

78:2 (2016) 55–62 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

A GUIDELINE-BASED APPROACH TO SUPPORT THE

ASSESSMENT OF STUDENTS’ ABILITY TO APPLY OBJECT-

ORIENTED CONCEPTS IN SOURCE CODE

Norazlina Khamis*, Norhayati Daut

Faculty of Computing and Informatics, Universiti Malaysia Sabah,

Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

Article history

Received

7 July 2015

Received in revised form

7 September 20`5

Accepted

15 January 2016

*Corresponding author

norazlina@ums.edu.my

Graphical abstract

Abstract

There are many approaches in assessing students’ ability in object-oriented (OO)

programming, but little is known on how to assess their ability in applying OO fundamental

concepts in their written source codes. One major problem with programming assessment

relates to variation in marks given by different assessors. Often, the grades given also does

not gauge whether students know how to apply OO approaches. Thus, a new assessment

approach is needed to fill these gap. The objective of this study is to construct and validate

through expert consensus, a set of evaluation criteria for fundamental OO concepts

together with the guidelines called GuideSCoRE, to help instructors assess students’ ability

in applying OO concepts in their program source code. The evaluation criteria are derived

from fundamental OO concepts found in Malaysian OO programming syllabuses and

validated by a three-round Delphi approach. The proposed evaluation criteria were

mapped with related OO design heuristics and OO design principles. A guideline

(GuideSCoRE), constructed based on the Goal-Questions-Metrics approach together with

the evaluation criteria is used by instructors when assessing students’ source codes. An

inter-rater reliability analysis among six instructors found moderate agreement on

assessment scores (κ values of mainly between 0.421 and 0.575) indicating that whilst the

guidelines do not completely eliminate variations between raters, it help reduce their

occurrences.

Keywords: Object-oriented programming, object-oriented concept, programming

assessment, Goal-Question-Metric approach

Abstrak

Terdapat banyak pendekatan bagi menilai keupayaan pelajar dalam pengaturcaraan

berasaskan objek, tetapi sedikit sahaja diketahui bagaimana untuk menilai keupayaan

mereka di dalam mengaplikasikan konsep asas berasaskan objek di dalam kod sumber

mereka. Satu masalah utama dengan penilaian pengaturcaraan adalah berkaitan

dengan pelbagai variasi di dalam markah yang diberi oleh penilai yang berbeza. Gred

yang diberikan juga biasanya tidak melambangkan sama ada pelajar tahu bagaimana

untuk mengaplikasikan pendekatan berasaskan objek. Maka, satu pendekatan penilaian

baru dperlukan untuk mengisi ruang ini. Objektif kajian ini ialah membangunkan dan

mengesahkan melalui persetujuan pakar, satu set kriteria penilaian konsep asas

berasaskan objek bersama-sama dengan garis panduan yang dipanggil GuideSCoRE,

untuk membantu pengajar menilai keupayaan pelajar mengaplikasikan konsep

berasaskan objek di dalam kod sumber mereka. Kriteria penilaian ini diperoleh dari konsep

asas berasaskan objek yang diperolehi dari silibus kursus berasaskan objek di Malaysia dan

disahkan melalui pendekatan Delphi tiga langkah. Kriteria yang dicadangkan kemudian

dipetakan kepada reka bentuk heuristik dan juga prinsip reka bentuk berasaskan objek.

Satu garis panduan (GuideSCoRe), dibangunkan berdasarkan pendekatan Goal-

Question-Metric bersama-sama dengan kriteria penilaian digunakan oleh pengajar

apabila menilai kod sumber pelajar. Satu analisis kebolehpercayaan antara-penilai

dikalangan enam pengajar memperolehi persetujuan sederhana ke atas skor penilaian

G

Q

M

Refined

evaluation

criteria

(REC)

Questions

on how to

evaluate

the REC

Guidelines

to

examine

REC in

source

code

Analyse and

refine each

evaluation

criteria

Related

questions to

achieve the

goal

How to

examine

REC in

source

code

56 Norazlina Khamis & Norhayati Daut / Jurnal Teknologi (Sciences & Engineering) 78:2 (2016) 55–62

(niai κ diantara 0.421 dan 0.575) menunjukkan walaupun garis panduan tidak

menghapuskan variasi di kalangan penilai secara keseulruhannya, namun ia membantu

di dalam mengurangkan kekerapannya.

Kata kunci: Pengaturcaraan berasaskan objek, konsep berasaskan objek, penilaian,

pengaturcaraan, pendekatan Goal-Question-Metric

© 2016 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Object-oriented programming (OOP) has changed

the practice of writing computer applications.

Students who are introduced to programming need to

be able to firstly, understand and verbalize the

concepts involved in programming, and subsequently

produce well-written, structured and understandable

applications using the language involved. In most

universities in Malaysia, OOP methods is introduced as

an introductory course for programming, but have the

reputation of being a “killer course”, where the failure

rate is high. The problem related to learning OOP

amongst students have been discussed in literature,

but no clear solutions seem to be available that is

generic enough for applications in different cultural

and language context. The paper aims to propose a

set of evaluation criteria, which can be used by OOP

instructors when assessing students’ ability to apply

OO concepts in their source code.

2.0 RELATED WORK

When learning OOP, students need to have a good

understand of the core concepts of objects and their

relationships [1]. Fleury [2] found that students

constructed their own understanding of concepts in

their programming assignments, and those

constructions are not always complete and correct.

Guzdial [3] found that students have problems in

creating collaborative objects especially

understanding the connections between objects.

Sheetz et al. [4] confirmed that understanding the

concepts of OOP is the hardest and most important

rated by two groups of students who have completed

a six-week course on OOP systems. It was suggested

that instructors could increase the grasp of concepts

by simplifying methods of teaching. Students in the

study also indicated problems related to designing

and understanding programming techniques. At a

series of workshops, the COOL project at the University

of Oslo, Norway [5] focused on designing the right

environments and using varied delivery pedagogical

approaches to offer students with richer environments

and increase social interaction to solve OO problems.

Lahtinen, Ala-Mutka and Jarvinen [6] surveyed 559

students who were novices to programming and

those students expressed difficulty in understanding

concepts and prefer to work alone on program

coursework rather than in class-based practical

sessions. Other studies regarding OOP [1,7-11]

reported that students experienced misconceptions

about object-oriented concepts.

Besides, understanding the problems experienced

in learning OOP, studies have also examined the role

of assessment in the learning process. After all, it

cannot be assumed that students who have passed

their OOP examinations have understood the OO

paradigm. It has been indicated that students who

have prior experience in programming perform

significantly better in their university introductory

programming examinations [12]. This means that

novices should be introduced to OO techniques in a

different way from the experienced students and the

assessment given must rightly reflect the students’

understanding of the concepts learnt at whatever

levels.

Many assessment tools have been developed to

measure students’ ability in OO programming [13,14].

These tools usually focus on assessing technical and

didactic quality aspect, such as the correctness of the

output, appropriateness of the programming

processes and the styles followed. Students’ ability in

applying the fundamental OO concepts in source

code is not addressed. Too often, educators have to

develop their own assessment instrument every time

they want to examine students’ learning in

programming. This is due to the unavailability of

validated assessment instruments in CS disciplines

specifically in OOP courses [15].

It is difficult to evaluate students’ grasps of

fundamental concepts in programming without a

valid and reliable assessment instrument, which

fundamentally is closely related to the criteria used in

the instrument. In assessments, educators sometime

fail to consider whether students have applied the

correct OOP concepts in their source codes. Often,

the criteria emphasized are whether the program the

student program compiles, whether the output is

correct and, whether useful comments are sufficiently

included. The criterion does not consider the correct

and appropriate application of OO concepts. Also,

different educators may use different criteria when

examining students’ answers and this lead to

inconsistencies in assessment.

This paper aims to identify fundamental concepts

covered by most OOP courses in Malaysian public

universities, use the concepts to construct an

evaluation criteria, and a guideline that can be used

by OOP instructors when assessing students’ ability to

apply OO concepts in their source codes. We hope to

57 Norazlina Khamis & Norhayati Daut / Jurnal Teknologi (Sciences & Engineering) 78:2 (2016) 55–62

answer the following questions. What are the

fundamental OO concepts that beginners should

know? What are the evaluation criteria that can be

used to assess students’ ability to apply the concepts

in their source codes? What guidelines can be used to

further support the assessment process?

3.0 METHOD

3.1 Identifying Object-oriented Concepts

The initial stage of the study involved identifying

fundamental OOP concepts, which are embedded in

programming course syllabuses offered at Malaysian

public universities and published literature. Published

literature provided a variety of definitions on OO

concepts and this may have increased confusions

about meaning of concepts and terms. Four sources

were used to identify the fundamental concepts

which has been explained in [17].

The identified fundamental OO concepts will serve

as a basis in constructing the evaluation criteria to

assess students’ ability in applying those concepts.

Lecturers, who teach programming courses at

Malaysian public universities, were asked to evaluate,

validate and refine the concepts identified. The

resulting evaluation criteria are further mapped with

OO design heuristics and principles. The final output

from this phase will be a set of validated evaluation

criteria, which will be used in designing assessment

guidelines.

Based on the analysis and comparison between

Armstrong’s [18] OO taxonomy and the concepts

obtained from various sources described above, eight

frequently occurring OO concepts are selected as the

fundamental concepts relevant to this research. Those

concepts are object, class, abstraction,

polymorphism, encapsulation, inheritance, message

passing and method. Based on these concepts, the

evaluation criteria were established for assessing

students’ ability in applying these fundamental

concepts in their source code.

3.2 Verifying Evaluation Criteria

In the second stage, Delphi approach is used to verify

the set of evaluation criteria for assessing students’

ability in applying fundamental OO concepts in their

source code based. The criteria derived are based on

experts’ knowledge and experiences. We use experts

to validate the content of the assessment instrument

constructed. The content validation process helps

indicate the degree to which the content of the items

reflects the content domain as well as the

representativeness and clarity of each item. The

experts also offer suggestions for improving the

measure. A consensus by eight experts was obtained

after three iterations process. It has been found in the

literature [19, 20] that three iterations are often

sufficient to collect the needed information and to

reach a consensus and this was applied in this study.

The eight experts who participated in this study fulfilled

the selection criteria as stated in [17].

In the last stage of the Delphi iteration, the experts

were asked to validate the final fundamental OO

concepts identified, and verify the evaluation criteria

derived to assess the understanding of the OO

concepts.

A total of 16 evaluation criteria is derived and the

final evaluation is done by mapping the criteria with

object oriented design heuristic and object-oriented

design principles [22]. Details about the process of

establishing evaluation criteria is found in [17] and the

final evaluation criteria is presented in Table 1.

Table 1 Evaluation criteria after three iteration of Delphi

approach

Identifier & Evaluation Criteria Related

OO

concept

EC01: Able to identify classes at the proper

level of abstraction with regards to the

problem being solved (design level)

Class

Abstraction

EC02: Able to identify the proper classes,

methods and attributes to solve a

particular problem (implementation level)

Class

Method

Abstraction

EC03: Able to give appropriate

names/attributes (nouns) and method

(verbs)

Class

EC04: Able to create constructors as

necessary for a class

Class

EC05: Able to define accessor and mutator

methods (i.e. getter and setter methods) as

necessary for a class

Method,

Class

EC06 :Able to send an appropriate

message/method call to an object based

on the type of that object and the

interface of the corresponding method

Message

passing

Method,

Object

EC07: Able to manipulate heterogeneous

container of objects by sending

appropriate polymorphic messages to

each of them

Object

Message

passing

Polymorphi

sm

EC08: Able to pass correctly an object as a

parameter in a message

Message

passing

Object

EC09: Able to identify the proper level of

access control (e.g. private, public,

protected) for the characteristics and

behaviours of a class

Encapsulati

on Class

EC10: Able to identify “is-a” relationships

between several related classes and

implement inheritance between these

classes correctly; these include super and

sub-class constructors, methods that should

be inherited and their access control

Inheritance

Class

Method

EC11: Able to call a method inherited from

the ancestors of the class in which the call

is made

Method

Class

Inheritance

58 Norazlina Khamis & Norhayati Daut / Jurnal Teknologi (Sciences & Engineering) 78:2 (2016) 55–62

Identifier & Evaluation Criteria Related

OO

concept

EC12: Able to appropriately define multiple

related classes as opposed to defining a

single class in solving the problem in hand

Inheritance

Class

EC13: Able to create aggregation

relationships between related classes to

correctly indicate whole-part relationships

between the concepts/entities

represented by the classes.

Class

EC14: Able to correctly create an object of

a class using an appropriate constructor of

factory method based on the

documentation of the corresponding class

Object

Class

EC15: Able to identify appropriately

situations in which polymorphism can be

applied

Polymorphi

sm

EC16: Able to set up correctly a group of

objects which work together among

themselves in carrying out a certain task

(vs. one object doing everything itself)

Object

3.3 Development of Assessment Guideline using Goal-

Questions-Metric Approach

The evaluation criteria resulting from the Delphi study

is in their conceptual form and is open to

interpretation by educators. Thus, each evaluation

criteria resulted from the Delphi study is further

analysed and refined to ensure they are presented in

a measurable form. Each criterion corresponds to the

desirable application properties in the source code for

each of the fundamental OO concepts. Those

educators who have more experience in teaching

OOP will find it easy to use the evaluation criteria

alone to examine students’ abilities in applying

fundamental OO concepts in their source code.

However, educators who have less or no experience

might find it difficult to understand the evaluation

criteria, and may be uncertain that they are actually

assessing students’ application abilities from the

source code being evaluated. This could inevitably

lead to marking inconsistencies. Therefore, an

assessment guideline on how or what to look for when

examining source code is proposed to assist

educators when assessing students’ programs. An

adaptation of the Goal Question Metric (GQM)

approach [21] is used to develop the guideline.

To develop the guideline, each criterion is

analysed and refined from ambiguity to determine

how it should be assessed in the source code. To do

this the design heuristic and principles in programming

reference books were examined to ascertain what

exactly needs to be looked at in the source code for

each of the evaluation criteria. The assessment

guideline derived from the GQM approach are

presented in the GQM Profile form.

Each GQM Profile represents the assessment guideline

for the respective evaluation criteria. The profile

consists of four components as follows.

 Component One:

Refined Evaluation Criteria

Refers to the Goal of the assessment, which is

the refined evaluation criteria. Each criteria

resulted from previous phase is analysed and

refined to ensure it is presented in a

measurable form.

 Component Two:

Related Design Heuristics/Principles/

References

Refers to the related design heuristics; design

principles and programming provide by

reference books. This section will support the

rationale of designing the assessment

guidelines

 Component Three:

Question

Refers to the Question on how to achieve the

goal, that is, how to evaluate the refined

evaluation criteria in source codes.

 Component Four:

Source Code Examination

Refers to the Metrics of the assessment, that is,

the guidelines on how to assess the refined

evaluation criteria through a source code

examination approach

Based on the GQM approach, two examples of the

final output for one of the evaluation criteria and its

assessment guideline is presented in GQM Profile in

Table 2 and Table 3 respectively.

Table 2 GQM Profile for Refined Evaluation Criteria 01 (REC01)

Refined Evaluation Criteria:

REC01: Able to identify at the proper level of abstraction

with regards to the problem being solved in terms of class

granularity and cohesion

Related Design Heuristic/Principles/References:

Design Heuristic:[H2.8, H2.9, H2.10, H2.11, H3.1, H3.2, H3.6,

H3.7, H3.8, H3.10]

Design Principles: [Single Responsibility Principle]

Questions:

Q1.1: How to gauge the granularity of a class in source

code?

Q1.2: How to gauge the cohesion of a class in source

code?

59 Norazlina Khamis & Norhayati Daut / Jurnal Teknologi (Sciences & Engineering) 78:2 (2016) 55–62

Source code examination guidelines:

Look at the class structure at the macro level

CE1.1: Look at the number of classes in the source code.

If there are too many or too few classes for the problem

being solved, there is a possibility/indication of the

existence of classes defined at unsuitable levels of

granularity.

CE1.2: Look at the number of methods for the class and

their relatedness. If the class has many methods, there is

a possibility that more than one responsibility have been

assigned to that class. Are the methods focused on a

single responsibility (cf. Single Responsibility Principle)?

However, there can be situations where methods are not

many, but they do not focus on a single responsibility.

Table 3 GQM Profile for Refined Evaluation Criteria 02 (REC02)

Refined Evaluation Criteria:

REC02: Able to identify proper attributes and methods

of a class with respect to the problem being solved.

Related Design Heuristic/Principles/References:

Design Heuristic: [H2.1, H2.4, H2.5, H2.9, H3.9, H4.6,

H4.13, H8.1]

Design Principles: Single Responsibility Principle

Questions:

Q2.1: Are methods and attributes highly related to the

responsibilities of the class?

Q2.2: Are methods defined at the appropriate

granularity?

Source code examination guidelines:

Look at micro level: Focus on one class. Assume the

class has been appropriately defined.

CE2.1: Are the attributes and methods related to their

class's responsibility? The properness of attributes and

methods relates to the cohesiveness of a class. (Q2.1)

CE2.2: Locate methods defined which are highly

related. If not appropriate, there must be one method

unrelated with the responsibilities assigned (by looking

at what the method does. (Q2.1)

CE2.3: Look at each attribute and ascertain whether it

is being used or not within the class. (Q2.1)

CE2.4: Look at the size of the class's methods. If the size

of a method is big, it might be an indication of

improper granularity and the method should be

broken up into smaller ones. (Q2.2)

4.0 RESULTS AND DISCUSSION

Reliability of GuideSCoRE in assessing students’ ability

in applying OO concept in their source code is being

validate by development of a semi-automated web-

based tool (WebSAT). The tool is develop to support

the assessment of fundamental OO concepts

application by integrating GuideSCoRE. Figure 1

indicates the structure of WebSAT. Although fully

automatic assessment would ease educators'

workload, it does not provide important feedback on

matters that cannot be automatically assessed.

Educators believe that it is not possible to automate all

issues related to good programming, [25] which

includes assessment of students’ ability in applying

fundamental OO concepts.

The assessment tool for GuideSCoRE developed in

this research was inspired by the checklist-based

evaluation proposed by Benchmarks for Science

Literacy project [26] in which a set of specific, well-

defined criteria was defined that can be evaluated

on a uniform scale. It requires the instructor to make a

decision on their level of agreement, generally on a

five-point scale with a statement. The five-point Likert

scale used for scoring GuideSCoRE's evaluation

criteria ranges from 0 = No evidence (NE), 1 = Weak

evidence (WE), 2 = Average Evidence (AE), 3 = Clear

evidence (CE), and 4 = Strong evidence (SE) (Table 4).

Figure 1 The Structure of WebSAT

Table 4 GuideSCoRE Assessment Template

 Assessment scale

For each of the

following evaluation

criteria, place the

most appropriate

score by selecting a

number from 0-5 for

each specified trait

to evaluate the

evidence of the skills

in students’ source

code.

Skill is

not

consider

ed in the

assessm

ent

(NA)

Skill is not

consider

ed in the

assessm

ent but

proper

applicati

on is

evident

(Extra

marks)

(EM)

Evaluatio

n Criteria

0

=

N

E

1

=

W

E

2

=

A

E

3

=

C

E

4

=

S

E

Criteria

[Guidelin

es]

Studens’

source

code

WebSAT

Guideline-

supported

source code

examination

instrument,

GuideSCoRE

Other

assessment

instrument

Students’

ability

based on

other

assessment

instrument

Students’

ability in

applying

fundamen

tal OO

concepts

Report

60 Norazlina Khamis & Norhayati Daut / Jurnal Teknologi (Sciences & Engineering) 78:2 (2016) 55–62

Each rating point represents a certain degree of

presence of evidence, found through examining the

source code, of proper application of the skill being

evaluated. According to Altman and Bland [27],

“Absence of evidence is not evidence of absence”.

Absence of evidence is the absence, or lack of, any

kind of evidence that may show, indicate, suggest, or

be used to infer or deduce a fact. Evidence of

absence is evidence of any kind that can be used to

infer or deduce the non-existence of something. In the

context of this research, the non-presence of

possession of a skill in a source code (i.e. "No

evidence") does not infer that a student does not

have that skill. It might be the case that the student

possesses that skill but did not happen to apply it while

writing the source code. For that matter, it is even

possible for the student to score “Strong evidence" for

that skill in a different assignment. Therefore, one can

assume that GuideSCoRE evaluation results only

represent the proper application of certain skills by

students at the time the assessment is being

conducted and it is based solely on evidence that

can be found in their source code.

The instrument has been designed to be flexible in

terms of the criteria to be evaluated for an assessment

exercise. Educators can disregard those evaluation

criteria that are deemed not relevant to the current

problem being solved or are not being assessed in the

exercise. Prior to using the instrument for an

assessment exercise, educators should determine

which evaluation criteria are most relevant to assess

and modify their scoring requirements as needed. The

response to be given by the assessor for such

evaluation criteria is any one of the following,

 Not applicable (NA):

Skill is currently not considered in the

assessment.

 Extra Marks (EM):

Skill is not currently considered in the

assessment but proper application is evident.

Upon completion of assessment using

GuideSCoRE, a report consisting of a summary of

evidences of particular skills found in a student's

source code is produced. It shows the student's total

score which is the sum of the individual scores given

by the assessor for each evaluation criteria. It is an

indicator representing the overall performance of OO

skills applied by the student based on the examination

of his/her source code. The calculation of the

GuideSCoRE total score is given below. Note that it

takes into account that not all evaluation criteria are

being assessed by the educator.

Maximum mark for evaluation criteria i =Mi

(for i=1..13)

where Mi = {
0 𝑖𝑓 𝑛𝑜𝑡 𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑
5 𝑖𝑓 𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑

 (1)

Student's mark obtained for evaluation

criteria i = mi (for i=1..13)

where mi = {
0 𝑖𝑓 𝑛𝑜𝑡 𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑
𝑘 𝑖𝑓 𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑

 (2)

and k = 1..5 (Likert point score)

Maximum marks achievable = ∑ 𝑀𝑖
13
𝑖=1 (3)

Student's total marks assigned for

GuideSCoRE approach = ∑ 𝑚𝑖
13
𝑖=1 (4)

Nine Instructors evaluated the usability of the

assessment tool and this number is indicated as

sufficient in literature [27, 28]. An e-mail invitation was

sent to 9 instructors who were involved in teaching

OOP related courses from various Malaysian

universities to participate in this evaluation phase.

Some of them have experiences in research or

development related to the OO domain. To ensure

validity of this evaluation, none of these educators

were involved in the Delphi study conducted earlier.

Each instructor was requested to evaluate six

source codes, SC01 to SC06, for an assignment called

‘My Cal’ using the GuideSCoRE instrument. Five

students from two Malaysian public universities wrote

source codes, SC01 to SC05. The remaining one, SC06,

was a sample answer written by an OO expert. The

assignment used in this evaluation phase was

designed by an OOP expert. The problem statement

was designed in such a way that the fundamental OO

concepts covered by GuideSCoRE can be applied.

The five students who volunteered were enrolled in

two different OOP-related courses, namely Java

Programming and Data Structure. Each student was

requested to produce a source code by

implementing all the GuideSCoRE’s fundamental OO

concepts in their source code. These source codes

were uploaded in the WebSAT for evaluation.

4.1 Evaluating the Reliability of the GuideSCore

The evaluation phase focused on assessing the

reliability of the GuideSCoRE in minimizing the

inconsistency during OO assessment. Reliability can

be defined as a scale that consistently reflect the

construct it is measuring [29]. An instrument is

considered reliable when students on average

obtained similar score for a question that is being

evaluated by more than one instructor. Reliability is

indicated when two persons measuring the same

construct gave the same score. An inter-rater

reliability analysis using the Kappa statistic was

performed to determine consistency among raters

[30,31,32,33]. Tables 5 shows the percentage of

agreement, Kappa value, κ for each of the source

code using Fleiss Kappa calculation.

61 Norazlina Khamis & Norhayati Daut / Jurnal Teknologi (Sciences & Engineering) 78:2 (2016) 55–62

Table 5 Kappa Value using Fleiss Kappa Calculation to

Determine Inter-Rater Reliability

Source code Kappa

Value, κ

SC01 0.545

SC02 0.459

SC03 0.421

SC04 0.412

SC05 0.380

SC06 0.575

We use the Landis and Koch’s [34] approach to

interpret κ values (Table 6)

Table 6 Interpretation of the κ values

κ Interpretation

< 0 Poor agreement

0.01 – 0.20
Slight

agreement

0.21 – 0.40 Fair agreement

0.41 – 0.60
Moderate

agreement

0.61 – 0.80
Substantial

agreement

0.81 – 1.00
Almost perfect

agreement

Table 6 indicates that the inter-rater scores range

between 0.4 and 0.5 and there is moderate

agreement on the assessment score for all source

code being evaluated by instructors during the

marking process. This indicates that the GuideSCoRE

moderately help minimizing the marking differences

among educators during the marking process.

Although GuideSCoRE do not completely eliminate

variations between raters, it does reduce the

occurrence of these discrepancies and can be

improved in the future.

5.0 CONCLUSION

From our preliminary study of OOP courses offered at

Malaysian universities [35] we found that most

Universities in Malaysia used both summative and

formative assessment approaches. Students are

mainly assessed through written examinations,

programming assignments and oral presentations.

Students are given feedback on their performance in

the form of grades (A to F) and marks (00 to 100). It is

assumed in this context that those who had passed

can write programs, but does not indicate whether

the students understand the OO concepts and

therefore could reapply that knowledge in their future

work places. All instructors who participated in the

survey agreed that there is a need to have a

framework for assessing OO skills among

undergraduates. In this study we looked into how such

an assessment can be implemented.

All instructors also agreed that it is important for

students to have a good grasp of core OO concepts.

Perusal of OO programming syllabuses offered in

Malaysian universities and published literature

revealed a number of fundamental concepts, which

students should master. Abstraction, class, method,

message passing, inheritance, object, polymorphism

and encapsulation are among the most common

ones. These concepts were chosen as the basis for

establishing the evaluation criteria for assessing

students’ ability in applying fundamental object-

oriented concepts in their source code as well as to

validate the content using a three-round Delphi study.

Sixteen validated evaluation criteria were derived

based on expert consensus and were further

validated by associating them with related object-

oriented heuristics and principles. An instrument

(GuideSCoRE), comprising a set of guidelines that can

be used by instructors to support assessments of

students’ skills based on evaluation criteria is

established. The contribution in this context is the

GuideSCoRE, which, unlike other instrument in OO

programming assessment, focuses on determining

students’ skills in applying fundamental OO concepts

in their source code. Using this guidelines instructors

could gauge their agreement that each criteria

reflects students’ mastery in applying a particular OO

programming concepts in their source code. Thus, the

differences during marking process due to differences

in instructors’ experiences are minimised.

The GuideSCoRE evaluation results represent the

proper application of certain skills by students at the

time the assessment is being conducted and it is

based solely on evidence that can be found in their

source code. In addition to that, the assessment

approaches are independent of programming-

language or environment. For example, it can be used

in assessing OO source code produced using C++ or

Java, or, different environment like Netbeans or

Eclipse.

Acknowledgement

We are grateful for the participants and experts who

involved in this study.

References

[1] Kolling. M. 1999. The Problem of Teaching Object-

Oriented Programming, Part 1: Languages. Journal of

Object-Oriented Programming.

[2] Fleury. A. E. 2000. Programming in Java: Students-

Constructed Rules. In 31st SIGCSE Technical Symposium

on Computer Science Education.

[3] Guzdial, M. 2001 Centralized Mindset: A Student Problem

with Object-Oriented Programming. Journal of

Computer Science Education. 14(3&4): 28-32.

[4] Sheetz, S. D., Irwin, G., Tegarden, D. P., Nelson, H. J. and

Monarchi, D. E. 1997. Exploring the Difficulties of Learning

Object-oriented Techniques. Journal of Management

Information System. 14(2): 103-131.

[5] Berge, O. and Fjuk, A. 2003. Soco-cultural Perspectives on

Object-oriented Learning. Workshop on Pedagogies and

62 Norazlina Khamis & Norhayati Daut / Jurnal Teknologi (Sciences & Engineering) 78:2 (2016) 55–62

Tools for learning Object Oriented Concepts, European

Conference on Object Oriented Programming,

Darmstadt, Allermagne.

[6] Lahtiven, E., Ala-Mutka, K. and Jarvinen, H. M. 2005. A

Study of the Difficulties of Novice Programmers. ITiCSE ’05.

June 27-29. Portugal.

[7] Anna, E. and Thune. M. 2005. Novice Java Programmers'

Conception of "Object" and "Class", and Variation

Theory, in ITiCSE, Monte de Caparica, Portugal. 89-93.

[8] Kate, S. et al. 2008. Student Understanding of Object-

Oriented Programming as Expressed in Concept Maps. In

SIGCSE Bull. 40: 332-336.

[9] Kate, S. and Lynda, T. 2007 Checklists for Grading Object

Oriented CS1 Programs: Concepts and Misconceptions.

SIGCSE Bull. 39: 166-170.

[10] Simon, H. et al. 1997. Avoiding Object Misconceptions.

SIGCSE Bull. 29: 131-134.

[11] Brown, G. et al. 1997. Assessing Student Learning in Higher

Education. London: Routledge, Taylor and Francis.

[12] Hagan, D. and Markham, S. 2000. Does it Help to Have

Some Programming Experience Before Beginning a

Computing Degree Program? In Proceedings of the 5th

annual SIGCSE/SIGCUE ITiCSE conference on Innovation

and Technology in Computer Science Education. New

York: ACM. 25-28.

[13] McCracken, M. et al. 2001. A Multi-National, Multi-

Institutional Study of Assessment of Programming Skills of

First-Year CS Students. In SIGCSE Bull. 33: 125-180.

[14] Raymond, L and John, L. 2003. First Year Programming:

Let All the Flowers Bloom. In Proceedings of the fifth

Australasian Conference on Computing Education.

Volume 20, Adelaide, Australia.

[15] Allison, E. T and Mark, G. 2010. Developing a Validated

Assessment of Fundamental CS1 Concepts. In

Proceedings of the 41st ACM Technical Symposium on

Computer Science Education, Milwaukee, Wisconsin,

USA.

[16] ACM. 2013. ACM Computing Curricula 2013.

Available:https://www.acm.org/education/curricula-

recommendations.

[17] Norazlina K. 2016. Establishing Evaluation Criteria for

Assessing Novices' Ability in Applying Object-oriented

Concept Using Delphi Approach. International Journal of

Information and Education Technology. ISSN 2010-3689.

[18] Deborah J. Armstrong. 2006. The Quarks of Object-

Oriented Development. Commun. ACM 49. 2(February

2006): 123-128.

[19] Hsu, C. C and Sandford, B.A. 2007. The Delphi Technique:

Making Sense of Consensus, Practical Assessment,

Research & Evaluation. 12: 1-8.

[20] Yousuf, M. I. 2007. Using Experts' Opinion Through Delphi

Technique. Practical Assessment , Research & Evaluation.

12: 9-18.

[21] Victor B, Gianluigi C. and Dieter R. 1994. The Goal

Question Metric Approach.

[22] Martin, R. C. 1996. Design Principles. Available:

http://www.objectmentor.com/resources/publishedArti

cles.html.

[23] Meyer, B. 1997. Object-oriented Software Construction.

Prentice Hall.

[24] Liskov, B. 1987. Keynote Address-Data Abstraction and

Hierarchy. In proceedings on Object-oriented

programming systems, languages and applications

(Addendum), Orlando, Florida, United States.

[25] Kirsti, A. M. 2005. A Survey of Automated Assessment

Approaches for Programming Assignments. Computer

Science Education. 15: 83-102.

[26] 1993. Benchmarks for Science Literacy: Oxford University

Press.

[27] Altman, D. G and Bland, J. M. 1995. Statistics Notes:

Absence of Evidence is Not Evidence of Absence. BMJ.

485.

[28] Creswell, J. 1998. Qualitative Inquiry and Research

Design: Choosing Among Five Traditions. Thousand Oaks,

CA: SAGE.

[29] Morse, J. M. 1995. The Significance of Saturation.

Qualitative Health Research. 5: 147-149.

[30] Trochim, W. M. K. 2006. Research Method Knowledge

Base. Measurement: Reliability.

[31] Nichols,T. R et al. 2010. Putting the Kappa Statistic to Use.

The Quality Assurance Journal. 13: 57-61.

[32] Moskal, B. M and Leydens, J. A. 2012. Scoring Rubric

Development: Validity and Reliability. Practical

Assessment, Research & Evaluation. 7(10).

[33] Fleiss, L. 1971. Measuring Nominal Scale Agreement

Among Many Raters. Psychological Bulletin. 76: 378-382.

[34] Landis, J.R and Koch,G. G. 1997. The Measurement of

Observer Agreement for Categorical Data. Biometrics.

33: 159-174.

[35] Norazlina K. and Idris, S. 2007. Investigating Current

Object-oriented Programming Assessment Mehod In

Malaysia's Universities. In Proceedings of the International

Conference on Electrical Engineering and Informatics,

June 17-19, Bandung, Institut Teknologi Bandung. 666-

668.

