

75:2 (2015) 113–118 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

ROBUST HAND-DRAWN SQUARE-ROI CONTOUR

DETECTOR BASED ON ADAPTIVE THRESHOLDING

Rechard Lee, Abdullah Bade*, Salina Sulaiman, Siti Hasnah Tanalol

Real Time Graphics and Visualization Research Group (GRAVS),

Mathematics with Computer Graphics, School of Science and

Technology, Universiti Malaysia Sabah Jalan UMS, 88400 Kota

Kinabalu, Sabah, Malaysia

Article history

Received

3 December 2013

Received in revised form

2 July 2014

Accepted

25 November 2014

*Corresponding author

abb@ums.edu.my

Graphical abstract

Abstract

Hand-drawn square-ROI detector was developed as one of the vital components in Real-

Time Pre-Placed Markerless Square-ROI (RPMS) recognition technique. It aims to; 1. To

verify hand-drawn Square-ROI (Region of Interest) as a square, and 2. To create a robust

and flexible square-ROI detector technique which can be applied in uneven lighting

condition. In this paper, we aim to detect only the desired ROI and handle the uneven

lighting condition which is one of the primary disturbance sources that may generate false

results. This may lead to error in registration in Augmented Reality application due to

inability to correctly define a marker. As a solution, our technique applies adaptive

thresholding in order to address this issue and to create a robust and flexible technique.

To verify our proposed technique, two kinds of square is used in the testing and evaluation

phase. In this experiment, two influencing factors; viewing distance, and detection

accuracy were used to validate our aim. The results of the experiments show that the

proposed technique efficiently detects and defines the desired square-ROI and also

robust to illumination changes.

Keywords: Augmented reality, contour, feature, ROI, thresholding;

© 2015 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Milgram [1] defined Augmented Reality (AR) as one

part of mixed reality in the continuum of real-to-virtual

environments (see Figure 1). The real environment is at

one end of the spectrum and the virtual world is at the

other.

Figure 1 Milgram’s Reality-Virtuality Continuum [1]

Whereas, Azuma (1997) [2] defines an AR as systems

that have the following characteristics:

 Combines real object with virtual objects,

 Interactive in real-time, and

 Registered in three dimensions.

The ultimate goal of an AR system is to create a mixed

digital environment such that the computer–generated

objects mixed into the real-world environment and

viewed as one of its entities. Thus, the object must be

visually registered in every point the user sees. To

maintain the user’s illusion that the virtual objects are

part of the real world requires a consistent registration

of the virtual world with the real world, and this stringent

requirement of the system is one of the challenges in

developing an AR system [2], [3], [4].

As shown in Figure 2, to blend virtual content with the

existing reality, a typical AR system need to utilize an

element or combined elements in virtual content (i.e.

global position, orientation, feature points, and

metadata) as the key to perform the registration

114 Abdullah Bade et al. / Jurnal Teknologi (Sciences & Engineering) 75:2 (2015) 113–118

process so that the enhanced reality called AR could

be achieved. Ref. [5] state that, inaccuracies are

caused by; incorrect registration, changes in patient’s

anatomy, improper calibration, and user’s stereoscopic

perception. By definition, registration referred as a way

to properly align the real and virtual object in the mixed

reality environment.

Figure 2 An overview of a typical augmented reality system [6]

Registering an object consists of two stages [7]:

1. Tracking

Make use of feature detection, edge detection or

other image processing method to interpret the video

feed by detecting fiducial markers or interest point

(corner).

2. Reconstructing

Uses the data obtained from the first stage to

reconstruct a computer generated object in real

world coordinate system. Our proposed technique

developed to deal with the first stage by using

Canny’s operator [8] enhanced with smoothing and

adaptive technique in order to correctly detect a

hand drawn square-ROI under uneven lighting

condition.

2.0 APPROACH TO SQUARE-ROI DETECTION

In this section, we will discuss the approaches and

phases involved in the process of identifying a hand-

drawn square- ROI in real-time. A square naturally has

four equal sides (edges) and four right angles (900)

forming a square corner and vertices. Thus to verify the

detected ROI as a square, edge and contour

detection is needed to ensure the success of our

technique. Another reason is that, by performing

edge detection, it significantly reduces the amount of

data in an image and make it easier and faster to

analyse.

2.1 Grey-scale Conversion

The reason for taking up this step is to reduce the

amount of data which are very costly to handle.

Another reason, it is much easier to operate on

greyscale images [9]. A colour image with three

115 Abdullah Bade et al. / Jurnal Teknologi (Sciences & Engineering) 75:2 (2015) 113–118

channels (red, green, and blue) is returned with eight

bits per channel, when we calculate the bits of

information, the amount of data per frame equal to

640 x 480 x 3 x 8 = 7, 372, 800, and most typical camera

with a width of 640 and 480 in height return between

20 to 30 frames per second. By doing so, the amount

of processing required in the subsequent stages is

reduced.

The greyscale transformation processes consist of

taking the image brightness and change it into new

image brightness in real time for displaying stored with

8 bits per sample pixel. The grey value of every pixel

position is calculated by adding together 30% of the

red value, 59% of the green and 11% of the blue value

at the pixel position. The equation is given by: (1)

From the equation, the processor needs to perform

three floating point multiplications and two floating

point addition per pixel for a total of 1, 536, 000 floating

point operations [10], [11], [12].

2.2 Smoothing

Smoothing is a set of local pre-processing method. It

aims to suppress image noise and resolution for

enhancement details. The new image is based on the

averaging of the brightness values of the pixel using a

small neighbourhood of the pixel in the grey-scale

format. It is done by applying blurring. Without this

step, the processed images become pixilated and

might pose the problem of blurring or unnatural edges

and corners which is a problem for the next step,

namely feature detection [10], [12].

2.3 Adaptive Threshold

Another technique which is worth to discuss before we

move to feature detection is called thresholding. It is

computationally inexpensive, fast, and needed in

finding contours.

Thresholding is the simplest segmentation process

used to transform grey-scale image f into a binary

image g called image binarization as follows:

Where T is the threshold, g(i,j) = 1 for image elements

of objects, and g(i,j) = 0 for image elements of the

background.

The goal is to simplify the information into a

meaningful and easy to analyse by determining a

value called threshold and comparing each pixel with

this value. If the value of the pixel intensity is greater

than the threshold, its value becomes 1 (white (255) -

object), otherwise it becomes 0 (black - background).

There are global and local thresholding due to grey-

level variation in object and background. This

variation caused by uneven and changing lighting

condition and nonuniform input device parameters.

A global threshold is determined from the whole

image of

 f: T = T (f) (3)

It is the easiest and fastest method but greatly

depends on lighting conditions and soft intensity

changes [9].

Whereas, local threshold is

 T = T (f, fc) (4)

Where fc is that image in which the threshold is

determined [11], [12], [13], [14]. Conceptually, this

approach will divide the input image into a set of non-

overlapping sub images, and then processing each

image separately with a suitable threshold

independently [15]. This technique is more preferable

when there are strong illumination or reflectance

gradients.

2.4 Feature Detection

The concept of feature detection methods is

considered to be an essential component and use as

the initial step in developing AR techniques and

application [16]. It is used to perform a low level

feature extraction to find areas of interest from the

input [9]. Feature detection algorithms are used in

motion detection, image matching, and object

recognition, for example. In this thesis, feature

detection was considered as a means for detecting

corner and contour in order to identify and verified the

existence of marker in real-time. Feature point also

called an interest point is a small area in an image. In

general, a good feature is invariant to changes and

can be robustly detected at different time in several

frames.

Examples of those methods are; edge detection,

corner detection, curvature detection, blobs or

region-based detection, and optical flow. Our interest

is on edge and contour detection.

In general, the reason to perform contour detection

is to significantly reduce the amount of data in an

image by detecting edges in a robust manner. Result

of edge detection define the boundaries between

detected regions in an image [17]. In his paper [17],

the selection of an edge detection based on two

factors i.e. edge orientation, and noise environment.

Our technique is based on

116 Abdullah Bade et al. / Jurnal Teknologi (Sciences & Engineering) 75:2 (2015) 113–118

Figure 3 Conventional Canny’s Edge detection stages

An algorithm developed by Canny [8]. As depicted

in Figure 3, there are six stages in this algorithm.

The ability to detect true weak edges and not

susceptible to noise interference [18] was the reason

why we opted for Canny’s operator. The issue with

Canny’s algorithm is that it depends heavily on the

standard deviation Gaussian filter and the threshold

values. Because of these, the computation time is

higher. However in [17], compared to Sobel, Prewitt

and Robert’s operator, the Canny’s operator performs

better under almost all environments.

According to Canny [8], the followings:-

• Good detection

• Good localization, and

• Only one response to a single edge have been set

as a performance criteria in detecting an edge and

we will consider those criteria as a testing parameter.

2.5 Proposed Square-ROI Detection Pipeline

To improve the computation time and to add the

ability to detect a square, our proposed technique

combines Canny’s operator with contour detection,

image filtering and thresholding. Since our approach

using a square figure, it is best to find closed contours

and approximate the detected square with polygons

of four vertices. The proposed pipeline is depicted in

Figure 4. It begins with pre-image processing, where

the given input is converted into a grey-scale frame,

smoothed and ends with the identification of a

square.

Figure 4 A Pipeline for Proposed system

3.0 EXPERIMENTAL SETUP AND RESULTS

We present the results of our proposed method based

on the test conducted on two (2) square-ROI (see Figure

5) given as an input in our experiment.

3.1 Experimental Setup

In our approach, we will define a Region of Interest

(ROI), called square-ROI, and this square-ROI need to

be manually hand-drawn by the user. The rationale to

manually handdrawn is to avoid the needs to prepare

a printed marker and at the same time to make our

proposed technique more flexible with unprepared

environment. Thus, we can ensure only desired area is

searched for features. Why we use a square? Square

naturally produces four (4) possible point and these four

(4) points are needed to calculate the pose camera

estimation for visualizing objects rendering.
We formulate that number of vertices detected on a

contour (square) must be equal to four (4) vertices in

order to identify a square and upon successfully

identified, a square will be drawn on top of the target

area (see Figure 8).

The hardware used to set up the experiment is listed

below:

1. 1 x Logitech web camera

2. 1 x A4 paper

3. 1 x hand-drawn Square-ROI (17 cm x 16 cm)

4. 1 x hand-drawn Square-ROI (6 cm x 5 cm)

5. 1 x Dell Precision T1650

 (a) (b)

Figure 5 Hand-drawn Square-ROI (a) 6 cm x 5 cm (b)17 x 16cm.

Both with 2 mm line thickness

The software used in the experiment is listed below:

1. Microsoft Visual studio Ultimate 2012 (C++)

2. OpenCV 2.4.2

3. Microsoft Windows 7 Professional

The visual sensor initially positioned at 60 cm from the

input (see Figure 6). This will be the initial viewing

distance in our experiment setup.

117 Abdullah Bade et al. / Jurnal Teknologi (Sciences & Engineering) 75:2 (2015) 113–118

Figure 6 Camera viewing distance

Two test cases will be conducted to show that the

proposed technique is able to detect square-ROI

contour. Table 1 shows the test cases conducted

during the testing process.

Table 1 Test cases

Test

case

Description Input Expected

Result

1 Detect square-ROI

contour with

{Canny’s operator +

smooting + threshold}

Hand-

drawn

Square-

ROI

No false

square

Detected

Square-

ROI

detected

2 Detect square-ROI

contour with

{Canny’s

operator +

Smoothing +

Adaptive

thresholding}

Hand-

drawn

Square-

ROI

No false

square

Detected

Square-

ROI

detected

Both test cases are performed to test whether the

developed technique able to correctly and

accurately detect only the desired square-ROI with no

false square detected. In test case 1, global

thresholding is used whereas local or adaptive

thresholding is used in test case 2.

3.2 Result

From the experiments, smoothing manage to remove

noise and enhance the details needed to discard

inconsistency.
Figure 7 (below) showed that, by using global or

simple thresholding the technique not able to detect

the desired square. Only false square is detected. We

can see that, the monitor screen and the window

frame have been falsely identified as a square and

indicated by the red colour.

Figure 7 Result from Test Case ID 1

The result for test case ID 2 is depicted in Figure 8.

Figure 8 Result from Test Case ID 2

This result can be affected and changed if the

square-ROI is positioned outside the viewing distance.

We have calculated the square-ROI detection

percentage rate for accuracy and consistency based

on 299 cycles. Here is the result:-

Figure 9 Square-ROI accuracy and consistency detection

rate

Figure 9 showed that, in both sizes of hand-drawn

square-ROI used i.e. 17 cm x 16 cm and 6 cm x 5 cm,

the proposed technique able to detect with 70.9%

and 77.9% accuracy and consistency respectively.

We can say that both aims mentioned have been

reached with promising potential.

4.0 SUMMARY AND DISCUSSION

Based on our experiments in section III, by using

adaptive thresholding instead of thresholding, only

square-ROI is detected and no more false square has

been detected under uneven lighting condition. We

also found that the minimum thickness for a hand-

drawn square-ROI must be at least 2 mm in diameter

and the recommended optimal viewing distance

must be at 30 cm - 36 cm for 6 cm x 5 cm square-ROI,

118 Abdullah Bade et al. / Jurnal Teknologi (Sciences & Engineering) 75:2 (2015) 113–118

and 34 – 38 cm for 17 cm x 16 cm square-ROI. In terms

of execution time and frame per seconds (fps), the

proposed technique needed between 16 ms to 19 ms

with 28.5 fps to find and detect the desired square-

ROI. The results also show that, our proposed

technique has fulfilled all three testing parameters

stated in section II (D). Hence, this technique

efficiently detects the desired hand-drawn square-ROI

as a square and also robust to illumination changes by

applying Canny’s detector and adaptive

thresholding.

In the future, we would like to extend our method to

purely apply natural marker instead of the hand-

drawn square-ROI to detect the Region of Interest

(ROI) in real-time.

Acknowledgement

The author wish to thank the GRAVLAB research group

for their advice and support. This research is supported

by a grant (FRGS0295-SG-1/2011) from the Ministry of

Higher Education (MOHE), Malaysia.

References

[1] Milgram, P. and F. Kishino. 1994. A Taxonomy of Mixed

Reality Visual Displays. IEICE Transactions on Information

and Systems. E77-D(12): 1-26.

[2] Azuma, R. 1997. A Survey of Augmented Reality. Presence-

Teleoperators and Virtual Environments. 6(4): 355-385.

[3] Klein, G. 2006. Visual Tracking for Augmented Reality. Ph.D.

Thesis. University of Cambridge.

[4] Xu, K., S. J. D. Prince, A. D. Cheok, Y. Qiu and K. G. Kumar.

2003. Visual Registration for Unprepared Augmented

Reality Environments. Personal and Ubiquitous Computing.

7(5): 287-298.

[5] Blackwell, M., C. Nikou, A. M. DiGioia and T. Kanade. 2000.

An Image Overlay System for Medical Data Visualization.

Medical Image Analysis. 4(1): 67-72.

[6] William, S. G. D., Progress Report: Adaptive Hybrid Tracking

and Registration for Mobile Outdoor Augmented Reality. 1-

16.

[7] Carmigniani, J., B. Furht, M. Anisetti, P. Ceravolo, E. Damiani

and M. Ivkovic. 2010. Augmented Reality Technologies,

Systems and Applications. Multimedia Tools and

Applications. 51(1): 341-377.

[8] Canny, J. 1986. A Computational Approach to Edge

Detection. IEEE Transactions on Pattern Analysis and

Machine Intelligence. 8(6): 679-698.

[9] Baggio, D.L., S. Emami, D.M. Escriva, K. Ievgen, N.

Mahmood, J. Saragih and R. Shilkrot. 2012. Mastering

OpenCV with Practical Computer Vision Projects. First

Packt Publishing Ltd.

[10] Wyk, C.V. 2011. Markerless Augmented Reality on

Ubiquitous Mobile Devices with Integrated Sensors. Master

Thesis. Stellenbosch University.

[11] Tresaco, A. 2009. Markers Recognition in A Camera-based

Calibration System for Immersive Applications. Master

Thesis. Universitat Politècnica de Catalunya.

[12] Sonka, M., V. Hlavac and R. Boyle. 1993. Image Processing,

Analysis and Machine Vision. Springer US.

[13] Faille, F. 2003. Adapting Interest Point Detection to

Illumination Conditions. Proceeding of the VIIth Digital

Image Computing: Techniques and Applications. Sydney.

10-12 Dec, 2003. 10-12.

[14] Nixon, M. and A. Aguado. 2002. Feature Extraction and

Image Processing. Second Edition. Elsevier.

[15] Qureshi, S. 2005. Chapter 5: Edge Detection and

Segmentation. from Embedded Image Processing on the

TMS320C600 DSP: Examples in Code Composer Studio and

MATLAB. US: Springer.

[16] Idris, M. Y. I., H. Arof, E. M. Tamil, N. M. Noor and Z. Razak.

2009. Review of Feature Detection Techniques for

Simultaneous Localization and Mapping and System on

Chip Approach. Information Technology Journal. 8(3): 250-

262.

[17] Bansal, B., J. S. Saini, V. Bansal and G. Kaur. 2012.

Comparison of Various Edge Detection Techniques.

Journal of Information and Operation Management. 3(1):

103-106.

[18] Bin L. and M. S. Yeganeh. 2012. Comparison for Image Edge

Detection Algorithms. IOSR Journal of Computer

Engineering (IOSRJCE). 2(6): 1-4.

