

75:2 (2015) 1–5 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

COLLISION DETECTION FOR CLOTH SIMULATION USING

BOUNDING SPHERE HIERARCHY

Abdullah Bade*, Ching Sue Ping, Siti Hasnah Tanalol

School of Science & Technology, University Malaysia Sabah, Kota

Kinabalu Sabah, Malaysia

Article history

Received

3 December 2013

Received in revised form

2 July 2014

Accepted

25 November 2014

*Corresponding author

abb@ums.edu.my

Graphical abstract

Abstract

For the past 2-decades, the challenges of collision detection on cloth simulation have

attracted numerous researchers. Simple mass spring model is used to model the cloth

where the movement of the particles within the cloth was controlled by applying the

Newton’s second law. After the modeling stage, implementation of the collision detection

algorithm took place on cloth has been done. The collision detection technique used is

bounding sphere hierarchy. Then, quad tree is being used to partitioning the bounding

sphere and the collision search was based on the top-down approach. A prototype of the

collision detection system is developed on cloth simulation and several experiments were

conducted. Time taken for this system to be executed is around 235.258 milliseconds. Then

the frame rate is at the average of 22 frames per second which is close to the real time

system. Times taken for the collision detection system travels from root to nodes were 23

seconds. As a conclusion, the computational cost for bounding sphere hierarchy is much

higher because the bounding sphere required more vertices for generation process,

however the execution time for bounding sphere hierarchy is faster than the AABB

hierarchy.

Keywords: Component, collision detection, bounding sphere hierarchy, quad tree, cloth

© 2015 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

In this modern era, modeling and simulation using

computer has been commonly used since the

computational speed and the realism of the model

are improving as the time passes. Deformable object

are object in which their shape will change whenever

there are external forces applying on the object, but

the shape of the object will return to its original state

when there are no other forces applied [1]. One of the

deformable objects which have been widely

researched is cloth model. It is important because it

adds to the realism of a graphically generated

environment. By using mathematical and

computational techniques such as Bezier Curve,

Splines, Free-form deformation and mass spring

model, deformable objects can be formed efficiently

[2]. Mass spring model has been widely used for

modeling deformable object even though it is not as

accurate as the finite element models. The

computational cost of this model is not expensive, thus

making it more favorable. The simple mass spring

model is created using a mesh of points connecting

each other with a spring in a regular-shaped structure

[3].

Collision detection is one of the most frequently

used techniques in computer graphics to detect the

intersection between two or more objects. Collision

occurs when there is at least one points of the object

were in contact with the other object [4]. Most of the

collision detection occurs in animation, modeling and

simulation. There are many algorithms developed to

detect the collision within objects, most of the

algorithms which can apply on the deformable object

were able to perform on the rigid body [5]. The

algorithms purposed for collision detection are Sweep

and Prune algorithms, Lin-Canny Bounding Volume

algorithm, Gilbert-Johnson-Keerthi (GJK) Distance

2 Abdullah, Ching & Siti Hasnah / Jurnal Teknologi (Sciences & Engineering) 75:2 (2015) 1–5

algorithm and Bounding Volume Hierarchy (BVHs).

Among the algorithms, BVHs has been proven to be

one of the most efficient data structures for collision

detection [6]. There are many types of bounding

volume been studied from the past, the examples are

spheres, axis-aligned bounding boxes (AABBs), object-

oriented bounding boxes (OBBs) and discrete-

oriented polytopes (DOPs) [5].

2.0 METHODOLOGY

A moving ball was used to simulate the collision on the

cloth. Whenever the bounding sphere collides with

the moving ball, the bounding sphere hierarchy will be

partitioned based on quad tree concept. Quad tree

is used instead of binary tree in order to set up a faster

formation. Once the distance between the objects is

smaller than the radius of the bounding sphere, then

the bounding sphere will subdivide until the subdivision

reaches the forth level which contain the smallest

bounding sphere, then the subdivision will stops and

the collisions between the objects will be detected.

The nodes will continue the division process until each

of the child nodes contains only one particle within the

cloth. Then the search of the collision was done by

top-down approach meaning that the search

travelled from the root to the node. The colour of the

bounding spheres will change to red when there are

collisions detected and remained green if there are

no collisions detected.

2.1 Simple Mass Spring Model

Cloth is a highly deformable object which is complex

to model and require high demand on computational

resources [7]. In this paper, the cloth was created

using simple Mass Spring Model where the distance

between the particles inside the cloth was control

using the spring constraint. The structure of the cloth

was formed by arranging the number of particles

along the width and height of the cloth from the point

(0, 0, 0) to (width, -height, 0). Then the position of each

of the particles was calculated based on formula (1).

PosParticle = y x number of particles within width x x

(1)

Where x is the column of the particles and y is the

row of the particles. Then structure of the cloth was

done by forming triangles using 3 particles was shown

in Figure 1.

Figure 1 Particles arrangement for cloth structure

According to Newton’s second law which state that

acceleration is equal to forces divided by mass,

therefore this law was applied on each of the particles

within the cloth so that when there are any collision,

the particles will act accordingly. However, applying

just the Newton’s second law, on the particles will not

create a cloth moving naturally. Therefore, the

position of the particles has to be updated in all times.

The concept of updating the position is shown in

Figure 2.

Figure 2 Concepts of updating the position of the particles

Referring to Figure 2, the position of the ball will be

updated whenever there are any forces applying on

the particles which cause the particles to accelerate.

The position of the particles can be calculated using

Equation (2).

Posnew = Posnew + (Posnew – Posold) x (1.0 – D) +

acceleration x T (2)

Where Posnew is the current position of the particles,

Posold is the old position of the particles, D is the

damping value of the cloth preset in the program,

acceleration is equal to force divided by mass and is

the size of time step to be taken for each frame.

2.2 Collision Detection

The quad tree is used to subdivide the particles within

the cloth until there is only one particles contain in

each of the child nodes of the tree. In order to detect

the collisions, the radius of the bounding sphere has to

be calculated and the distance between these

bounding spheres and the moving ball has to be

updated. Figure 3 shows the formation of the quad

tree.

3 Abdullah, Ching & Siti Hasnah / Jurnal Teknologi (Sciences & Engineering) 75:2 (2015) 1–5

Figure 3 Concepts of updating the position of the particles

Quad tree partition was applied on the cloth in order

for each of the particles was surrounded by a sphere

for the collision detection. This has to be done in order

to detect the collision more accurately.

 The bounding sphere was created, where the radius

of the sphere is differing for each level of the quad

tree. Therefore, the algorithm to getting the radius is

shown in Figure 4.

Figure 4 Algorithm to get the radius of the sphere

After the bounding sphere created, the checking for

collision was done by calculating the distance

between the bounding sphere and the moving ball.

Since the ball used to collide with the cloth is a moving

object, the position of the ball will be changing at all

times. Therefore, the radius of the moving ball can be

calculated using Equation (3).

Rball = Posball + ball radius (3)

Where Rball is the radius of ball, Posball is the position of

the ball and ball radius is the radius of the ball which

has been preset as 1. Then the distance between the

cloth and the moving ball is being calculated using

Equation (4).

Distance = ║Rspbere + Rball║ (4)

Where, Rspbere is the radius of the bounding sphere

which will be updated when the ball is moving and

Rball is the radius of the moving ball. The next step will

be the checks for collision. The checking and updates

for the bounding sphere were done. Collisions were

detected when the Distance is smaller than the radius

of the moving ball.

3.0 RESULTS

The construction of the collision detection for cloth was

shown in Figure 5 and Figure 6. Several tests were

conducted and the analysis was discussed. The tests

conducted are times execution test, frame test,

OpenGL functions call test, and CPUs Average

Utilization test.

Figure 5 The bounding sphere hierarchy

Figure 6 The Axis Aligned Bounding Box (AABB)

The times execution test was the calculation of time

to execute the system. This test was conducted 20

times in order to get the average time of execution

and the results were shown in Table 1.

Table 1 20 sets of time execution test for collision detection

using bounding sphere hierarchy and AABB hierarchy

Experiment

Time Execution

(ms) for Bounding

Sphere Hierarchy

Time

Execution

(ms) for AABB

Hierarchy

1 215.877 1233.01

2 188.131 1259.05

3 220.172 1267.02

4 216.726 1203.98

5 236.049 1263.00

6 223.576 1256.01

7 215.311 1177.10

8 233.671 1211.98

9 253.518 1260.03

10 259.710 1242.00

11 249.192 1259.02

12 245.186 1240.99

13 253.523 1259.00

14 232.061 1241.01

15 229.389 1243.03

1. Check the longest length of the cloth. (either width or height)

2. Radius of the first sphere = (longest length + 1) ÷2.

3. Radius for the next spheres = radius of previous sphere ÷2

4 Abdullah, Ching & Siti Hasnah / Jurnal Teknologi (Sciences & Engineering) 75:2 (2015) 1–5

Experiment

Time Execution

(ms) for Bounding

Sphere Hierarchy

Time

Execution

(ms) for AABB

Hierarchy

16 274.904 1249.02

17 237.714 1272.03

18 226.821 1262.04

19 235.760 1271.02

20 257.875 1224.01

Average 235.2583 1244.718

From Table 1, the average time execution for AABB

hierarchy (1244.72 ms) is more than of using bounding

sphere hierarchy (235.26 ms) which indicates that

computational cost for AABB is higher than bounding

sphere. Figure 7 shows the comparison of time

execution for bounding sphere hierarchy and AABB.

Figure 7 Time execution(ms) for BSH and AABB

The second experiment conducted was the frame

test. The dramatic fall of the frame rate for bounding

sphere as shown in Figure 8 is due to the huge number

of OpenGL calls functions. The average frame per

second for bounding sphere hierarchy during the

simulation was 13.41 whilst AABB was 21.17 seconds

which is roughly closer to the real time. This shows that

AABB hierarchy is formed faster than the bounding

sphere hierarchy. Figure 8 shows the comparison of

frame test for bounding sphere is and AABB.

Figure 8 Comparison of frame test for BSH and AABB

The OpenGL (OGL) functions call test indicates the

number of functions called when executing the

program for both bounding sphere hierarchy and

AABB hierarchy.

 Referring to Figure 9, the graph of OGL calls per

frame for bounding sphere hierarchy shows that the

highest number of OGL calls can reach up to 27,000

calls which is a huge number of OGL calls. This will

highly affect the frame test which proves that the

frame test was affected by the OGL call as indicated

in Figure 9.

Figure 9Comparison of OpenGL function cal per frame for

bounding sphere hierarchy and AABB hierarchy

CPUs Average Utilization test is to test on the

percentage of the memory usage for CPUs when both

bounding sphere hierarchy and AABB hierarchy

programs are being executed. Figure 10 shows the

percentage of CPUs average utilization for bounding

sphere hierarchy is more than the AABB hierarchy for

about 15%. Since the OGL calls function for bounding

sphere hierarchy is higher than AABB, the CPUs

utilization for bounding sphere hierarchy will also be

higher than AABB. Hence, the CPUs average utilization

is directly proportional to OGL calls.

Figure 10 Graph of CPUs Average Utilization test for bounding

sphere hierarchy and AABB hierarchy

4.0 CONCLUSION

A series of tests has been conducted on the prototype

for cloth simulation using bounding sphere hierarchy.

0

500

1000

1500

2000

Time
Execution
(ms) for
AABB
Hierarchy

0

10

20

30

40

50

Ti
m

e
 (

se
c)

2
.2

4
.6 7

9
.4

1
1

.8

1
4

.2

1
6

.6 1
9

Frames/sec:
Sphere

Frames/sec:
AABB

0
50000

100000
150000
200000
250000
300000

Ti
m

e
 (

se
c)

2
.8

5
.8

8
.8

1
1

.8

1
4

.8

1
7

.8

OGL
calls/frame:
Sphere

OGL
calls/frame:
GL Context
AABB

12

13

14

15

16
CPUs Average
Utilization
Sphere

CPUs Average
Utilization
AABB

5 Abdullah, Ching & Siti Hasnah / Jurnal Teknologi (Sciences & Engineering) 75:2 (2015) 1–5

Meanwhile, the cloth simulation using AABB hierarchy

acted as the control experiments for a comparison

with the bounding sphere hierarchy.
After running the tests, the processes of building and

updating the bounding sphere hierarchy is affected

by the number of generated vertices. This will cause a

huge number of OGL functions call which will lower

down the frame per second generated and CPUs

utilization. Mean while, the number of OGL functions

calls also had a little bit of effect on the time

generation in which the bounding sphere require

more time in detecting the collisions. However, the

execution time test showed that bounding sphere

hierarchy required lesser time to execute comparing

with AABB hierarchy.

Besides using bounding sphere hierarchy to detect

collision on cloth, other bounding volume can be used

for more efficient and accurate collision detection, for

example the oriented bounding boxes and k-DOP.

Other than collision detection on the surface,

experiments for the volumetric collision detection can

be done too.

References

[1] Sulaiman, H. A. and A. Bade. 2011. The Construction of

Balanced Bounding-Volume Hierarchies using Spatial

Object Median Splitting Method for Collision Detection.

International Journal of New Computer Architecture and

Their Application (IJNCAA). 2: 396-403.

[2] Gibson, S. F. and B. Mirtich. 1997. A Survey of Deformable

Modeling in Computer Graphic. MERL.

[3] Rajiv, P. 2011. Cloth Simulation using Mass-Spring

Technique. NCCA CGIT.

[4] Jiménez, P., F. Thomas and C. Torras. 2001. 3D Collision

Detection: A Survey. Computers and Graphics. 25: 269-285.

[5] Teschner, M. E., S. Kimmerle, B. Heidelberger, G. Zachmann,

L. Raghupathi, A. Fuhrmann, M. P. Cani, F. Faure, N.

Magnenat-Thalmann, W. Strasser and P. Volino. 2004.

Collision Detection for Deformable Objects. In Proceedings

of Eurographics 2004, State-of-the-Art Report. 119-135.

[6] Andersen, K. A. and C. Bay. 2006. A Survey of Algorithms for

Construction of Optimal Heterogeneous Bounding Volume

Hierarchies. [Online]. From:

http://image.diku.dk/projects/media/christian.bay.kasper.

andersen.06B.pdf. [Accessed on 27 June 2013].

[7] Simnett, T. 2012. Real-Time Simulation and Visualisation of

Cloth using Edge-based Adaptive Meshes. University of East

Anglia.

