

75:2 (2015) 119–124 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

A RESOURCE-INDEPENDENT METHOD TO DELIVER

AUGMENTED REALITY CONTENT

Syazani Suhaifi, Junaidi Abdullah*, Ku Day Chyi

Faculty of Computing and Informatics, Multimedia University

Cyberjaya, Malaysia

Article history

Received

3 December 2013

Received in revised form

2 July 2014

Accepted

25 November 2014

*Corresponding author

junaidi@mmu.edu.my

Graphical abstract

Abstract

Marker Based Augmented Reality requires files and resources that have to be loaded from

storage such as a local machine or a web server. We proposed a resource-independent

method of transmitting AR content by encoding resources such as 3D model files as QR

code and using the QR code itself as the marker. The AR system does not need any online

and local storage. We processed the content to best fit it into the QR code. Larger

contents are then split to multiple QR codes and the data is joined together by the

application on the other end.

Keywords: Resource independence, augmented reality, QR code, compression

© 2015Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Resource independent AR is not a concept useful to

everybody in general. If the user has high speed

broadband or are able to drive to the nearest shop to

buy AR app CDs and DVDs this concept is totally

irrelevant.

However, if we want to deliver AR content for rural

areas where it took 2 hours to go to town and the

internet connection is using GPRS or worse 56k dial-up

modems, resource independence is very important.

The use case scenario for AR in these remote locations

is mainly in education and medical purposes.

Resource independence is also very useful for content

that changes every time. No uploading or updating is

necessary on the server or the user’s computer.

In order to cater for such resource independence

needs, we have created a Resource Independent

Marker Based Augmented Reality (RIMBAR).

2.0 PREVIOUS WORKS

Similar works have been done by [1]. They created a

system called In-Place Augmented Reality. An AR

marker is created with the image as the texture and

model for the application. They also included a 2D

elevation map to form the terrain model. AR behaviors

can also be encoded in the system created by [1].

Icons representing transportation are included in the

marker image and they used the red lines included in

the marker as the path the marker will animate on.

[1]’s application however did not embed

complicated models. They also highlighted an issue of

quality in its textures that the qualities of the textures

are dependent on the imaging devices used. In

another application, [2] created a system that takes

hand-drawn sketches, and converts them into 3D

model for Augmented Reality. Notations written down

on paper will also give the models physical properties.

The works of [1] and [2] is a good example on the

possibilities of embedding media on paper. Delivery of

content in multiple parts has been tried before by [4].

They came up with a system that uses XML data to

provide the content location, provides the ability to

do joint models with the minor models attached to a

major model on another QR code, and if the loaded

model has animation, the QR codes can control the

animation. However, the application did not embed

the content directly inside the QR codes itself and it

has to be downloaded. This however inspired us to

take their experiments further and created RIMBAR.

120 Syazani, Junaidi & Ku Day Chyi / JurnalTeknologi (Sciences & Engineering) 75:2 (2015) 119–124

Using QR code as an Augmented Reality marker has

been executed several times in the past. The system

created by [5] uses a QR code to carry the URLs of the

model that their system fetches from a server. Similar

approach is used by the system proposed by [3] that

collaborates with AR using QR code as marker to fetch

data and models from a server. The first proof of

concept FLARToolkit with QR codes in 2009 by [6].

However, he did not embed the resources in his proof

of concept. These past work have hinted on a

possibility that content can be embedded inside QR

codes. There is no works being done to embed actual

3d model inside a QR code. The closest work is to

embed url that link to a 3d model that resides on a

server which require internet connection.

3.0 METHODOLOGY

3.1 3D Pose Estimations

To render the 3D graphics onto the QR code

accurately, we need to estimate the 3d position of the

QR code. For this purpose we leveraged the existence

of the position detection pattern in a QR code. We

then used a method derived from [6] to calculate the

3D pose estimation but instead of using square

coordinates, we used the transformation matrix of the

“markers”. Assuming that the markers are on a flat

paper and all the position pattern faces the same

direction, then the center of the QR code can roughly

be obtained by calculating the average of the 3

transformation matrix of the 3 position detection

patterns [6]. We however, calculated the

transformation independently instead of using all of

the results together as done by [6] and [3]. By

independently calculating transformation, the system

will be able to cope with loss of detection of some

position detection patterns. It will also provide flexibility

to the system as the system can track multiple QR

code formation.

In order to smooth out temporary loss of detection

that happens especially when the marker is moving, a

timer is used to prevent the 3D object from

disappearing upon detection loss of all the position

detection pattern. Such temporary disturbance rarely

happens for a long duration. Usually within the range

of less than 1 or 2 seconds the application will be able

to detect the position detection pattern again.

The 3D graphics data is stored temporarily in a buffer

after it has been parsed. Therefore, the model is still

visible even when the QR part containing the

encoded data is covered. The system will only purge

the data after a set period of time that we assumed

that the user is no longer using the marker.

3.2 Embedding 3D scene to QR code

The system accepts VRML file format. After comparing

with many different file formats, it is found that the

VRML format is the smallest and most suitable format

as it has very short text for 3d object representation

compared to the other file formats.

We used Primitives Models and Custom Models for

our testing. Primitives Models are models that is

created using the basic VRML primitives such as

Box,Sphere, Cylinder and Cone. The Custom Models

are models created using a 3D Modelling Software

using manipulation techniques such as extrusion, .etc.

There are simple (0 – 10 QR), intermediate (10 to

20QR), and complex(>20 QR) models for testing. Table

1 and Table 2 shows the details for both model.

category.

Table 1 Primitives model and its specification

Primitives

Shape Category Character

Count

QR code

required

Box Simple 521 3

Cone Simple 540 3

Cylinder Simple 535 3

Sphere Simple 420 2

Allprimitives Intermediate 3971 18

Prim

Microphone

Intermediate 3082 14

Prim Car Intermediate 2980 13

Prim Molecules Complex 6627 29

Prim Forest Complex 8704 38

Prim Castle Complex 11216 49

Even the smallest VRML file is quite long and beyond

the encoding capacity of one QR code. We

employed a maximum safety-cap value of 250

characters per QR code in all our test and

measurement to avoid the codes from getting harder

to detect. We found out through trial and error that

the more complex the QR, the harder it is to be

detected.

We are able to embed larger 3d model by splitting

such graphics data into multiple QR codes. Large

amounts of data can be encoded into multiple QR

codes. It is possible, with the proposed system and to

encode data into any number of QR codes.

121 Syazani, Junaidi & Ku Day Chyi / JurnalTeknologi (Sciences & Engineering) 75:2 (2015) 119–124

Table 2 Custom model and its specification

Custom Models

Shape Category Character

Count

QR

code

required

Custom

Icosahedron

Simple 1135 5

Custom

Hammer

Simple 1892 8

Custom

Extruded

Box

Simple 2280 9

Custom

Arrow

Intermediate 2359 10

Custom

Cap

Intermediate 3489 15

Custom

Flashlight

Intermediate 4423 19

Custom

Candlestick

Complex 7058 30

Custom

Spiral

Staircase

Complex 14424 62

Custom

Teapot

Complex 29288 127

3.3 RIMBAR Compression Algorithm

To make the size of the data smaller and fit into less QR

code we proposed the RIMBAR Compression

Algorithm. The overall process is shown in Figure 1.

Figure 1 The RIMBAR Compression

Firstly, the whitespaces in-between the text is

removed using the RemoveWhitespace class by [8].

Then the data in the model undergoes a Data

Simplification process that only extracts the data

needed. Then, Static Dictionary compression method

is used to further shorten up the model data. All the

VRML nodes are replaced with short letter such as

“b1” for ”Background” and “c6” for “Coordinate

Interpolator”. Still however, there are a lot of numerical

data that exists in custom made models that has

indexed Face Sets for example. To remedy this, we

created a dictionary indexed to cater for the

repetitive numbers and replace them with

alphanumeric representation. Finally, to the numbers

that cannot be indexed, we converted the numbers

to base64 so that it becomes smaller.

3.4 RIMBAR Format

It became evident later on that even compression of

models will not be enough to make the models fit into.

Therefore, the RIMBAR Format is created based on the

premise that all the models will be created specifically

only using Primitives. Primitives are used because

results of the previous experiments prove that Primitive-

based models are smaller. Table 3 below shows the

syntax for the RIMBAR format.

Table 3 The RIMBAR format

RIMBAR Format Syntax

Metadata

<Part Number><Part Total>] <Primitive Geometry> | <Position

X><Postion Y><PositionZ> | <Rotation X><Rotation

Y><Rotation Z> | <Scale X><Scale Y><Scale Z> | <RGB

Red><RGB Green><RGB Blue>| ;

Example :

2 2]B|200 50 250|0 0 90|1 1 1|0 255 255|;

C|10 50 250|0 0 90|1 1 1|0 256 128|;

3.5 RIMBAR2 Compression Algorithm

To compress the files even further, the RIMBAR 2

Compression is applied. RIMBAR 2 is an algorithm that

allows the RIMBAR Format to be shrunk to fit more

models into the same amount of QR Code. Since

RIMBAR Format has its own exporter, the compression

will take place during the writing of the RIMBAR

Format. For example, RIMBAR 2 Compression will be

applied to the Position X,Y, and Z values as it is written.

Firstly, all the numerical instances inside the model

such as coordinates, etc. is converted to base 64

format. Then, the color information is converted to the

nearest tens and replaced with a character. For

example, “190” is represented as “s”.

3.6 Recovering 3D Scene from QR Code

To recover the data, we have to piece together the

jigsaw puzzle that we created using the developer

system. Firstly, the QR code is scanned using a QR

code reader. We used Logosware’s’ QR Code Reader

as the QR code reader. The code reader then passes

the decoded information back to the system. The

system will then look for metadata that is embedded

together with the QR code. By using the metadata the

system will determine where does the current part of

data belong in the whole total set of data. If all the

parts of the data are present, a parser will then parse

Whitespace Removal

Data Simplification

Static Dictionary Compression

Base 64 Conversion(for Custom Models)

Repetition Indexing(for Custom Models)

122 Syazani, Junaidi & Ku Day Chyi / JurnalTeknologi (Sciences & Engineering) 75:2 (2015) 119–124

the document. Parsed information values needed for

recreating the scene is then passed on to the 3D

creator() function to recreate the 3d scenes in the 3D

engine. Finally, the 3D engine augmented the model

on top of the live video.

3.7 Embedding and Recovering Image Textures to

and from QR Code

We are able to encode textures into QR codes by

transmitting the pixel color values instead of the whole

image. The system iterates through the pixels and

builds a list of the color of each pixel. This information

is then passed to the QR code encoder to encode as

QR code. During recovery, the system takes the data

and recreates the pixels according to its original color.

4.0 RESULTS

4.1 3D Pose Estimations

We found that our current method has a very high
degree of robustness to occlusion if compared to the
works of [3] and [6]. Previous attempts by [3] have very
good occlusion immunity. However, when one of the
position detection pattern is occluded, the detection
is lost as shown in Figure 2.

Figure 2 Occlusion immunity of QRAR by [3]

Our method have managed to improve further the

occlusion immunity and flexibility of the QR code as it

is harder to lose all three detection patterns at the

same time. If there is at least one position detection

pattern remain uncovered, the model will still appear

as shown in Figure 3.

Figure 3 Occlusion immunity of RIMBAR

4.2 Embedding 3D Scene to QR Codes

We are able to embed the 3D scenes to QR code.

However, it does take at least two QR Code for the

simplest of models to fit. If nothing is done with the

data, this will not be practical.

4.3 RIMBAR Compression Algorithm

Overall, the RIMBAR compression method works best

with Primitives Model with an average of 80%

reduction for all models regardless of complexity as

shown in Figure 4.

Figure 4 Character count for primitives

The compression method however is not effective

towards custom models. There are reductions towards

the Custom Models. However, the reduction

percentage is inconsistent and averages at 55% as

shown in Figure 5.

Figure 5 Character count for primitives

The most effective process is the Data Simplification

process, followed by whitespace removal and Static

Dictionary for both Primitives Model and Custom

Models.

The results of the RIMBAR Compression are then

compared side-by-side with the results of compressing

the 3D models using text compression techniques. The

results are shown in Figure 6 and Figure 7. Both results

show that RIMBAR Compression is more effective in

compressing the models compared to the other text

compression methods. LZ77 is the closest competition

for the RIMBAR Algorithm by achieving 73 percent

reductions. However, it only works on primitives of a

certain complexity. Negative result means that the

0%

200%

U
n
…

W
h
…

D
at
…

St
at
…

P
e

rc
e

n
t

(O
ri

gi
n

al
 is

1

0
0

%
)

Character Count for
Primitives

Box

Cone

123 Syazani, Junaidi & Ku Day Chyi / JurnalTeknologi (Sciences & Engineering) 75:2 (2015) 119–124

outcome of the compression is bigger than the

original data.

Figure 6 Comparison of character reduction using RIMBAR

algorithm and other text compression methods for primitives

Figure 7 Comparison of character reduction using RIMBAR

algorithm and other text compression methods for custom

models

4.4 RIMBAR Format

It is found that RIMBAR Format is smaller than both the

VRML files and also the files that are compressed using

the RIMBAR Compression. Table 4 shows the full results.

Table 4 Comparison between RIMBAR format, RIMBAR

cmpression and raw VRML

 VRML RIMBAR

Format

RIMBAR

Compression

Box 521 35 86

Cone 540 35 84

Cylinder 535 36 78

Sphere 420 37 77

4.5 RIMBAR Format

It is found that RIMBAR Format with RIMBAR 2

Compression is smaller than both the models with

RIMBAR Compression and the uncompressed RIMBAR

Format. Table 5 shows the full results. In general, the

RIMBAR 2 algorithm is able to decrease the character

count of the models.

Table 5 Character count between the RIMBAR format,

models after RIMBAR compression, and RIMBAR format with

RIMBAR 2 compression

RIMBAR

Compression

RIMBAR

Format

RIMBAR

Format +

RIMBAR 2

Compression

Box 86 35 25

Cone 84 35 25

Cylinder 78 36 26

Sphere 77 37 26

4.6 Embedding and Recovering Image Textures to

and from QR Code

In context of transmitting large images, our current

method is not at all practical if compared to the

methods used by [1] because 2 QR Codes is required

to transmit a very small 6x6 pixel image as shown in

Figure 8.

Figure 8 Two QRs needed for 6x6 pixel image

5.0 DISCUSSION

The high occlusion immunity by RIMBAR has its roots in

its flexibility in averaging the transformation matrix of

multiple markers as individuals instead of rigidly relying

on a set of 3 transformation points as done by [6] or by

having 4 points of the QR codes as reported by [3] and

[5].

From the results of this experiment overall, the best

model to use for RIMBAR is model based on Primitives.

The best format to use is the RIMBAR Format + RIMBAR

2 Compression. The RIMBAR Format does not allow

decimal points as one of the measures of reducing file

spaces. As a result of this limitation, there might be

minute difference in transformational value from the

original file.

The Huffman coding technique might work in other

applications however it does not work in the context

of RIMBAR. This is because RIMBAR needs to encode

the information in String format. The result of Huffman

coding is in binary format. Hence, the character count

is increased in some cases up to 400% of the original

size.

We have such a bad result in transmitting images

due to the amount of data that we need to transmit.

Currently, we have to send the RGB color information

124 Syazani, Junaidi & Ku Day Chyi / JurnalTeknologi (Sciences & Engineering) 75:2 (2015) 119–124

of each pixel into the QR code. This takes up a lot of

space.

This research also illustrates the possibilities of

encoding media into printed 2D barcodes which

might be very useful for any publishers wishing to

deliver interactive content instantly.

6.0 FURTHER RESEARCH

Usage of High Capacity Color Barcodes such as

Microsoft Tag will largely improve the ability of this

system to carry more information without the need to

split the data (into multiple barcodes). At the time of

writing, there is no Microsoft Tag reader for PC.

Microsoft Tag reader is however available for

smartphones with Android, iOS, and Symbian. In our

attempt to build mobile solution, using Microsoft Tag

instead of QR code is very much possible.

7.0 CONCLUSION

We proposed an AR system that encodes resources

such as 3D scenes to QR code and using the QR code

itself as the marker. We found that we are able to fit

considerably large amount of scene data. But in order

to transmit textures and images, our current method is

not feasible and not recommended.

References

[1] Bergig, N. H. O., J. El-Sana, K. Kedem, M. Billinghurst. 2008.

In-Place Augmented Reality. IEEE International Symposium

on Mixed and Augmented Reality 2008. 15-18 Sept. 2008.

135-138.

[2] Bergig, N. H. O., J. El-Sana, Mark Billinghurst. 2009. In-Place

3D Sketching for Authoring and Augmenting Mechanical

Systems. 8th IEEE International Symposium on Mixed and

Augmented Reality 2009 Science and Technology

Proceedings. 87-94.

[3] Jian-tung, W., Chia-Nian, S., Hou, T. W., & Fong, C. P. 2010.

Design and implementation of augmented reality system

collaborating with QR code. International Computer

Symposium (ICS), 2010. Tainan, Taiwan. 16-18 Dec. 2010.

414 - 418

[4] Kan, T.-W., &Teng, C.-H. 2010. A framework for

multifunctional Augmented Reality based on 2D barcodes.

ACM SIGGRAPH 2010 Posters. Los Angeles, California. 25-29

July 2010.

[5] Kan, T.-W., Teng, C.-H., & Chou, W.-S. 2009. Applying QR

Code in Augmented Reality Applications. Proceedings of

the 8th International Conference on Virtual Reality

Continuum and its Applications in Industry. Yokohama,

Japan. 2009.

[6] MakC. 2009. Augmented Reality and QR Codes. [Online].

From:

http://makc3d.wordpress.com/2009/10/30/augmented-

reality-and-qr-codes/2009.

[7] Adobe. 2012. Stage 3D. [Online]. From:

http://www.adobe.com/devnet/flashplayer/stage3d.htm.

[8] G.Skinner. 2007. AS3 String Utils – RemoveWhitespace Class.

[Online]. From: http://tinyurl.com/lvsyyeg. [Accessed on 15

May 2012].

