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THE GROWTH OF MIXING ZONE IN HETEROGENEOUS
POROUS MEDIA

M.R. OTHMAN1, R. BADLISHAH AHMAD2 & Z. MAY3

Abstract. Utilizing currently available analytical solutions that incorporate fractal exponent, the
growth of mixing length of injected solvent was determined for a one-dimensional model. Mixing
zone size was found to increase as porous medium becomes increasingly heterogeneous. In a hetero-
geneous porous media, mixing zone size increases as dispersion coefficient increases particularly at
relatively short duration of flow. There are three important factors influencing the size of the dispersive
mixing zone, ∆xD. Of particular importance in this study is reservoir heterogeneity, which is repre-
sented by a fractal exponent, β. It was discovered that as β becomes smaller (porous medium becomes
increasingly heterogeneous), the size of the mixing zone increases. Another factor affecting ∆xD is time
dependent dispersion coefficient, K(tD). In a heterogeneous reservoir, mixing zone increases with
increasing value of dispersion coefficient at relatively short duration of flow. For relatively long period
of flow, however? ∆xD continues to increase even though K(tD) remains constant. The third factor is
average fluid velocity, ν. Mixing zones have inverse relationship with fluid velocity in that ∆xD
increases as ν decreases.

Key words: Homogeneity, heterogeneity, dispersion coefficient, fractal exponent, mixing zone, di-
mensionless concentration, porous media

Abstrak. Dengan menggunakan penyelesaian analitikal yang merangkumi fraktal eksponen,
pembesaran jarak pencampuran telah dapat ditentukan bagi model satu dimensi. Saiz zon pencampuran
didapati meningkat apabila media berliang menjadi semakin heterogen. Dalam media berliang yang
heterogen, saiz zon pencampuran meningkat apabila pemalar penyerakan meningkat terutama sekali
pada aliran jangkamasa singkat relatif. Terdapat tiga faktor penting mempengaruhi saiz zon pencampuran
penyerakan, ∆xD. Perkara terpenting dalam kajian ini ialah keheterogenan takungan, yang
dipersembahkan oleh eksponen fraktal, β. Hasil kajian mendapati bahawa apabila β menjadi kecil
(media berliang menjadi semakin heterogen), saiz zon pencampuran meningkat. Satu lagi faktor
yang mempengaruhi ∆xD ialah pekali penyerakan bersandar masa, K(tD). Di dalam takungan heterogen,
zon pencampuran meningkat terhadap peningkatan nilai pekali penyerakan pada aliran jangkamasa
singkat relatif. Bagaimanapun, bagi aliran jangkamasa panjang relatif, ∆xD terus meningkat walaupun
K(tD) malar. Faktor ketiga ialah purata kelajuan bendalir, ν. Zon pencampuran mempunyai perkaitan
songsang terhadap kelajuan bendalir di mana ∆xD meningkat apabila ν berkurangan.

Kata kunci: Kehomogenan, keheterogenan, pekali penyerakan, eksponen fraktal, zon pencampuran,
media berliang

1 School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan,
14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia. Email: chroslee@eng.usm.my.

2 School of Electrical & Electronic Engineering, Kampus Kejuruteraan, Universiti Sains Malaysia,
Seri Ampangan, 14300  Nibong Tebal, Pulau Pinang.

3 Department of Electrical & Electronic Engineering, Universiti Teknologi Petronas, Bandar Seri
Iskandar, 31750 Tronoh, Perak.

JT38F[1B].pmd 02/16/2007, 21:351



M.R. OTHMAN, R. BADLISHAH AHMAD & Z. MAY2

1.0 INTRODUCTION

The success of a miscible oil recovery process depends on the length and integrity of
the mixing zone within which dispersion works to cause mixing and dissipation of the
injected solvent. Subsurface mixing behavior can be determined from inter-well tracer
tests in which the tracer concentration at a producing well is monitored. The concen-
tration profile is a function of the evolution of the mixing zone with time.

For a gravity stable one dimensional, miscible flood in a dipping homogeneous
porous media (reservoir), the less dense solvent displaces oil down-dip at a rate below
a critical displacement rate such that gravity acts to keep the solvent segregated from
the oil and prevents protrusions of solvent fingers into the oil. Assuming homogene-
ity, such a system has been modeled as an infinitely long one dimensional flow sys-
tem containing no solvent initially, but into which a constant solvent concentration is
continuously injected beginning at time zero. For one dimensional longitudinal dis-
persion, the relevant convection-dispersion equation in a semi-infinite homogeneous
medium having a plane source at x = 0, is given as

2

2

C C C
K

x tx

δ δ δν
δ δδ

− = (1)

The exact analytical solution for constant K in (1) employing the initial and bound-
ary conditions for one dimensional first type boundary where,

C (x, 0) = 0 ; x³ ≥ 0
C (0, t) = Co ; t³ ≥ 0
C (∞, t) = 0 ; t³ ≥ 0

results in (Lake, 1989 and Marle, 1981),

1
2 22 2

x
KC x t e x t

erfc erfc
Co Kt Kt

ν

ν ν− −   = +      
(2)

rewriting the equation (2) above in a dimensionless form gives,
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(3)

For continuous-constant injection into a flow field, the initial and third conditions of
the second boundary are given as,
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The boundary states that the injected mass of solute over the domain from –∞ < x <
+∞ is proportional to the length of time of the injection. φe is defined as the effective
porosity and νx is average linear flow velocity in a longitudinal direction. Following
the solution by Sauty (1980), the exact solution is in the form,
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ν ν− +   = −      
(4)

In a dimensionless configuration it is represented by,
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(5)

Defining time dependent dispersion coefficient, K(t) (Erkal,1997),

( ) ( ( ) )
d
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= (6)

where,
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and multiply f(t) by time and then differentiate with respect to t, the following time
dependent dispersion coefficient is obtained,
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for β ≠ –1, –2 (7)

β is called a fractal exponent. It normally takes values from less than zero to nega-
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tive infinity. For β < –1, normal dispersion prevails which characterizes a Fickian model
of dispersion. For fractal exponent in the range of 0 > β  ≥ –1, anomalous dispersion or
non-Fickian dispersion takes place in the reservoir of interest. Positive values of β are
not applicable to a physical system (Zhang, 1991). Therefore, in this work, the discus-
sion is restricted only to Fickian model of dispersion.

The approximate PDE solution employing the first type boundary condition can be
obtained by introducing the time dependent dispersion coefficient to yield,

1
2 22 ( ) 2 ( )

x
KC x t e x t

erfc erfc
Co K t t K t t

ν

ν ν   − += −         
(8)

The exact solution, if known, should satisfy equation (1) and the first boundary
conditions simultaneously. The error in the approximate solution can be evaluated by
substituting equation (8) into equation (1) in the following form where y denotes the
error from the true solution,

2

2( )
C C C

y = K t
x tx

δ δ δν
δ δδ

− − (9)

For the approximate solution to be the true solution of the convection-dispersion
equation, the value of y should be zero. For the second type boundary condition, the
solution can be approximated from,

1
2 22 ( ) 2 ( )
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KC x t e x t

erfc erfc
Co K t t K t t

ν

ν ν   − += −         
(10)

2.0 DISCUSSION

Figure 1 depicts combined illustration of first and second type boundary solution for
dimensionless concentration against dimensionless time at various fractal exponents.
“S” shape profile is observed from the figure. When longitudinal mixing takes place
in a miscible displacement process, where a first contact miscible solvent is injected
into a reservoir to displace oil that has the same density and viscosity as the solvent,

Fickian Non-Fickian

– ∞

β →

–3 –2 –1 0
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the effluent solvent concentration initially is produced at low concentration. Then, it is
followed by a period of rising concentration and finally a period where effluent con-
centration gradually approaches injected concentration. Thus, the ‘S’ shaped concen-
tration profile is observed from the figure. For perfectly homogeneous reservoir, repre-
sented by β = – 100, both first and second type boundary solutions become similar.

The dispersive mixing zones for a reservoir can be determined by plotting dimen-
sionless concentration against distance. The mixing zone, ∆xD, is defined (Lake 1989)

Figure 1 Dimensionless concentration against dimensionless time for various values of the fractal
exponent-First and Second Type Boundary
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as the distance between the distances where CD = 0.1 and CD = 0.9. This is shown in
Figure 2 with inverted “S” shape profiles. The figure illustrates change in concentra-
tion profiles at a fixed dimensionless time of 0.5 for different values of Peclet number.
The figure shows that the mixing zones grow with decrease in Npe. The mixing zone
becomes almost non-existent as Npe approaches infinity.

Figure 3 is another illustration of concentration distribution against dimensionless
distance at a fixed dimensionless time for different values of fractal exponent. At a
given time, ∆xD increases as β increases. ∆xD appears to grow with increase in disper-
sion coefficient (as β is proportionally related to K). The mixing zone becomes almost
non-existent as β approaches negative infinity. This indicates that as a reservoir be-
comes less heterogeneous, the dispersive mixing zone becomes smaller, eventually
approaching a point where no mixing takes place. The results also demonstrate that
the same value of dimensionless concentration and mixing zone can be obtained
when extremely small fractal exponents or large Peclet numbers are reached.

Figure 4 shows the growth of mixing zone with increase in dimensionless time and
dispersion coefficient at a fixed value of β = –-3. The mixing zone size increases with
K. The curve (thinnest line) represents K at tD = 0.15 used to predict the mixing zone
size at tD = 0.50. The solid curves represent K that varies with time. The graph indi-
cates that K can never be constant since the use of the same value of K can lead to
under-estimation of the mixing zone size.

Figure 5 illustrates the relationship between mixing zone size and the average fluid
velocity, ν, at fixed β. , L, and tD of –10, 150 ft, and 0.5 respectively. As n decreases, the
size of mixing zone appears to increase. When the velocity is relatively slow, the time
that the fluid takes to travel increases, giving more time for the fluid to interact and

Figure 3 Dimensionless concentration against  dimensionless length at different fractal exponent -
First Type Boundary
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mix with the reservoir fluid. The fluid that flows relatively slow however, takes much
longer time to reach its initial concentration at the producer as depicted in Figure 6.

When continuous injection is applied, the concentration profile for a reservoir at tD
= 0.5 is given in Figure 7. The plot for continuous injection (second boundary condi-
tion) differs from that for the first boundary condition in that the curves at relatively

Figure 4 Dimensionless concentration as a function of dimensionless distance-First Type Boundary
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Figure 5 Dimensionless concentration as a function of dimensionless length at different average
velocity - First Type Boundary
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higher values of β do not start at the same dimensionless concentration. This is due to
the mass of the injected solute that is equal to Co.φe.ν.t, represented by the area under
the curves. The area under the curve for β = –100 should be the same as the area under
the curve for β = –1.5. In order for this relationship to occur, the difference in curve
exists in such a way that curve for β = –100 is higher but shorter than the curve for β =
–1.5. Hence the difference in the starting points. This difference however is eliminated
when b becomes relatively small.

Figure 6 Dimensionless concentration against dimensionless time at different average velocity - First
Type Boundary
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Figure 7 Dimensionless concentration against dimensionless length at different fractal exponent -
Second Type Boundary
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Figure 8 is attempted to explain the effect on mixing zone size in a heterogeneous
reservoir during short flow when constant dispersion coefficient time is used instead.
The graph depicts discrepancy that exists between constant dispersion coefficient and
time dependent dispersion coefficient for the second boundary case. Similar to the
first boundary solution, the use of constant dispersion coefficient leads to under-esti-
mation of the mixing zone size.

Figure 9 illustrates the effect of fluid velocity on the size of dispersive mixing zone.

Figure 8 Dimensionless concentration as a function of dimensionless distance - Second Type
Boundary
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Figure 9 Dimensionless concentration as a function of dimensionless length at different values of
velocity - Second Type Boundary
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It clearly indicates that the size of mixing zone increases when ν decreases. Lower
fluid velocity causes more time for mixing to occur, hence, longer mixing zone.

3.0 CONCLUSION

Present knowledge of dispersion coefficient, K, is based on the assumption of reser-
voir homogeneity, which leads to a constant value of dispersion coefficient. This is
due to the difficulty of characterizing complex heterogeneities with mathematical equa-
tions. It has been found that K is a function of time, and the heterogeneity of porous
media can be characterized by a fractal exponent, β using a tracer test. It was discov-
ered that as β becomes smaller (porous medium becomes increasingly heterogeneous),
the size of the mixing zone increases. Another factor affecting ∆xD is time dependent
dispersion coefficient, K(tD). In a heterogeneous reservoir, mixing zone increases with
increasing value of dispersion coefficient at relatively short duration of flow. For rela-
tively long period of flow, however, ∆xD continues to increase even though K(tD)
remains constant. The third factor is average fluid velocity, ν. Mixing zones have
inverse relationship with fluid velocity in that ∆xD increases as ν decreases.

Continuous injection of solvent at extremely long test time in order to obtain series
of concentration ratio generally is not economical due to the amount of solvent re-
quired, operating hours involved and overhead costs that is incurred. Characterizing
the reservoir and identifying the size of mixing zone by determining β at any flow time
now become more practical. The use of the time dependent dispersion coefficient is
practical since the fractal exponent obtained from the test can be used to predict the
concentration profile and size of mixing zone at a longer time frame.

Efficient recovery of oil requires that reservoir factors such as β. , L, and ν be in-
creased or decreased accordingly in order to achieve a desired mixing zone. Opti-
mum value of ν that justifies the economics and at the same time recovers maximum
oil must be obtained. This can only be done if the heterogeneity of the reservoir or
porous medium is known. Knowing the proper value of β.  enables the desired value
of ν be estimated.
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NOMENCLATURE

C = concentration
Co = initial concentration
K = dispersion coefficient
K(t) = time dependent dispersion coefficient
L = characteristic length
νx = average linear flow velocity in a longitudinal direction
t = time
tD = dimensionless flow time based on distance
β = fractal exponent
φ = porosity
φe = effective porosity
CD = dimensionless concentration, C/Co
xD = dimensionless distance, x/L
tD = dimensionless time, ν.t/L
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