text Based Interaction

Cl ien tC l ien tC l ien tC l ien tC l ien t

Stacking & Allocation
Engine (in C++)

DatabaseDatabaseDatabaseDatabaseDatabase
(Oracle)(Oracle)(Oracle)(Oracle)(Oracle)

SQL

ServerServerServerServerServer

Figure 3 The system architecture
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Permutation encoding represents the chromosome using sequence or order of
number or alphanumeric value [7]. This representation is widely applied in Travelling
Salesman Problem (TSP) problem. Graphically, the chromosome structure for CSRS
is represented in Figure 4.

Table 1 Representation of attributes

Attributes Representation

Container ID (Unique) String (eg: A01)

Date In Integer (eg: 001)

Types of Container String (eg: E)

Stacking Priority Integer (eg: 6)

Lane Priority String (eg: W)

Predicted Date Out Integer (eg:01)

Chromosome structures are noted as G1,...,G7. Each of this structure contains gene,
which carry the information of domain problem. This gene was formed through the
combination of respective attributes depicted in Table 1.

3.2 Pseudo Code For Container Stacking and Allocation
Strategy

A skeleton of the evolutionary method used in CSRS is shown in Figure 5.

G 1G 1G 1G 1G 1 G 2G 2G 2G 2G 2 G 3G 3G 3G 3G 3 G 4G 4G 4G 4G 4 G 5G 5G 5G 5G 5 G 6G 6G 6G 6G 6 G 7G 7G 7G 7G 7

A01001E6W01A01001E6W01A01001E6W01A01001E6W01A01001E6W01 Gene, G2

Figure 4 The example of chromosome representation

Chromosome
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3.3 Genetic Algorithms Operator For CSRS

3.3.1 Fitness Function

The initial population was derived from the information given by Kontena Nasional.
This population was then structured into chromosomes representation. In this case,
4704 genes were produced during initial population phase. The fitness calculation
module evaluates the effectiveness and suitability of chromosome and genes sequence.
For CSRS implementation, three types of fitness evaluation were used.

• Fitness Value

( )f x optimum value x,= − ∑ (1)

Start:

Input: Container Information from database

Output: Proposed Container Stacking &

        Allocation.

Set generation ← 0

Initialise crossover and mutation parameters

Load container information into container array

Generate chromosomes from container array

Initialise population

For each chromosomes structures

Calculate initial fitness

Stored initial fitness

End for

While Not Termination Condition = True

Assign random number to Roulette Wheel

Evaluate the fitness value

Select chromosome from initial population

Perform Single Point Crossover

Perform Mutation (Order Changing)

Evaluate New Generation

generation ← generation + 1

End While

End:

Figure 5 Pseudo code for GA implementation
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where x refers to penalty value assigned. Optimum value is the value assigned
if a set of stacked and allocated container is ideal. Through study, the value
assigned is 50,000.

• Total Fitness
Calculate the accumulate value of individual fitness value. Calculated as

( )tf f x= ∑ (2)

• Ratio Fitness
Evaluates corresponding individual fitness over population. Calculated as
depicted in Eq.(3).

( ) ( )

( )
f n

ij
j

f x
s x

f d
=

=

∑
1

(3)

where n refers to container population size, j refers to iteration size and dij
refers to fitness for population.

The penalty value is assigned after several evaluation based on constraints given. If
the chromosome or genes structures violate the given constraint, some penalty value
will be given [8,9]. Thus, it decreases the fitness value for respective chromosomes.
The major constraints that contribute to penalty assignment are:

• Missing genes (containers).
• Distance between genes.
• Improper container sequence.
• Operational cost for possible movement during retrieval.
• Similar Genes Redundancy.

3.3.2 Selection Process

The selection (reproduction operator) selects chromosomes according to their fitness
function values. In this process, the well-fitted individuals have more chances to be
selected. CSRS used canonical type selection process. Using this process the parents’
p produce offspring c using crossover. Each of the c children is then assigned a fitness
value, depending on its quality considering the problem specific environment [5].
Later Roulette Wheel Selection technique is chosen to select potential chromosomes.

Roulette Wheel method selects the individual by mean of roulette style [5]. This
method requires fitness value fi to be positive ( fi  > 0) and each chromosome occupies

fi out of a total size 
n

i
j

f
=

∑
1

, where i refers to the chromosome, j refers to iteration size
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and n refers to the population size. Therefore, the probability p(i) of chromosome i to
be selected is given by

( ) i
n

i
j

f
p i

f
=

=

∑
1

(4)

A uniformly distributed random number R is generated, R ∈  U[0,1]. If R is between
cumulative probabilities of the ith and (i +1)th chromosomes, i is selected for the next
generation. This is repeated for the required number of N replacements for the next
steps [3].

3.3.3 Crossover

Selection alone cannot introduce any new individuals into the population. These are
generated by genetically inspired operators. Crossover is performed with probability
of Pcrossover (crossover rate) between two selected chromosomes (parents), by exchanging
part of their genomes (encoding) to form new individuals (offspring). In its simplest
form, sub strings are exchanged after a randomly selected crossover point. This operator
tends to enable the evolutionary process to move towards promising regions of the
search space state[10].

The CSRS allows single-point crossover technique. This operator will select one
crossover point at a specified chromosome location. At this point, the permutation
encoding is copied from the first chromosome and the second chromosome is scanned.
If the gene from second chromosome is not yet in that chromosome structure, it will
be added into the first chromosome. A crossover process is shown in Figure 6.

Figure 6 Single point crossover for permutation encoding

G 1G 1G 1G 1G 1 G 2G 2G 2G 2G 2 G 3G 3G 3G 3G 3 G 4G 4G 4G 4G 4 G 5G 5G 5G 5G 5 G 6G 6G 6G 6G 6 G 7G 7G 7G 7G 7

G 4G 4G 4G 4G 4 G 5G 5G 5G 5G 5 G 3G 3G 3G 3G 3 G 6G 6G 6G 6G 6 G 8G 8G 8G 8G 8 G 9G 9G 9G 9G 9 G 7G 7G 7G 7G 7

G 1G 1G 1G 1G 1 G 2G 2G 2G 2G 2 G 3G 3G 3G 3G 3 G 4G 4G 4G 4G 4 G 5G 5G 5G 5G 5 G 6G 6G 6G 6G 6 G 7G 7G 7G 7G 7

1st chromosome

2st chromosome

New offspring

Crossover point
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3.3.4 Mutation

Mutation is another important operator in genetic algorithms. It is a random change in
genetic material of a single individual (chromosome) where it is applied to genes by
changing them with a very low probability [5]. Mutation operator is introduced to
prevent premature convergence to local optima by randomly sampling new points in
the search space [10].

G 1G 1G 1G 1G 1 G 2G 2G 2G 2G 2 G 3G 3G 3G 3G 3 G 4G 4G 4G 4G 4 G 5G 5G 5G 5G 5 G 6G 6G 6G 6G 6 G 7G 7G 7G 7G 7

Chromosome A

Chromosome A*

Figure 7 Single conversion mutation

G 1G 1G 1G 1G 1 G 7G 7G 7G 7G 7 G 3G 3G 3G 3G 3 G 4G 4G 4G 4G 4 G 5G 5G 5G 5G 5 G 6G 6G 6G 6G 6 G 2G 2G 2G 2G 2

In CSRS, the mutation probability rate ranges from 0.001 to 0.010. Example of a
mutation process is shown in Figure 7.

4.0 EXPERIMENTAL RESULTS

In this prototype, the overall results show the accepted stacking condition has achieved
up to 85.6 percent optimisation rate. The optimisation rate or Opt, was measured
using.

( ) ×
correct stacking by GA

Opt % = 100
correct stacking from record (5)

The data consist of 4,704 containers with 672 possible conditions. The initial
population size was set to 672 chromosomes and the generations were alternated for
200 times. The generation with best optimisation rate was taken as the final output.
Average run time is between 30 and 45 minutes. There are two steps involved in this
prototype. The first step is an initial stacking step and the second step is an improvement
step. During the improvement step, the initial condition will go through several genetic
algorithm operators.

From the experiment, it was shown that some changes in genetic operator will
affect certain degree of optimisation performances. The initial mutation rate started
with 0.001 and has been increased up to 0.050 [5,9,10]. The crossover rate cutting point
ranges from 0.10 to 0.90 [5,9,10]. The random number is generated to produce the
crossover rate. Table 2 depicts the optimisation rate over several chosen parameters.
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From Table 2, the highest optimisation rate 85.60% was achieved when the crossover
rate is 0.55 and the mutation rate is 0.020. After several attempts, at certain threshold
point, any increment of mutation rate will decrease the possibility of getting better
optimisation rate.

Experimention on optimisation rates over generated population iteration (generation)
was also investigated. During this process, we have chosen five best optimisation rates
were chosen with respective parameters. There are two procedures involved:

• To estimate appropriate generation needed.
• To measure optimisation rate over generation produced.

Figure 8 illustrates the optimisation rate over produced generation. From Table 2,
Set A refers to parameter in Num 6 , Set B for Num 5, Set C for Num 7, Set D for Num
4 and Set E for num 8.

From the experiment, the optimisation rate will decline or remain unchanged after
certain period of reproduction process. It shows that the algorithm has achieved their
optimum result [3, 6]. Any attempt to enhance optimisation value will fail since the
overall possibility of probed searched space is high [6, 8]. Table 3 shows the optimal
generation level for respective parameters.

Table 2 Experiment results for optimisation rate over different parameters

     Num Optimization Rate (%) Crossover Rate Mutation Rate

1 68.52 0.10 0.001

2 71.33 0.25 0.005

3 73.14 0.35 0.008

4 79.45 0.45 0.013

5 83.55 0.50 0.015

6 85.60 0.55 0.020

7 81.32 0.75 0.030

8 75.31 0.80 0.035

9 69.55 0.80 0.050

10 65.12 0.90 0.050

11 68.13 0.90 0.040

12 71.00 0.70 0.045

13 70.33 0.50 0.045

14 64.33 0.40 0.050

15 61.45 0.10 0.050

JT38A[6B].pmd 02/16/2007, 20:2871



AZIZI AB. AZIZ & AZIZI ZAKARIA72

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

N u m  o f  T r i a ls

O
pt

m
iz

at
io

n 
R

at
e 

&
 G

en
er

at
io

n

S e t  A S e t  B S e t  C

S e t  D S e t  E G e n e r a t io n

250

200

150

100

50

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Num of Trials

O
pt

im
is

at
io

n 
R

at
e 

&
 G

en
er

at
io

n

Set A
Set D

Set B
Set E

Set C
Generation

Table 3 Generation level and optimisation rate

Set Optimisation Rate% Generation (Reproduction)

A 85.60 110

B 83.55 120

C 81.32 160

D 79.45 90

E 75.31 90

Figure 8 Comparison between generation reproduction and optimisation rate

Based from the experimental results, the final property for highest optimisation rate
is depicted in Table 4.
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5.0 CONCLUSIONS

A technique to optimise container stacking and allocation based on the given data has
been described. Generally, our prototype (CSRS) shows the capability of genetic
algorithms implementation in logistic management. Nature adaptation in genetic
algorithms gives a better way to solve container stacking and allocation problem.
Since the results were achieved through simulation process, it will provide better
analysis in container management. The simulation results will provide further insight
in predicting possible container arrangement and movement. Thus, it will allow analysis
on forklift flow and tasks. The best optimisation rate achieved is 85.6 percent using
Single Point Crossover, Single Conversion Mutation and Canonical-Roulette Wheel
Selection. In the future, a combination of general approximation techniques such as
neural networks and machine learning can provide a more significant results due to its
ability in discerning hidden patterns in huge data warehouse.
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