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A GENETIC ALGORITHM FOR SOLVING SINGLE LEVEL LOT-
SIZING PROBLEMS

NASARUDDIN ZENON!, AB RAHMAN AHMAD? & ROSMAH ALI®

Abstract. The single level lot-sizing problem arises whenever a manufacturing company wishes
to translate an aggregate plan for production of an end item into a detailed planning of its production.
Although the cost driven problem is widely studied in the literature, only laborious dynamic program-
ming approaches are known to guarantee global minimum. Thus, stochastically-based heuristics that
have the mechanism to escape from local minimum are needed. In this paper a genetic algorithm for
solving single level lot-sizing problems is proposed and the results of applying the algorithm to
example problems are discussed. In our implementation, a lot-sizing population-generating heuristic
is used to feed chromosomes to a genetic algorithm with operators specially designed for lot-sizing
problems. The combination of the population-generating heuristic with genetic algorithm results in a
faster convergence in finding the optimal lot-sizing scheme due to the guaranteed feasibility of the
initial population.
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@ Abstrak. Masalah pensaizan lot satu aras timbul apabila suatu syarikat pengeluar ingin menjanakan
perancangan pengeluaran terperinci bagi produk berpandukan suatu perancangan agregat. Walaupun
masalah ini telah dikaji dengan meluas, hanya pendekatan pengaturcaraan dinamik dapat menjamin
penyelesaian yang minimum secara global. Maka heuristik-heuristik stokastik yang mampu melepasi
minimum tempatan adalah diperlukan. Kajian ini mencadangkan kaedah algoritma genetik untuk
menyelesaikan masalah-masalah pensaizan lot satu aras, serta membincangkan beberapa contoh aplikasi
kaedah tersebut. Dalam pelaksanaan kaedah ini, heuristik penjanaan populasi pensaizan lot yang dapat
menjanakan populasi awal digunakan untuk menyediakan kromosom. Kromosom ini digunakan
sebagai input untuk algoritma genetik dengan operator-operator yang khusus bagi masalah pensaizan
lot. Gabungan heuristik penjanaan populasi dengan algoritma genetik menghasilkan penumpuan
yang lebih pantas dalam proses mendapatkan skim pensaizan lot yang optimum disebabkan oleh
ketersauran populasi awal yang digunakan.

Kata kunci: ~ Algorithm Genetik, Pensaizan lot

1.0 INTRODUCTION

In manufacturing environment, a lot size refers to the amount of a particular item that
is ordered from the plant or issued as a standard quantity to the production process.
Lot-sizing or lot size scheduling refers to the determination of appropriate lot sizes of
items to be produced in each period of the production planning horizon such that the
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setup and the inventory holding costs associated with the schedule for the whole of the
planning horizon are minimized.

The single level lot-sizing problem without backlogging is to find a feasible produc-
tion schedule of end items over a time horizon consisting of 7" period such that the
total inventory holding cost plus the setup cost is minimized. Assumptions made in
this problem are that the initial inventory is zero and the first period demand is non-
zero. Let d, p,, and I, be the demand rate, production quantity and inventory level at
the end of period ¢ respectively for ¢ = 1, 2, ..., 7" Furthermore let C'be the total variable
cost which is the sum of the setup cost (S) plus the unit holding cost (%). The math-
ematical formulation of the problem can be stated as follows:

Minimize:

T
C=[S8(p,)+hi,] (1.0)
t=1
Subject to:
I +p,-1,=4d, (t=12,.,T)
1,=0
b 1,20 (t=12,.,T)
Where:

_ 0if p,=0
5“”)‘{19‘1)»0

The lot sizes are simply the accumulated demands for each order interval and thus

equal to zpt where 1 < ¢ <¢<T.Item deliveries are planned only for periods with
t=c

positive demands. If the demand in an order receipt period is zero, the order receipt is

moved ahead to the first subsequent period with a positive requirement [19].

The Wagner-Whitin algorithm (WWA) [20] and its variants, which are dynamic
programming approaches in solving the single level lot-sizing problem as described
previously, are the only known algorithms that will guarantee convergence to the opti-
mum solution of the lot-sizing problem. However, the algorithms are often criticized
as being difficult to explain and compute. For this reason, WWA often serves as a
benchmark against which to measure the performance of non-optimal but less com-
plex lot-sizing approaches [19].

Most of the lot-sizing heuristics use a period-by-period approach since this is the
natural way in which lot-sizing heuristics are implemented on a rolling horizon. The
lot-sizing step in period ¢ in all the heuristics considered consists of selecting demands
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in later periods for inclusion in the current production lots provided the shift will result
in a feasible schedule that yields cost savings. However, the heuristics use different
criteria in deciding whether or not a shift is favorable.

Given d¢, the demand in period ¢, the setup cost § and the holding cost per unit per
time £, it is favorable to include dk in the production xt if,

1.  Silver-Meal criterion (SM) [16]:

[S+hi(t—1)dt J/ks[s +h§(t—1)dt ]/(k—l)

2. Groff criterion (GR) [6]:
k(k—1)d, < 28/h, k>t
3. Leastunit cost criterion (LUC):
(S + hi(t —-1)d, }/[idt ]S [S + hki(t —-1)d, )/(idt )
t=1 t=1 t=1

4. Part period balancing criterion (PPB) [12]:

M=

‘S —-h) (t-1)d,

t=1

5. Freeland-Colley criterion (FC) [7]:
hik-1)d, <S8, k>t

6. Incremental part period algorithm criterion (IPPA) [4]:

k
BN (t-1)d, < S

t=1

Each of the search heuristics employing the above criteria is similar in the way they
arrive at lot sizing decisions. Each starts with period and scans each successive period
until a stopping criterion is met. Next production is set to satisfy requirements up to or
through the stopping period. The search procedure is then repeated for periods be-
yond the stopping period. The setup cost is charged each time a production is started,
and carrying cost is usually charged for each unit carried forward from the previous
period. The total cost is controlled within the employed criteria, but they are not
necessarily minimized.
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A problem usually encountered when search heuristics based on the above criteria
are used in scheduling lot-sizes is that the heuristics got trapped on a local optimum.
The schedules might appear to become optimal, or rather locally optimal, with re-
spect to total cost, only because the search heuristic is not able to proceed any further.

For example, the Silver-Meal heuristic is an efficient technique with reasonable cost
performance (with respect to equation 1.0) for lot-sizing problems having determinis-
tic time-varying demand requirements. However, as the variation in demand increases,
as reflected in higher values of coefficient of variation in demand, the performance of
the algorithm deteriorates (please refer to [21] and [14] for detailed results). Silver [17]
noted that this method guarantees only a local minimum in the total relevant costs per
unit time for the current replenishment. Furthermore there are two situations in which
the algorithm can lead to significant cost penalties in Equation 1.0. These are:

1.  When the demand pattern drops rapidly with time over several periods.
2. When there are a large number of periods having no demand.

Real world demand data for production is unfortunately characterized by uncer-
tainties such as random fluctuation and non-uniformity. Heuristics based on deter-
ministic criteria such as discussed above have been proven to fail in handling stochas-
tic phenomena. This gives the motivation to examine GA for solving the lot-sizing
problems. Thus, in this paper we examine the usefulness of developing a genetic

@ algorithm specifically tailored for solving single level lot-sizing problems. @

2.0 AN OVERVIEW ON GENETIC ALGORITHMS

Holland [9] defines genetic algorithms (GAs) as adaptive algorithms, which simulate
the analyzed evolutionary strategies in biological systems. GAs are biological para-
digms in the field of computer science. In this sense, GAs are considered as approxi-
mate methods.

A genetic algorithm consists of a set of individuals that make up a population.
Every individual is represented by a specific chromosome and each chromosome
represents a solution. Each chromosome is a string of genes. The population will pass
through a generation cycle which simulates evolutionary strategies like genetic opera-
tion, selection and mutation. The termination of a genetic algorithm is defined by two
events [8]:

e  Reaching the maximal generation rate or
e  Reaching a solution or strategy in the actual population which represents a local
optimum.

The working principle of a GA can be depicted in Figure 1. The main part of a GA

cycle constitutes of artificial genetic operators given the names mimicking their bio-
logical counterparts. These operators are called reproduction, crossover and muta-
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tion. A GA begins its search with a random set of solutions, instead of one solution as
it is normally done in classical search and optimization methods. The random set of
solutions constitutes a generation of population.

The process of identifying good (user defined or simply above average) solutions
in a population and eliminating bad solutions by replacing them with multiple copies
of good solutions while maintaining a constant population size is basically the func-
tion of the reproduction operator.

[ Initialize Population ]

v

[ Generation =0 ]

v

Evaluation of Fitness

Generation

A

Reproduction

Crossover

Mutation

No

Yes

Figure 1 A flowchart of a GA process

Obviously as noted by Deb [3], by making more copies of good solutions at the
expense of not-so-good solutions, the reproduction operator cannot create any new
solution in the population. Therefore more operators are needed to create new solu-
tions, and they are namely the crossover and the mutation operators.

Crossover is defined by Holland [9] as an operation by which an offspring solution
is obtained from two candidate solutions of a population, generally referred to as
parent solutions. Let §, and §; be two candidate solutions of the population, then
Crossover: §,%.5; — §,where S, the offspring, is desirably another valid solution of
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the population. The crossover operator is mainly responsible for the search aspect of
GA, even though the mutation operator is also used for this purpose [3].

The expected fitness values of the offspring are usually better than the parent be-
cause prior to the crossover process the reproduction operator had already reproduced
parents with some good bit combinations in their string representations (please refer
to [5] for a detailed and a more convincing explanations).

In binary GA (all the chromosomes are made up 1’s or 0’s), the mutation operator
is a bit-wise manipulator that changes a 1 to a 0 and vice versa, with a mutation
probability of p,,. The significance of the mutation operator is that it can reduce the
chance of the search from being entrapped in a neighborhood of a local optimal point.

Although the allowable probability of mutation to occur is quite small, nevertheless
the operator is very important in GA. The role of mutation which is equivalent to a
random search is to provide a guarantee that GA is not trapped on a local optimum.
Negnevitsky [13] explains that the sequence of selection and crossover operations may
stagnate at any homogeneous set of solutions. Such stagnation can lead to all chromo-
somes being identical, and thus the average fitness of the population cannot be im-
proved. Therefore, a mechanism is required to prevent the search from being en-
trapped in a neighborhood of a local optimal point.

There is a very strong reason as to why mutation is usually used with a small prob-
ability in GA. The mutation operator has a constructive as well as destructive effect.
Although, along with selection and crossover operators, it can help find different opti-
mal solutions, it can help little in preserving useful solutions over a large number of
generations [3]. As mutation can create a better solution through perturbation, it can
also destroy a good solution through the same perturbation. Therefore, as of today’s
state of technology allows, diversity-preservation through mutation must be kept at a
minimal.

GAs, when applied to scheduling, view schedules as individuals of a population.
The fitness of an individual is measured by the corresponding values of the objective
function. The fitness function value of a solution is a metric that measures a relative
merit of the solution based on an objective function (for a single-objective optimiza-
tion problem with constraints) such as given in Equation 6.1 and constraint functions.
For each generation, the genetic operators will be applied to the generation if a termi-
nation criterion is not met.

A basic problem usually encountered as far as lot-sizing is concerned is the genera-
tion of valid population members to be operated on by GA operators for a particular
MPS schedule. Thus a method is required to generate an initial valid population of lot
size schedules with respect to the MPS schedule. Another problem encountered du-
ring crossover is the generation of children as a result of the crossover process that
does not preserve the accumulation of demands at a non-zero demand point and thus
producing invalid lot-size schedules.

The generation of valid lot size schedules is accomplished with the use of a popula-
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tion-generating heuristic described in the next section. The following sections also
described effective crossover and mutation schemes employed to preserve schedules

validity throughout the GA process.

3.0 POPULATION-GENERATING HEURISTIC

This section presents an approach for representing initial sequence of lot-sizing sched-
ules for known, discrete demand rates in a fixed horizon environment, which can be
fed to GA prior to performing reproductions and crossovers.

The basic idea is to start with feasible schedules and to compute a set of new
schedules having fitness function values as defined by the objective function while
preserving the order quantity patterns in order to maintain the validity of the new
schedules. A single-point crossover scheme is used to preserve characteristics prop-
erly between the old schedules and the new schedules. This encoding/crossover step
satisfies the completeness and the characteristics-preserving criteria outlined in [10].
The characteristics-preserving criterion is considered in [11] as one of the most impor-
tant criteria to be satisfied in solving any difficult ordering problems.

In order to accomplish the characteristics-preserving criterion in the design of en-
coding/crossover for the lot-sizing problem, we have to examine the order quantity
patterns suggested by other lot-sizing algorithms. One of the most important observa-
tions is that most replenishment algorithms work backward in time from the end of
the planning horizon. Shortages will never occur for the demands in the later periods
when sufficient production quantities are pushed backward in time.

The other observation is that the production schedules have the same patterns for
demand requirements with non-zero periods and the ones with zero order periods.
Thus, in order to preserve the validity of any proposed production scheme, the encod-
ing/crossover design in GA must inherit the two observed characteristics.

As said in the introduction our assumption is that each demand vector d¢ has dis-
crete values that came from fixed horizon environments. The basic idea of the lot-
sizing population-generating heuristic is to start shifting productions backward in time
from the end of the horizon systematically while retaining enough inventories to satisfy
demands in the later period. This backward shifting of productions will create alter-
nate or subsequent periods with zero production levels thus minimizing the overall
setup cost.

For problems involving variable setup and holding costs, the algorithm will adver-
tently create enough zero production levels thus avoiding periods with large setup
and/or holding costs. With this idea in mind, the heuristic is presented as Algo-
rithm 1.
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Algorithm 1: Population-Generating Heuristic (BA)

Forj=lto T’

a(j) = d(j) /* The initial demand vector from MPS */
While () do /* The number of times backshift is performed is T-3 times */
Step 1: /* Backward shifting of production quantities aj */

While (i > posAllele) do
If a(i-posAllele) > O
For t = (i-(posAllele-1) to i

Ifa(t)#0
a(i-posAllele) = a(i-posAllele) + a(t)
a(t)=0
End If
End For
End If
End While

Step2:  /* Assignment of aj to chromosome vector pop1(j). If period 1 and period 2
have non-zero lot-sizes, generate 1 more chromosome pop,(j) */

Forj=lto T’
pop1(j) = a(j)

If (k=7) OR (i < posAllele) AND pop1(2) # 0
pop2(7) =a(1) + pop1(2)

pop2(2) =0
Jorj=3to T
pop2(j) = pop1(j)
Else
inheritParent = inheritParent + 1
End If

Step 3:  /* Create an exception for the case when T is divisible by the number of shifting
steps. */

If (T % (posAllele +1) =0
Forj=lto T
pop2(j) =0
Else
inheritParent = inheritParent + 1
End If
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If (inheritParent =2)
Forj=l1to T
pop2(j) = d(j)
inheritParent =0
End If

Step4:  /* dual shift processes */

/* For every chromosome popk(j) in Step 1, dual shift processes are
generated by shifting productions aj only to the left of the period h =
T/2 + 1.The dual shift process is similar to the above 3 steps except
Jor the following replacements: */

i h=T/2+1
pop1(j) < pop3(j)
pop2(j) < pop4(j)

/ *For an exception case when T is divisible by the number of shifting

steps, a replacement T <— T/2 + 1 is required for testing the
divisibility condition. */

End While

The index variable posAllele is the position of the allele or feature value in the
chromosome. Step 2 and Step 3 can be combined in a single step. However, for the
sake readability, the steps are separated in the algorithm given. Step 4 is necessary in
order to simulate lot size schedules with accumulations of production at least at two
periods, one in the beginning and one in the middle of horizon. The main advantage
of performing this step is the availability of more useful chromosomes with non-zero
Crossover points.

4.0 OPERATORS AND THE ALGORITHM

4.1 The Encoding

BA generates demand sequence matrices which encode valid demand requirements
for all periods in the planning horizon. pop(0, ) for 1 < j < T'represent the original
demand rate for each period jin the MPS. If we let M be the total number of chromo-
somes generated by BA, then pop (i, /) represent the lot-sizing schedules in each chro-
mosome i = 1, 2,..., M. Each pop (i, j) for 1 < j < T'will have a specific fitness value
calculated using Equation 1.0.
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4.2 The Crossover Scheme

We used a single-point crossover scheme at a locus (string position) having a non-zero
allele (feature value) in both parents. This way, the children generated will preserve
the accumulation of demands at a non-zero demand point as required by the charac-
teristic-preserving criterion discussed in [10] and [11]. As an additional note, we used
the probability of crossover p, = 1.0 and the probability of mutation, p,, = 0.001 for
MPS requirements having 7'< 30 tested in this research.

Let us assume each chromosome is created according to:

Fori=1to N
Forj=1to T
Sij =popy;

Then, select a pair of chromosomes for mating from the current population. An
elitist ranking selection with stochastic remainder without replacement known as
Goldberg’s selection scheme [5] is used. In this scheme, parent chromosomes are
selected with a probability related to their fitness. Highly fit chromosomes are se-
lected with a higher probability.

For the selected pair of parent chromosomes S;and .S;; placed in the mating pool,
where 1 <5, < Nand for 1 <j <7, the crossover points between these chromosomes
are determined following the formula below [15]:

1 {rl-(5,) ®

2*|T|_(F(Ssj )"'F(Sz/ )

Crossover point cp =

If the allele in S; at locus point ¢p a,, # 0, and the one inat the same locus point 4,
# 0, then perform the swapping in Table 1 to produce Table 2:

Table 1 Selected parents before swapping

Locusi |7 |2 |..|cp |...| T

S a; | ag|az| .. [l ||z

St]b b7 bZ bcp bT

Table2 New chromosomes obtained after swapping

Locusi |7 |2 |..|¢p |..|T
Esj N aj ap|ap| ... bcp bT
S, G- bj b7 bZ Aep ar
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Syjand S will replace the two currently lowest ranking chromosomes in the population.

However a situation arises when either a,, or 4, or both equals zero. If either a,, or
b, equals zero then the Goldberg selection scheme is used to replace either S;; or S,;.
On the other hand if both 4, and 4,, equal to zero, then the same scheme is used to
replace both parents in the mating pool with different chromosomes. This cycle is
repeated until both a,, and §,, are not equal to zero.

4.3 The Mutation Operator

For lotsizing problems, designing the mutation operator can be a sticky problem.
The characteristic-preserving criterion will not be preserved by simply swapping a
non-zero allele with a 0. To illustrate the problem let us consider a real-parameter GA
having a chromosome listed in Table 3. Let the chromosome represent a lot-sizing for
a planning horizon of eight-week periods.

Table3 A Chromosome having real values

Locus ¢ 1 2 3 4 5 6 7 8
Allele q; 12 0 0 45 0 0 32 56
@ Locus position 4 for example, may represent the accumulation of productions of items $

for periods 4, 5 and 6 i.e. periods having 0 production after period 4. If we were to simply
mutate 45 to 0 then the new chromosome obtained will no longer be valid. Therefore a bit-
wise mutation operator as defined in Section 6.2 will not work for our problem.

In this research a modified mutation operator for lot-sizing problems is implemented
as follows:

Choose a mutation point i with a probability p,, = 0.001

If a;=0 then

Let a; < ay and a < 0 where k =min {t: a, # O}Z}H
If a;# 0 then

Ay < Qg7 7 4

a; <0

Using the above operator, if for example i = 4 is chosen as the mutation point then
the new lot-size sequence will be 12-0-45-0-0-0-32-56, which is still a valid schedule. On
the other hand if i = 5 is chosen by the operator, the new lotsize sequence will be 12-0-
0-45-32-0-0-56, and this sequence is also valid.

The location of the next mutated locus point is determined by an exponential distri-
bution. The mean of the distribution is assumed to be (1= 1/p,,. A “mutation clock” as
suggested by Goldberg [5] is used in determining the next mutation point. The proce-
dure is as follows:
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Create a random number r € [0,1]
Let
The next mutation point

4.4 The Genetic Algorithm for Lot-sizing

The flow of the implemented algorithm is as follows:

Algorithm 2: A GA for lotsizing
1. Generate an initial population of size N using BA:

Let S;; = pop;; for 1<st<N,1<j<T

2. Calculate the fitness of each individual chromosome according to Equation 6.1:
T
F(S;)= Y (es;+ hi;) for 1ISi< N
Jj=1
3. Select a pair of chromosomes for mating from the current population using

Goldberg’s selection scheme. Determine crossover point cp using Rommaniuk’s
[15] formula.

4. While (a,,€ S;=00R € §,;=0) do
Ifa,e S;=0,

Select a chromosome using Goldberg’s selection scheme and
replace the first parent Si;.

Ifb, € §,;=0,

Select a chromosome using Goldberg’s selection scheme and
replace the second parent S;.

Determine crossover point ¢p using Rommaniuk’s [15] formula.

End While

5. Create a pair of chromosomes with probability p, by applying the single-point
crossover scheme. Calculate the chromosomes fitness (as in step 2).

6.  Delete two chromosomes with the worst fitness from the population and include
the two offspring from step 5 in the population.

7. Create a chromosome with probability p,, by using the modified mutation opera-
tor described previously after determining the next mutation locus point using
Goldberg’s mutation clock. Calculate the chromosomes fitness (as in step 2).

8.  Delete a chromosome with the worst fitness from the population and include the
offspring from step 7 in the population.
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9.  Go to step 3, and repeat the process until the termination criterion is satisfied.

Applying conventional termination criteria can be problematic in GA. Because
GAs use a stochastic search method, the fitness of a population may remain stable for
a number of generations before a superior chromosome appears [13]. It is a common
practice to terminate a GA after a specified number of generations. In our case, we
allow cycle involving step 3 through step 8 to be repeated until an optimal solution
(obtained previously using WWA) has been found.

In order to test the performance of BA-GA we compared the schedules produced
by BA-GA to those obtained from WWA. In the first two examples that we used for
benchmark, WWA has always managed to produce schedules with the optimum
total costs. However, Axsater [1] noted that when a limited “forecast window” has to
be used in connection with a rolling horizon implementation scheme, it is anyway not
possible to obtain the optimal solution. Since heuristics are usually less sensitive, with
respect to the length of the horizon, they may under such circumstances even outper-
form the WWA (please refer to [1] and [2] for details).

Two other heuristics used for comparison were the Silver-Meal heuristic [16] and
the least unit cost (LUC) heuristic which were favored mostly for their simplicity and
reasonable cost performance.

5.0 NUMERICAL EXAMPLES

All the results obtained in this section are based on applying several previously pub-
lished benchmark examples to BA-GA and a simulated annealing (SA) approach [22]
developed using Java 2 on a Pentium III processor with a clock speed of 450 MHz,
with 128MB of memory, and running Windows 98. All the other benchmark algo-
rithms namely WWA, SM and LUC were also programmed using the same language
in a similar environment.

Three datasets with various cost structures were used to test BA-GA. Each dataset
contains a demand vector D; for 1 <j < T'where I'< 30 in all cases. The three datasets
which are benchmark problems taken from [19], [18] and [17] are given in Table 4,
Table 5 and Table 8 respectively.

Table 4 Dataset 1: Production request for 6 periods

Period j 1 2 3 4 5 6

Dj 75 0 33 28 0 10
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Table 5 Dataset 2: Production request for 6 periods

Period j 1 2 3 4 5 6
Dj 10 15 7 20 13 25
S 20 17 10 20 5 50

h; 1 1 1 3 1 1

Dataset 1 contains 2 periods with zero demand whereas each period in Dataset 2
has non-zero demand. For Dataset 1 we used a constant setup cost of 100 for each
period and a holding cost of 1. On the other hand, Dataset 2 imposes production
penalties in certain periods by way of large setup (¥) and holding (h)) costs.

We compared the feasible lot-sizing schedules produced by BA-GA with optimal
and near optimal schedules produced by other algorithms. Table 6 and Table 7 sum-
marized the results when BA-GA is compared with WWA, SM, LUC and SA.

The feasible production schedules for Dataset 1 that were generated using BA prior
to crossover are given in Appendix A. Appendix B lists the production schedules for
Dataset 2 prior to crossover. As shown in Table 6, pop(4,j) for 1 < j <6, is the required
schedule to minimize the total variable cost. The results show that BA is capable of

@ producing near optimal production schedules even prior to being manipulated by the @
crossover operator in GA.

The results from applying BA-GA to Dataset 2 showed the superiority of BA-GA
compared to SM, LUC and SA in producing schedules involving variable setup and
holding costs. Chromosome pop(1,/) has a fitness value representing cost penalty that
is less than 1% from the optimal WWA.

Performance of BA-GA in terms of convergence rate is measured using demand
data listed in Table 8. Two important cost structures are used. The setup and the
holding costs for the first cost structure is § = RM2.6 and £ = RM2.39 respectively. The
second cost structure has .§ = RM300 and /4 = RMO0.2. While the first cost structure has
an S/h ratio circa 1, thus allowing a lot of periods to have positive production quanti-

Table 6 Comparative results for Dataset 1

Period j 1 |2 | 3| 4| 5 | 6 |TotalVariable

D; 75 10 | 3] 28| 0 |10 Cost, C

WWA 7 0 |71 0 0 0 258
Production SM 7% 10 |71 0 0 0 258
Quantity LUC 75 |0 |61 0 0 |10 328

SA 7 0 |71 0 0 0 258

BA-pop(4.j) 7 0 |71 0 0 0 258
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Table 7 Comparative results for Dataset 2

Period j 1 |2 | 3| 4 | 5 | 6 |TotalVariable

D; 10 |15 | 7| 20| 13 | 25 Cost, C

WWA 10 |22 71 20 | 388 | 0 94
Production SM 32 0 |71 ] 20 | 13 | 25 124
Quantity LUC 32 10 |61] 3| 0 |25 158

SA 3210 |71 203 |0 99

BA-pop(1,)) 25 | 0 | 27] 0 |38 |0 95

ties, the second cost structure on the other hand will force the algorithms to produce
schedules with sparse production periods due to the very high setup cost relative to

the holding cost.
Table 8 Dataset 3: Production request for 30 periods
Period | Demand Period Demand Period Demand
i j D, j D,
1 81 11 50 21 77
2 67 12 47 22 96
3 53 13 7 23 64
$ 4 96 14 88 24 87 $

5 35 15 20 25 51
6 65 16 25 26 7

7 27 17 88 27 85
8 81 18 74 28 82
9 84 19 62 29 53
10 32 20 52 30 96

The result of applying GA to a BA generated population is compared to the result
obtained by SA. The optimum schedule for the first cost structure is known to be a lot-
for-lot assignment because of the small difference in the setup and holding costs. A
population list of 74 lot size schedules that was generated by BA from the demand
data of Table 8 is available upon request from the first author. The convergence pat-
tern of BA-GA to the optimum total cost is compared to the result produced by SA
and is depicted in Figure 2 and Figure 3 for the first and the second cost structures
respectively.

Table 9 and Table 10 summarize the result of applying BA-GA and SA to demand
data in Table 8 using the two cost structures. Table 11 lists the optimum production
lotsize schedule with a total production cost of 2312.20. The total cost obtained is
confirmed to be optimum by feeding the data to WWA.
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Table 9 Results of BA-GA and SA with the first cost structure

BA-GA SA
Generation 50 -
Population 74 30 centers (max)
Optimum Total Cost 78.00 78.00
Optimum Lot-size Schedule Lotforlot Lotforlot
Start of Optimum Generations 32 22 (iteration)
Run Time 118000 ms 2420 ms

Table 10 Results of BA-GA and SA with the second cost structure

BA-GA SA
Generation 25 -
Population 74 5 centers
Optimum Total Cost 2312.20 2312.20
Optimum Lotsize Schedule Table 11 Table 11
Start of Optimum Generations 20 6 (iteration)
Run Time 12530 ms 250 ms

Table 11 The optimum lot-size schedule produced by BA-GA and SA

Period

Production

1
424

8 14
301 409

21
382

27
316

Note: Non-listed periods have 0 productions.

6.0 CONCLUSIONS

63

*

02/16/2007, 20:49

63

In this paper an implementation of generic algorithm for capacitated single-level lot-
sizing problems have been described. Three modifications made to the standard GA
are the way the initial population is generated using BA heuristic, the proposed cross-
over and mutation schemes necessary in maintaining valid schedules throughout the
process. Although the standard definition of mutation operator requires only a modi-
fication of a single gene in a chromosome, for lot-sizing problems, we could not de-
sign one that fit the definition. Nevertheless, for the intended purpose, the operator is
sufficiently useful.
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A restrictive condition imposed by our implementation of the crossover operator is
the requirement of finding a crossover point having non-—zero allele values at both
parents. This will entail an extra step for finding a perfect match every time a crossover
is to be performed. Our conjecture is for lot-sizing problems this condition is a neces-
sary and sufficient one.

Clearly, for the non-capacitated lot-sizing example above, SA outperforms BA-GA
in terms of run time and convergence rate. This is due to the fact that our implementa-
tion of SA is designed to examine the neighborhoods of at most 30 center points
corresponding to the 30-periods planning horizon. BA-GA on the other hand requires
a large initial population size so that the randomized crossover and mutation opera-
tions can produce good reproduction candidates.

However, the performance of BA-GA for problems with production penalties in
some periods is encouraging. BA-GA outperforms SM, LUC and SA in terms of
achieving a lower total production cost. BA is able to produce near optimum sched-
ules as candidates for reproduction at a very early stage thus enabling GA to selec-
tively work on ‘good’ chromosomes.
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Appendix A
Chromosomes generated by BA for Dataset 1

pop[0][j: 75.0, 0.0, 33.0, 28.0, 0.0, 10.0
pop[1][j]: 75.0 0.0 61.00.0 0.0 10.0
pop|2][j]: 75.0 0.0 61.00.0 0.0 10.0
pop|3][j]: 108.0 0.0 0.0 38.0 0.0 0.0
pop[4][j]: 75.0 0.0 71.00.0 0.0 0.0
pop|5][j]: 75.0 0.0 33.0 28.0 0.0 10.0
pop[6][j]: 136.0 0.0 0.00.0 0.0 10.0

Appendix B
Chromosomes generated by BA for Dataset 2

pop[0][i]: 10.0, 15.0, 7.0, 20.0, 13.0, 25.0
pop[1][j]: 25.0 0.0 27.0 0.0 38.0 0.0
pop[2][j]: 25.00.027.00.0 13.0 25.0
pop[3][]: 32.0 0.0 0.0 58.0 0.0 0.0
pop[4][j]: 10.0 42.00.0 0.0 13.0 25.0
® pop[5][j]: 10.0 15.07.0 20.0 13.0 25.0 ®
p0p[6][i]: 10.0 15.0 65.0 0.0 0.0 0.0
pop[7][: 25.0 0.0 65.00.0 0.0 0.0
p0p[8][j]: 52.0 0.0 0.0 0.0 13.0 25.0

Notes: Chromosomes generated by BA for Dataset 3 are too lengthy to be included.
The data is available upon request from the first author.
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